JPH01160073A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH01160073A
JPH01160073A JP31753487A JP31753487A JPH01160073A JP H01160073 A JPH01160073 A JP H01160073A JP 31753487 A JP31753487 A JP 31753487A JP 31753487 A JP31753487 A JP 31753487A JP H01160073 A JPH01160073 A JP H01160073A
Authority
JP
Japan
Prior art keywords
photo
semiconductor laser
detector
laser
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31753487A
Other languages
Japanese (ja)
Inventor
Kumiko Kaneko
久美子 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31753487A priority Critical patent/JPH01160073A/en
Publication of JPH01160073A publication Critical patent/JPH01160073A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser device facilitating ball bonding and capable of accurately monitoring outputs from separate semiconductor laser without increasing parts and mandays on machining and assembly by arranging a photo-detector at an inclination to a plurality of beams in the horizontal direction projected to the photo-detector side of a semiconductor laser array element. CONSTITUTION:A photo-detector 3 is die-bonded with a photo-detector base 4 having an angle. The half power angle theta1 of outgoing beams L from a semicon ductor laser extends over 5-15 deg. in the horizontal direction, an outgoing angle thetais represented by approximately 30 deg. when the half power angle in the horizon tal direction of a laser array element 1 is represented by 15 deg., the width (x) of the photo-detector 3 is shown in x=L/costheta' when the array pitches of the array elements 1 are represented by 0.1mm and the inclination of the photo-detec tor 3 by theta', and x 0.16mm holds on theta'=38 deg.. Accordingly, since the maximum width of the photo-detector 3 is represented by 160mum, ball bonding is enabled easily when the photo-detector 3 is used, thus reducing crosstalks in laser beams projected from a laser rear end face, then accurately monitoring an output.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体レーザ装置、特に半導体レーザアレイ素
子を使用した半導体レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser device, and particularly to a semiconductor laser device using a semiconductor laser array element.

[従来の技術] 近年、半導体レーザ装置は小型軽量、高効率、高信頼性
のレーザ光源として光エレクトロニクスの分野で広く利
用されている。そして光エレクトロニクス装置に半導体
レーザ装置を用いる場合、レーザ光出力が一定になるよ
うに半導体レーザ素子の駆動電流を自動制御(以下AP
Cという)して用いるのが通常である。このAPCを行
うには、半導体レーザ素子から出射されるレーザ光出力
を検知する必要があり、半導体レーザ装置内に受光素子
を配置し、その出力を光出力モニタ信号として用いてい
る。このような光出力モニタ信号は、アレイ化された半
導体レーザ素子の場合も必要である。
[Background Art] In recent years, semiconductor laser devices have been widely used in the field of optoelectronics as small, lightweight, highly efficient, and highly reliable laser light sources. When a semiconductor laser device is used in an optoelectronic device, the driving current of the semiconductor laser element is automatically controlled (hereinafter referred to as AP) so that the laser light output is constant.
It is usually used as C. To perform this APC, it is necessary to detect the laser light output emitted from the semiconductor laser element, and a light receiving element is disposed within the semiconductor laser device, and its output is used as a light output monitor signal. Such an optical output monitor signal is also necessary in the case of arrayed semiconductor laser devices.

従来の半導体レーザ装置は、例えば第7図に示すように
、個々の半導体アレイ素子1の後方から出射するレーザ
光L1はアレイ素子1を通して角θでレーザ光L2とな
フて出射される。レーザ光L2は受光素子台5に装着さ
れた受光素子3で受光される。このため個々の受光素子
3には対応するレーザからのレーザ光以外に隣にある半
導体レーザからのレーザ光がもれないように配置するに
はレーザアレイ素子1と受光素子3の距離が近くてない
とならない。θ=30°としレーザアレイ配列ピッチを
100μmとするとレーザアレイ素子1と受光素子3の
距離dは180μm以下であり、その時の最大受光素子
幅は100μm以下となる。
In a conventional semiconductor laser device, for example, as shown in FIG. 7, laser light L1 emitted from the rear of each semiconductor array element 1 passes through the array element 1 and is emitted as laser light L2 at an angle θ. The laser beam L2 is received by the light receiving element 3 mounted on the light receiving element stand 5. For this reason, the distance between the laser array element 1 and the photodetector 3 must be close in order to arrange the laser array element 1 and the photodetector 3 so that the laser beam from the adjacent semiconductor laser does not leak into each photodetector 3 in addition to the laser beam from the corresponding laser. I have to have it. When θ=30° and the laser array arrangement pitch is 100 μm, the distance d between the laser array element 1 and the light receiving element 3 is 180 μm or less, and the maximum light receiving element width at that time is 100 μm or less.

通常受光素子の電極はホールボンティングで接続するが
ポールボンディングのボール径はφ85〜100μm程
度の大きさであるから受光素子幅100μmはポールボ
ンデインクするには余裕が無くワイボン不良になり易い
。従って受光素子3の幅を大きくしなければならないが
、大きくすると隣のレーザ光がもれてはいることになり
正確なモニタ出力が得られない。
Usually, the electrodes of the light-receiving element are connected by hole bonding, but since the ball diameter of pole bonding is about 85 to 100 .mu.m, the 100 .mu.m width of the light-receiving element does not have enough room for pole bonding, and wire bonding is likely to occur. Therefore, it is necessary to increase the width of the light receiving element 3, but if the width is increased, adjacent laser beams will leak, making it impossible to obtain accurate monitor output.

また半導体レーザアレイ素子1の後端面と受光素子3の
間にレンズを用いて集光する方法もあるが、この方法で
あると部品点数の増加、加工組立工数が増加するという
欠点が有る。
There is also a method of condensing light using a lens between the rear end face of the semiconductor laser array element 1 and the light receiving element 3, but this method has the drawbacks of increasing the number of parts and the number of processing and assembly steps.

本発明は上記欠点を克服し、ボールボンデインクが容易
で、かつ部品、加工組立工数を増加せずに個々の半導体
レーザからの出力を正確にモニタすることができる半導
体レーザ装置を提供することを目的とするものである。
The present invention overcomes the above-mentioned drawbacks and provides a semiconductor laser device that is easy to perform ball bonding and can accurately monitor the output from each semiconductor laser without increasing the number of parts, processing, and assembly. This is the purpose.

[問題点を解決するための手段] 上記問題点を解決する本発明の手段は、複数個の半導体
レーザ素子を一列に配置した半導体レーザアレイ素子と
該半導体レーザアレイ素子の後方から出射するレーザ光
それぞれを受光する複数の受光素子からなる半導体レー
ザ装置において、前記受光素子が前記半導体レーザアレ
イ素子の受光素子側に出射する複数の水平方向の光に対
して傾斜角度を有して配置されていることにより達成で
きる。
[Means for Solving the Problems] The means of the present invention for solving the above problems includes a semiconductor laser array element in which a plurality of semiconductor laser elements are arranged in a row, and a laser beam emitted from the rear of the semiconductor laser array element. In a semiconductor laser device comprising a plurality of light receiving elements each receiving light, the light receiving element is arranged at an inclination angle with respect to the plurality of horizontal lights emitted to the light receiving element side of the semiconductor laser array element. This can be achieved by

[作用] 本発明は上記のように構成されているため、受光素子幅
が犬きくできるのでポールボンディングが容易にでき、
部品、加工組立工数を増加させずにクロストークを非常
に減少し、個々の半導体レーザからの出力を正確にモニ
タすることができる。
[Function] Since the present invention is configured as described above, the width of the light receiving element can be widened, making pole bonding easy.
Crosstalk can be greatly reduced without increasing the number of parts, processing and assembly, and the output from each semiconductor laser can be accurately monitored.

[実施例] つぎに本発明を実施例により図面を参照して説明する。[Example] Next, the present invention will be described by way of examples with reference to the drawings.

第1図は本発明の第1の実施例の斜視図、第2図(a)
、(b)は第1図の上面図である。これらの図において
、受光素子3は角度を持つ受光素子台4にダイボンディ
ングされている。半導体レーザ出射光りの典型的な半値
全角θ1は水平方向は5°〜15°であり第2図の(a
)、(b)のレーザアレイ素子1の水平方向半値全角を
15°とすると出射角θは約30°でレーザアレイ素子
1の配列ピッチを0.1mmとし第2図(b)のように
レーザアレイ素子1の傾きをθ′とした場合、レーザア
レイ素子1の幅χは χ40.16mmとなる。よフて最大レーザアレイ素子
1の幅は160μmであるので、レーザアレイ素子1を
使用すればポールボンデングが容易にでき、レーザ後端
面から出射するレーザ光にはクロストークが非常に減少
され、出力を正確にモニタすることができ、またほぼ全
部のレーザ出力をモニタすることができるものである。
Fig. 1 is a perspective view of the first embodiment of the present invention, Fig. 2(a)
, (b) is a top view of FIG. 1. In these figures, a light receiving element 3 is die-bonded to a light receiving element stand 4 having an angle. The typical full angle at half maximum θ1 of the semiconductor laser emitted light is 5° to 15° in the horizontal direction, as shown in (a) in Fig. 2.
), (b) If the full width at half maximum in the horizontal direction of the laser array element 1 is 15 degrees, then the emission angle θ is approximately 30 degrees, and the arrangement pitch of the laser array element 1 is 0.1 mm, and the laser beam as shown in Fig. 2 (b) is set. When the inclination of the array element 1 is θ', the width χ of the laser array element 1 is χ40.16 mm. Therefore, since the maximum width of the laser array element 1 is 160 μm, pole bonding can be easily performed by using the laser array element 1, and crosstalk in the laser light emitted from the rear facet of the laser is greatly reduced. The output can be accurately monitored, and almost the entire laser output can be monitored.

第3図は本発明の第2の実施例による半導体レーザアレ
イ装置の斜視図であり、第4図は第3図の上面図である
。これらの図において、受光素子3は角度を持つ受光素
子台4′にダイボンディングされている。この時ヒート
シング上のレーザアレイ素子1の4つをそれぞれ■、■
、■、■とすると第5図のグラフとなる。グラフの実線
はレーザアレイ素子1出力を表わし、点線は■、■、−
転破線は■、■、それぞれの受光素子3が受ける出力を
表わしている。実際のレーザアレイ素子の出力とそれぞ
れの受光素子3が受ける出力とは多少の差があるが第5
図より補正することができるのでAPCを行うにはなん
ら問題はなく、クロストークが非常に減少され、出力を
正確にモニタできる効果がある。
3 is a perspective view of a semiconductor laser array device according to a second embodiment of the present invention, and FIG. 4 is a top view of FIG. 3. In these figures, the light receiving element 3 is die-bonded to an angled light receiving element stand 4'. At this time, the four laser array elements 1 on the heat sink are
, ■, ■, the graph in FIG. 5 is obtained. The solid line in the graph represents the output of one laser array element, and the dotted line represents ■, ■, -
The dashed lines represent the outputs received by the respective light receiving elements 3. Although there is some difference between the actual output of the laser array element and the output received by each light receiving element 3,
Since it can be corrected as shown in the figure, there is no problem in performing APC, crosstalk is greatly reduced, and the output can be accurately monitored.

第6図は本発明の第3の実施例による半導体レーザアレ
イ装置を上から見た図を示している。
FIG. 6 shows a top view of a semiconductor laser array device according to a third embodiment of the present invention.

受光素子台4″は同一方向に傾きを持っており、その受
光素子台4″に受光素子3がボンディングされている。
The light-receiving element stands 4'' are inclined in the same direction, and the light-receiving elements 3 are bonded to the light-receiving element stands 4''.

受光素子台4″は隣のレーザ光を遮断するようになって
いる。また受光素子3は斜めになフている所にボンディ
ングするので、受光素子3の幅は大きくできるのでポー
ルボンディングが容易にでき、レーザ後端面から出射す
るレーザ光はクロストークが非常に減少され、出力を正
確にモニタすることができる。本実施例であるといくつ
のレーザであっても同じように出力が得られ、また受光
素子台4″の傾き方向は左右どちらでもできるものであ
る。
The light-receiving element stand 4'' is designed to block adjacent laser beams.Also, since the light-receiving element 3 is bonded to an oblique corner, the width of the light-receiving element 3 can be increased, making pole bonding easier. The crosstalk of the laser light emitted from the rear end facet of the laser is greatly reduced, and the output can be accurately monitored.In this embodiment, the same output can be obtained no matter how many lasers are used. Further, the light receiving element stand 4'' can be tilted in either the left or right direction.

[発明の効果] 以上説明したように受光素子をレーザーアレイ素子の受
光素子側に出射する水平方向の光に対して傾斜角度を有
して配置することにより、ボールボンディングし易く、
部品、加工組立工数を増加せずにクロストークを非常に
減少し個々の半導体レーザからの出力を正確にモニタす
ることができる効果がある。
[Effects of the Invention] As explained above, by arranging the light receiving element at an inclination angle with respect to the horizontal light emitted to the light receiving element side of the laser array element, ball bonding is facilitated.
This has the effect of greatly reducing crosstalk and accurately monitoring the output from each semiconductor laser without increasing the number of parts, processing, and assembly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の斜視図、第2図(a)
、(b)は第1図の説明上面図、第3図は本発明の第2
の実施例の斜視図、第4図は第3図の説明上面図、第5
図は第2の実施例の出力を示すグラフ、第6図は本発明
の第3図の実施例の上面図、第7図は従来の例の上面図
である。 1・・・レーザアレイ素子、 2・・・ヒートシンク、 3・・・受光素子、 4.4’、4”−・・受光素子台。 特許出願人  キャノン株式会社 代理 人  弁理士 若株 忠 手続補正書(自発) 昭和63年3月り日
Fig. 1 is a perspective view of the first embodiment of the present invention, Fig. 2(a)
, (b) is an explanatory top view of FIG. 1, and FIG. 3 is a second diagram of the present invention.
FIG. 4 is an explanatory top view of FIG. 3, and FIG.
The figure is a graph showing the output of the second embodiment, FIG. 6 is a top view of the embodiment of the present invention shown in FIG. 3, and FIG. 7 is a top view of the conventional example. 1... Laser array element, 2... Heat sink, 3... Light receiving element, 4.4', 4''-... Light receiving element stand. Patent applicant Canon Co., Ltd. Agent Patent attorney Wakabu Tadashi Procedural Amendment Calligraphy (spontaneous) Date of March 1986

Claims (1)

【特許請求の範囲】[Claims] 複数個の半導体レーザ素子を一列に配置した半導体レー
ザアレイ素子と該半導体レーザアレイ素子の後方から出
射するレーザー光それぞれを受光する複数の受光素子か
らなる半導体レーザ装置において、前記受光素子が前記
半導体レーザアレイ素子の受光素子側に出射する複数の
水平方向の光に対して傾斜角度を有して配置されている
ことを特徴とする半導体レーザ装置。
In a semiconductor laser device comprising a semiconductor laser array element in which a plurality of semiconductor laser elements are arranged in a line, and a plurality of light receiving elements each receiving a laser beam emitted from the rear of the semiconductor laser array element, the light receiving element is connected to the semiconductor laser. 1. A semiconductor laser device characterized in that the semiconductor laser device is arranged at an angle of inclination with respect to a plurality of horizontal lights emitted toward a light receiving element side of an array element.
JP31753487A 1987-12-17 1987-12-17 Semiconductor laser device Pending JPH01160073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31753487A JPH01160073A (en) 1987-12-17 1987-12-17 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31753487A JPH01160073A (en) 1987-12-17 1987-12-17 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH01160073A true JPH01160073A (en) 1989-06-22

Family

ID=18089324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31753487A Pending JPH01160073A (en) 1987-12-17 1987-12-17 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH01160073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191204A (en) * 1991-10-28 1993-03-02 International Business Machines Corporation Multi-beam optical system and method with power detection of overlapping beams
US5247167A (en) * 1992-08-06 1993-09-21 International Business Machines Corporation Multiple beam power monitoring system and method with radiation detection and focusing means of overlapping beams

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191204A (en) * 1991-10-28 1993-03-02 International Business Machines Corporation Multi-beam optical system and method with power detection of overlapping beams
US5247167A (en) * 1992-08-06 1993-09-21 International Business Machines Corporation Multiple beam power monitoring system and method with radiation detection and focusing means of overlapping beams

Similar Documents

Publication Publication Date Title
US7733932B2 (en) Laser diode assemblies
US4757197A (en) Semiconductor laser and detector device
JP3193742B2 (en) LD light source device
JP2892820B2 (en) Semiconductor laser device
US5617439A (en) Semiconductor laser device and semiconductor laser array device
JPH01160073A (en) Semiconductor laser device
US20050201668A1 (en) Method of connecting an optical element at a slope
JPS62172767A (en) Optical semiconductor device
CA2038334A1 (en) Apparatus and method for detecting the power level in single and multi-stripe integrated lasers
JPH08148756A (en) Semiconductor laser device
JPH02106989A (en) Semiconductor laser device
JP3032376B2 (en) Semiconductor laser device
JPH11274654A (en) Semiconductor laser device
JPH05333251A (en) Optical array module and optical array link
JP3169917B2 (en) Semiconductor laser device
JP2529360Y2 (en) Semiconductor laser device
JPH08186321A (en) Semiconductor laser apparatus
JP3143248B2 (en) Semiconductor laser device
JPS63234585A (en) Semiconductor laser array device
JPS63248191A (en) Semiconductor laser array device
JPH0429582Y2 (en)
JP2000113486A (en) Semiconductor laser device
JP3001302B2 (en) Distance measuring device
JPH0516517Y2 (en)
JPS62165991A (en) Semiconductor laser element inspecting apparatus