JPH01160828A - 酸化物超電導薄膜作成法 - Google Patents

酸化物超電導薄膜作成法

Info

Publication number
JPH01160828A
JPH01160828A JP62322171A JP32217187A JPH01160828A JP H01160828 A JPH01160828 A JP H01160828A JP 62322171 A JP62322171 A JP 62322171A JP 32217187 A JP32217187 A JP 32217187A JP H01160828 A JPH01160828 A JP H01160828A
Authority
JP
Japan
Prior art keywords
oxide
vapor deposition
substrate
thin film
superconducting thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62322171A
Other languages
English (en)
Inventor
Katsuhiro Imada
勝大 今田
Yoshio Takada
良雄 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62322171A priority Critical patent/JPH01160828A/ja
Publication of JPH01160828A publication Critical patent/JPH01160828A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、酸化物超電導薄膜作成法に関するものであ
る。
[従来の技術] 従来、常電導から超電導へと転移する温度(以下’I’
 cと略記)が最も高いといわれていたNb。
Geでも′1゛c約23にで、利用に際しては一般に高
価な液体ヘリウムを用いて冷却しなければならなかった
これに対し、近年ベトノルツ(Bednorz)やミュ
ータ−(1Jiil 1erl などによって]゛Cが
約30〜40にである金属酸化物(L a −)3 a
 −S r −Ca−C11−0系)が見出された(雑
誌: Z、Phys、 )364.189(19861
1,ソhニtnイC1M、に、 ウ−(v。
K、 Wul などによってTcが80〜93に程度で
あるY −B a −C11−0系物質が発見され(雑
誌:Phys、 Rev、 Left、 58.90F
l (!987) ) 、其の後の検討でY 13 a
m Cus Oy  (6≦y≦7組成近傍)が最も良
好な特性を示すことが判明した。また、YをLa、Nd
、Sm、Eu、Gd、Ha、Er、Yb、Ln笠のラン
タノイドで置き換えても同様の特性が得られる。これら
の超電導材料は冷媒として安価な液体窒素(沸点77K
)を用いることがfiJ能で、また、焼結体では77K
における臨界電流密度(以下Jcと略記)がlo’A/
cm”以トであることが確認されており、実用上極めて
有用な特性をもつ。一方、この物質の応用としては、ジ
ョセフソン素子や磁気検出素子などへの適用=J能性も
薄膜形成技術を通して検討されてきており、この方面で
の開発も急速に進められている。
この物質の薄膜化に対していくつかの方法が提案されて
おり、代表的な例としては蒸着法が挙げられ、Ma、L
n、Cuそれぞれの金属を蒸@原料として、抵抗または
電子ビームなどにより加熱し、E元同時8着するなどの
方法が採られてきている。基板に付着した膜を酸素雰囲
気中で約900℃程度に加熱すると、M a −L n
 −Cu −0のペロブスカイト型化合物が得られ、し
かも、最も弔純な成膜方法であるため、比較的簡便に作
成できるなどの利点がある。また、上記蒸着法の一種で
あるクラスタ・イオンビーム蒸着法(以下IBC法と略
す)の利用が検討されている。この方法の利点は、通常
、クラスタの形成やそのイオン化による電場加速の効果
などと相まって、均質で緻密でかつ高付着ガの膜が得ら
れることなどから、実用上高品質な膜を得るには最も適
していると考えられる。この方法の原理を第8図をもと
に説明する。蒸着原料(2)をヒーター(4)で加熱す
ると、ルツボ(11から中性分子(2A)が蒸発し、断
熱膨張の結果、クラスタ(2B)が形成される。さらに
、この行路上に設けられたイオン化フィラメント(7)
からの電子シャワーでクラスタをイオン化(2C)し、
これを加速1換(目)で加速する。加速されたクラスタ
イオン(2C)は基板(lO)表面に衝突して付着し、
膜を形成する。
[発明が解決しようとする問題点] 従来のICB三元同時蒸着法による酸化物超電導薄膜作
成法は以上のようであるので、蒸着原料として例えばそ
れぞれBa%Y%Cuの金属を用いた場合、それらの蒸
発温度が違うため(例えば1O−3torrの蒸気圧を
得るための原料温度はそれぞれ862K、1750K、
および1400にとBaが際立って低い)、蒸着速度の
制御が難しく、形成した膜の膜厚方向での元素分布の不
均一が生じやすく、加熱処理後に均一な組成膜を得にく
いなどの問題点があった。
この発明は上記のような問題点を解消するためになされ
たもので、膜内での元素分布の均一化を図り、その結果
、優れた超電導特性を有する酸化物超電導薄膜を得るこ
とを目的とする。
[問題点を解決するための手段] この発明に係る酸化物超電導薄膜作成法は、Ba酸化物
、Cu、および希七類元素(以下Lnと略す)をそれぞ
れ蒸着原料として加熱し蒸気化する第1[程、蒸気化さ
れた上記各蒸着原料を基板にむけて噴出させ上記蒸着原
料のクラスタをそれぞれ形成する第2玉程、上記各クラ
スタをイオン化しクラスタイオンをそれぞれ形成する第
3玉程、」二記谷クラスタイオンを基板に衝突するよう
に加速する第4工程、並びに上記基板を酸素雰囲気中で
熱処理する第5工程を順に施すものである。
[作用] この発明におけるB a酸化物は、個々の元素に分解せ
ず、殆ど13 a酸化物の状態で蒸発する性質があり、
その蒸発温度(例えば1O−3t、orr+7’)蒸気
圧を得る温度が1694K)が他の蒸着原料の蒸発温度
と近いので、蒸着速度の制(卸がしやすく、膜内での元
素分布を均一化できる。なお、最終的には三元同時?A
着膜は酸素雰囲気中で熱処理して酸化されるのであるか
ら、基板にBa金属でなくBa酸化物が蒸着されても何
ら差し支えない。
[実施例] 以F、この発明の一実施例を図について説明する。
実施例 第1図はこの発明の一実施例に係る[CB三元同時蒸着
装置を示す断面図である。ルツボ(11に約5gの炭酸
バリウム粉末(2)を充填する。真空外容器(3)を高
真空(〜l O−”torr)に排気後、ヒータ(4)
に通電して約1250Kに加熱し、急激に熱分解しない
よう、その後、最終的に1450に程度まで徐々に加熱
し、真空度が悪化しないことを確認する。この状態で、 [3a CO3−B a O+ COzの反応が完結し
たことを知る。
ルツボ (5)、(6)にはそれぞれCuおよびYが充
填されているが、この前処理中にはこれらのルツボ (
5)、(6)は加熱せず、またイオン化フィラメント 
(7)でイオン化も行なわれないことは言うまでもない
。シャッタ(8)も閉じておく、この操作後、全ヒータ
(4)に通電して最適蒸発速度を確保しながら蒸気化(
第1 I程)し、基板 (10)にむけてルツボ(11
,(5)、(6)より噴出させてクラスタを形成する(
第2工程)、イオン化フィラメント (7)でイオン化
(第3工程)し、基板 (lO)に衝突するように加速
1纒(II)で加速(第4工程)シ、シャッタ(8)を
開けてM a O’31結品基板 (10)上に成膜を
開始し、約1μm堆積させる。
このようにして得られた膜をオージェ分析した結果を第
2図に示す、この図より、Baの分布は極めて良好であ
るのがわかる。
この膜を酸素雰囲気中、約900℃で1時間加熱後、1
00℃/時間で徐冷(第5工程)し、この抵抗−温度特
性な四探針法で計測したところ、第3図に示すように約
85KにTcをもっことが分かった。また、X線解析法
でこの酸化物超電導薄膜の結晶相を調べたところ、第4
図に示すように、Ba−Y−Cu−0が主成分で、わず
かにCuOを含むことが分かった。さらに、電場加速の
無い単純な蒸着方法とこのICBによる方法とを比較す
ると、′rcの116には殆ど差がないものの、同一の
厚さでJc値は約2倍の約数百A / c m 2が得
られた。これは、膜の緻密性の点からこのICB法が極
めて有用であることを示している。
比較例 蒸着原料として、それぞれY、Ba、Cuの金属を用い
て上記実施例と同様な条件で蒸発させ、I CB法によ
り成膜した。この膜のオージェ分析の一例を第5図に示
す。図より、l(aの分布にむらのあることが分かる。
さらに上記実施例と同様に熱処理して抵抗−温度特性お
よび結晶相を調べたところ、第6図および第7図に示す
ような結果になった。これらの図より、T’ cが40
に程度と低いこと、また超電導相以外の異相が析出して
いることも明らかである。
なお、上記実施例では炭酸バリウムを熱分解してB a
酸化物すなわち酸化バリウムとしたが、B(1酸化物の
原料としては、要は熱分解してBa酸化物となるような
ものであればよく、例えば硝酸バリウムや酢酸バリウム
や硫酸バリウムなどがあげられる。但し、熱分解して酸
化バリウムになる温度が1600に以上だと、熱分解時
に酸化バリウムそのものが、A1してしまうので不都合
である、また、酸化バリウムそのものの使用も可能であ
るが、通常、水や炭酸ガスなどによる組成の変性もある
ので、酸化バリウムそのものを使用する場合はBa化合
物の場合と同様に加熱処理するのが望ましい。しかし高
純度のものが得にくいため、−船釣には上記のようなり
a化合物を用いるのが望ましい。
また、L−実施例では成分系としてY−Ba−Cu−0
系の場合を示したが、Yを例えばLa。
Nd、Sm、Eu、Gd、t)y、Ho、Er、Yb、
L+iなどの他の希土類元素で置き換えたLn−Ba−
Cu−0系の場合でも同様の効果を奏する。
[発明の効果] 以上のように、この発明によれば、Ba酸化物、Cu、
および希土類元素(以下Lnと略す)をそれぞれ蒸着原
料として加熱し蒸気化する第1工程、蒸気化された上記
各蒸着原料を基板にむけて噴出させ上記蒸着原料のクラ
スタをそれぞれ形成する第2工程、上記各クラスタをイ
オン化しクラスタイオンをそれぞれ形成する第3工程、
上記各クラスタイオンを基板に衝突するように加速する
第4工程、並びに上記基板を酸素雰囲気中で熱処理する
第5工程を順に施すので、三元の蒸着速度が似通ってB
a分布の均一化が図れ、しかも、緻密で大きなJc値を
もつ良好な超電導特性を有する酸化物超電導薄膜が得ら
れる効果がある。
【図面の簡単な説明】
第1図はこの発明の一実施例に係るICB三元同時蒸着
装置を示す断面図、第2図はこの発明の一実施例による
方法で作成された酸化物超電導薄膜の厚み方向の元素分
布を示す特性図、第3図はこの発明の一実施例による方
法で作成された酸化物超電導薄膜の抵抗−温度特性を示
す特性図、第4図はこの発明の一実施例による方法で作
成された酸化物超電導薄膜のX線解析による結晶相を示
す特性図、第5図は比較例による酸化物超電導薄膜の厚
み方向の元素分布を示す特性図、第6図は比較例による
酸化物超電導薄膜の抵抗−温度特性を示す特性図、第7
図は比較例による酸化物超電導薄膜のX線解析による結
晶相を示す特性図、第8図は一般的なICB蒸着法の原
理を説明する断面構成図である。 図において、(1) 、 (5) 、 (6)はルツボ
、(4)はヒータ、 (7)はイオン化フィラメント、
(8)はシャッタ、(101は基板、(II)は加速重
陽である。 なお、各図中同一符号は同一またはH1当部分を示す。

Claims (4)

    【特許請求の範囲】
  1. (1)三元同時蒸着により酸化物超電導薄膜を作成する
    ものにおいて、Ba酸化物、Cu、および希土類元素(
    以下Lnと略す)をそれぞれ蒸着原料として加熱し蒸気
    化する第1工程、蒸気化された上記各蒸着原料を基板に
    むけて噴出させ上記蒸着原料のクラスタをそれぞれ形成
    する第2工程、上記各クラスタをイオン化しクラスタイ
    オンをそれぞれ形成する第3工程、上記各クラスタイオ
    ンを基板に衝突するように加速する第4工程、並びに上
    記基板を酸素雰囲気中で熱処理する第5工程を順に施す
    ことを特徴とする酸化物超電導薄膜作成法。
  2. (2)Ba酸化物は、Ba化合物を真空中で加熱分解し
    て得る特許請求の範囲第1項記載の酸化物超電導薄膜作
    成法。
  3. (3)Ba化合物として1600KまでにBa酸化物に
    分解する化合物を用いる特許請求の範囲第2項記載の酸
    化物超電導薄膜作成法。
  4. (4)Ba化合物は、炭酸バリウム、硝酸バリウム、酢
    酸バリウム、および硫酸バリウムのうちの何れか1つで
    ある特許請求の範囲第3項記載の酸化物超電導薄膜作成
    法。
JP62322171A 1987-12-17 1987-12-17 酸化物超電導薄膜作成法 Pending JPH01160828A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62322171A JPH01160828A (ja) 1987-12-17 1987-12-17 酸化物超電導薄膜作成法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62322171A JPH01160828A (ja) 1987-12-17 1987-12-17 酸化物超電導薄膜作成法

Publications (1)

Publication Number Publication Date
JPH01160828A true JPH01160828A (ja) 1989-06-23

Family

ID=18140728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62322171A Pending JPH01160828A (ja) 1987-12-17 1987-12-17 酸化物超電導薄膜作成法

Country Status (1)

Country Link
JP (1) JPH01160828A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3962994B1 (de) 2019-04-29 2023-06-07 INEOS Styrolution Group GmbH Polymere zusammensetzungen enthaltend ein teilkristallines polymer und verfahren zu deren herstellung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3962994B1 (de) 2019-04-29 2023-06-07 INEOS Styrolution Group GmbH Polymere zusammensetzungen enthaltend ein teilkristallines polymer und verfahren zu deren herstellung

Similar Documents

Publication Publication Date Title
US6159610A (en) Buffer layers on metal surfaces having biaxial texture as superconductor substrates
KR910007382B1 (ko) 초전도 재료 및 초전도 박막의 제조방법
US4925829A (en) Method for preparing thin film of compound oxide superconductor by ion beam techniques
JPH0772349B2 (ja) 大面積化合物薄膜の作製方法および装置
US5196398A (en) Process for producing thallium type superconducting thin film
JPH01160828A (ja) 酸化物超電導薄膜作成法
US4981839A (en) Method of forming superconducting oxide films using zone annealing
US5731270A (en) Oxide superconductor and method and apparatus for fabricating the same
JP2639544B2 (ja) 三層ペロブスカイト構造をもつLaA▲下2▼Cu▲下3▼O▲下7▼▲下−▼xの単結晶薄膜及びLaA▲下2▼Cu▲下3▼O▲下7▼▲下−▼x薄膜の製造法
JP2704625B2 (ja) 三層ペロブスカイト構造をもつLnA▲下2▼Cu▲下3▼O▲下7▼−xの単結晶薄膜及びLnA▲下2▼Cu▲下3▼O▲下7▼−x薄膜の製造法
EP0643400B1 (en) Method for making a superconductor thin film
JP2736062B2 (ja) 酸化物超電導体薄膜の製造方法
US4914080A (en) Method for fabricating superconductive film
JP2835235B2 (ja) 酸化物超電導体薄膜の形成方法
JP3020518B2 (ja) 酸化物超電導体薄膜
JPH05170448A (ja) セラミックス薄膜の製造方法
JPH01160824A (ja) 酸化物超電導薄膜作成法
JPH0196015A (ja) 超電導薄膜の製造方法及び装置
JP2525852B2 (ja) 超電導薄膜の作製方法
JPH0517147A (ja) 鉛を含む複合酸化物薄膜の製造方法
JPH01160827A (ja) 酸化物超電導薄膜作成法
JPH01161628A (ja) 酸化物超電導薄膜作成法
JPH0710759B2 (ja) 酸化物系超伝導膜の製造方法
JPH01112614A (ja) 超電導薄膜の製造方法
JPH01160826A (ja) 酸化物超電導薄膜作成法