JPH01159576A - Cryostat - Google Patents

Cryostat

Info

Publication number
JPH01159576A
JPH01159576A JP31627887A JP31627887A JPH01159576A JP H01159576 A JPH01159576 A JP H01159576A JP 31627887 A JP31627887 A JP 31627887A JP 31627887 A JP31627887 A JP 31627887A JP H01159576 A JPH01159576 A JP H01159576A
Authority
JP
Japan
Prior art keywords
pressure
container
freezing mixture
cryogen
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31627887A
Other languages
Japanese (ja)
Inventor
Takeo Nemoto
武夫 根本
Hisanao Ogata
久直 尾形
Mitsuru Saeki
満 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31627887A priority Critical patent/JPH01159576A/en
Publication of JPH01159576A publication Critical patent/JPH01159576A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE: To prevent the atmosphere from invading into a freezing mixture container by intermittently operating a refrigerating machine mounted on the cold agent container in response to a detection value of a pressure sensor for detecting internal pressure in the freezing mixture container. CONSTITUTION: A condenser 4 of a refrigerating machine 10 is disposed in a freezing mixture container 3 accomodated in a vacuum vessel 5. A pressure sensor 9 for detecting pressure in the freezing mixture container 3 is attached to an injection pipe 6 for replenishing a freezing mixture 2, and the freezer 10 is interrupted at the time when detected pressure of the pressure sensor 9 is equal to or lower than a minimum pressure set value set to a pressure value higher than the atmospheric pressure, and thereafter the freezer 10 is restarted at the time when the freezing mixture is evaporated with invasion heat into the freezing mixture container 3 to permit internal pressure in the freezing mixture container to be raised and exceed a maximum pressure set value, and hence liquefy evaporated gas of the freezing mixture in the condenser 4 and reduce the internal pressure in the freezing mixture container 3. Hereby, the atmospheric pressure is effectually prevented from invading into the freezing mixture container.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、寒剤容器内の圧力制御に係り、特に寒剤を冷
凍機で冷却するのに好適なりライオスタットに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to pressure control within a cryogen container, and particularly to a lyostat suitable for cooling a cryogen with a refrigerator.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭61−4206号公報に記載のよ
うに寒剤容器内の圧力を大気圧以上の一定の圧力に保つ
ために、寒剤容器内に取付けた圧力センサーと抵抗体発
熱体を連動して、圧力が低下した場合に抵抗体発熱体を
加熱することによって寒剤を蒸発させて寒剤容器の内圧
を上げていた。
As described in Japanese Patent Application Laid-Open No. 61-4206, the conventional device uses a pressure sensor and a resistive heating element installed inside the cryogen container to maintain the pressure inside the cryogen container at a constant pressure above atmospheric pressure. In conjunction with this, when the pressure drops, the cryogen is evaporated by heating the resistor heating element to increase the internal pressure of the cryogen container.

または、冷凍負荷の温度を検出して冷凍機出力を制御し
ていた。
Alternatively, the refrigerator output was controlled by detecting the temperature of the refrigerator load.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、冷凍機の過冷却をヒータで加熱し、冷
凍機本来の性能を十分に活用していない。
The above-mentioned conventional technology uses a heater to heat the subcooled refrigerator, and does not fully utilize the original performance of the refrigerator.

また、寒剤容器は、寒剤の蒸発量をできるかぎり少なく
するため、真空容器内に収納されているので、抵抗体発
熱体(ヒータ)の配線を直空容器の外部まで配線する作
業が必要であること、さらに。
In addition, the cryogen container is housed in a vacuum container in order to minimize the amount of cryogen evaporation, so it is necessary to route the wiring for the resistor heating element (heater) to the outside of the direct air container. And even more.

真空容器からの取出には、真空を維持するためリークの
ない高価なハーメチックシール等が必要になっている問
題があった。
Removal from the vacuum container has the problem of requiring an expensive hermetic seal that does not leak in order to maintain the vacuum.

また、温度検出方式では、温度センサを導入しなければ
ならないということで、上述のヒータ配線と同様の1題
があった。
In addition, the temperature detection method requires the introduction of a temperature sensor, which poses the same problem as the heater wiring described above.

本発明の目的は、上記に示した取扱いがめんどうなヒー
タや温度センサを使用せず、しかも、冷凍機本来の性能
を活用して寒剤容器の内圧を一定に維持することにある
An object of the present invention is to maintain the internal pressure of a cryogen container constant by utilizing the inherent performance of a refrigerator without using the heater or temperature sensor that is troublesome to handle as described above.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、寒剤容器に取付けた冷凍機と寒剤容器内圧
を検出する圧力センサーを連動させ、最少圧力設定値以
下のとき冷凍機を停止し、最大圧力設定値以上のとき復
帰し運転することにより、達成される。
The above purpose is achieved by linking the refrigerator attached to the cryogen container with a pressure sensor that detects the internal pressure of the cryogen container, and stopping the refrigerator when the pressure is below the minimum pressure setting, and returning to operation when the pressure is above the maximum pressure setting. , achieved.

〔作用〕[Effect]

寒剤容器に取付けた冷凍機の性能が寒剤容器の侵入熱を
大幅に上回る場合、前記のとおり寒剤容器の内圧が大気
圧以下となり寒剤容器内に大気が流入し、寒剤中に氷と
なって寒剤容器に堆積するため寒剤が劣化すること及び
寒剤注入管内壁に氷結するため管が氷で蓋がされ寒剤注
入が困難になる問題があった。このため、寒剤容器の内
圧は、大気圧以上の一定の圧力に維持することが必須と
なっている0本発明は、上記目的を達成するため、寒剤
容器の内圧を検出する圧力センサーを寒剤注入管の一部
に取付け、オペレータが設定した最大。
If the performance of the refrigerator attached to the cryogen container greatly exceeds the heat entering the cryogen container, the internal pressure of the cryogen container will be below atmospheric pressure as described above, and air will flow into the cryogen container, forming ice in the cryogen container and causing the cryogen to leak. There were problems in that the cryogen deteriorated due to accumulation in the container, and ice formed on the inner wall of the cryogen injection tube, making it difficult to inject the cryogen as the tube was covered with ice. Therefore, it is essential to maintain the internal pressure of the cryogen container at a constant pressure higher than atmospheric pressure.In order to achieve the above object, the present invention installs a pressure sensor that detects the internal pressure of the cryogen container when injecting the cryogen. Installed on a section of pipe and set by the operator.

最小圧力値と圧力センサーの信号とを比較して冷凍機の
運転をオン・オフ制御するものである。たとえば、冷凍
機が停止すれば、寒剤容器の侵入熱で寒剤が蒸発するた
め寒剤容器の内圧が上昇する(寒剤容器に寒剤注入後、
寒剤容器を密閉する)。
It controls on/off operation of the refrigerator by comparing the minimum pressure value with the signal from the pressure sensor. For example, if the refrigerator stops, the internal pressure of the cryogen container increases because the cryogen evaporates due to the heat entering the cryogen container.
Seal the cryogen container).

寒剤容器の内圧が最大圧力設定値を越えたときに圧力セ
ンサーの検出信号によって冷凍機を起動するようにする
。冷凍機を運転すれば、冷凍機と接続した凝縮器が寒剤
の蒸発ガスを液化するため寒剤容器の内圧は減圧する。
When the internal pressure of the cryogen container exceeds the maximum pressure setting value, the refrigerator is activated by a detection signal from the pressure sensor. When the refrigerator is operated, a condenser connected to the refrigerator liquefies the evaporated gas of the refrigerant, thereby reducing the internal pressure of the refrigerant container.

寒剤容器の内圧が最小圧力設定値以下のとき圧力センサ
ーの検出信号によって冷凍機を停止すれば、寒剤容器の
内圧は常に最大最小圧力設定値の範囲内の圧力に保たれ
る。
If the refrigerator is stopped based on the detection signal from the pressure sensor when the internal pressure of the cryogen container is below the minimum pressure setting value, the internal pressure of the cryogen container is always maintained within the range of the maximum and minimum pressure setting values.

さらに、最小圧力設定値を大気圧以上の圧力値にするこ
とで、空気が寒剤容器に流入することがないので寒剤の
劣化及び寒剤注入管の氷結がなくなる。
Furthermore, by setting the minimum pressure setting to a pressure value higher than atmospheric pressure, air will not flow into the cryogen container, thereby eliminating deterioration of the cryogen and freezing of the cryogen injection pipe.

〔実施例〕〔Example〕

以下、本発明に係るクライオスタットの一実施例を第1
図と第2図を使って説明する。第1図は、構成、第2図
は、機能を説明するための図を示したものである。1は
、イツトリウム・バリウム・銅の酸化物からなる超電導
線を用いた超電導マグネットで2は超電導マグネット1
を冷却する液体。
Hereinafter, one embodiment of the cryostat according to the present invention will be described in the first embodiment.
This will be explained using the diagram and Fig. 2. FIG. 1 shows the configuration, and FIG. 2 shows a diagram for explaining the functions. 1 is a superconducting magnet using a superconducting wire made of oxides of yttrium, barium, and copper; 2 is a superconducting magnet 1
liquid to cool.

窒素等の寒剤である。3は、超電導マグネット1および
寒剤2を収納する寒剤容器で寒剤容器3の内部に凝縮器
4が設置されている。5は、真空容器で寒剤の蒸発量を
少なくするため真空空間20により真空断熱している。
It is a cryogen such as nitrogen. Reference numeral 3 denotes a cryogen container for storing the superconducting magnet 1 and the cryogen 2, and a condenser 4 is installed inside the cryogen container 3. 5 is a vacuum container which is vacuum insulated with a vacuum space 20 to reduce the amount of evaporation of the cryogen.

寒剤容器3には、寒剤2を補給するための注入バイブロ
と超電導マグネット1に電流を供給する電流リード7を
真空容器5の外へ導くための電流リードパイプ8が取付
けられている。9は、寒剤容器3の圧力を検出する圧力
センサーで、その他に圧力センサー9の信号を演算する
機能をも付いているものである。10は、冷凍機で凝縮
器4を冷却するものである。
The cryogen container 3 is equipped with an injection vibro for replenishing the cryogen 2 and a current lead pipe 8 for guiding a current lead 7 for supplying current to the superconducting magnet 1 to the outside of the vacuum container 5. 9 is a pressure sensor that detects the pressure of the cryogen container 3, and also has a function of calculating the signal of the pressure sensor 9. 10 is a refrigerator that cools the condenser 4.

11は、圧力センサー9の信号を冷凍機10に伝達する
信号線である。12と13はバルブで、12または13
の一つは、逆止弁でもよい、14はガス吐出口である。
11 is a signal line that transmits a signal from the pressure sensor 9 to the refrigerator 10. 12 and 13 are valves, 12 or 13
One of them may be a check valve, and 14 is a gas discharge port.

第2図を使って動作の説明をする。第1図の冷凍機10
は、寒剤2の蒸発がなくなるような十分な冷凍能力を持
つ。冷凍機10を運転する以前は、寒剤容器3の侵入熱
で寒剤が蒸発している。このため、バルブ13を開き、
寒剤容器内の圧力上昇をさける。冷凍機10の運転をは
じめると寒剤容器3の内部の凝縮機4でガスの液化が起
こるため、寒剤容器3の圧力が低下してくる。寒剤容器
3の内圧は大気圧以下では、これまで蒸発していたガス
の吐出口14から逆に空気が寒剤容器に流れ込む、これ
を避けるため、寒剤容器3の内圧が約0 、1 kg/
cs”G以下になったときバルブ13を閉め寒剤容器を
密閉する。冷凍機10の運転を続けたときの圧力と時間
の関係を第2図を使用して説明する。冷凍機運転開始時
刻toのとき、圧力は最大圧力設定値P matと最少
圧力設定値P +alnの間のPoである。このときは
、冷凍機10が運転状態に入る。従って、凝縮器4が冷
凍機で冷却されているので寒剤2の蒸発ガスは凝縮器4
で液化された寒剤容器3の圧力は徐々に低下する。寒剤
容器3の内圧が最少圧力設定値と同値または、それ以下
になった時刻tlでは、圧力センサー9から冷凍機10
に停止命令が入る。冷凍機10が停止したときは、凝縮
器4の温度が上昇してくるので液化は起こらない。この
ため、寒剤容器3の内圧は時間とともに上昇していく。
The operation will be explained using Figure 2. Refrigerator 10 in Fig. 1
has sufficient freezing capacity to eliminate evaporation of cryogen 2. Before the refrigerator 10 is operated, the cryogen is evaporated by the heat entering the cryogen container 3. For this reason, open the valve 13 and
Avoid pressure buildup inside the cryogen container. When the refrigerator 10 starts operating, gas is liquefied in the condenser 4 inside the cryogen container 3, so that the pressure in the cryogen container 3 decreases. If the internal pressure of the cryogen container 3 is below atmospheric pressure, air will flow into the cryogen container from the discharge port 14 of the gas that has been evaporated.To avoid this, the internal pressure of the cryogen container 3 is set to about 0.1 kg/
cs"G or less, the valve 13 is closed and the cryogen container is sealed. The relationship between pressure and time when the refrigerator 10 continues to operate will be explained using FIG. 2.The refrigerator operation start time to At this time, the pressure is Po between the maximum pressure setting value P mat and the minimum pressure setting value P + aln. At this time, the refrigerator 10 enters the operating state. Therefore, the condenser 4 is cooled by the refrigerator. Therefore, the evaporated gas of cryogen 2 is transferred to condenser 4.
The pressure in the liquefied cryogen container 3 gradually decreases. At time tl when the internal pressure of the cryogen container 3 becomes equal to or less than the minimum pressure setting value, the pressure sensor 9 sends a signal to the refrigerator 10.
receives a stop command. When the refrigerator 10 is stopped, the temperature of the condenser 4 rises, so liquefaction does not occur. Therefore, the internal pressure of the cryogen container 3 increases with time.

そして、圧力センサー9が最大圧力設定値を検知した時
刻t2では、冷凍機10が再起動する信号命令が出るよ
うにする。冷凍機10が再運転すると凝縮器4は再び冷
却され凝縮器4でガスの液化が起こり寒剤容器3の圧力
は低下してゆく。このように、寒剤容器3の圧力、圧力
センサー9からの命令で断続的な運転となるため最大、
最小圧力設定値間を往復する。また、冷凍機動作時間は
、toからtlとt2からt8と断続的になるので従来
より少なくすることができる。このため、電気代も節約
できる利点がある。さらに、冷凍機10の本体内のデエ
スプレーサー(図示せず)の○リングの摩耗も少なくな
るので冷凍機10のメンテナンス期間も従来より長くな
る。なお、寒剤容器3としては、より低い温度で動作す
る物体(例えば液体ヘリウム温度で動作する超電導コイ
ル)を囲むシールドであってもよい、その場合、寒剤容
器3には超電導マグネット1は収納されていない0以上
のとおり、寒剤容器内圧を検出する圧力センサーと冷凍
機とを連動することで、寒剤容器内に空気が流入するの
がなくなるとともに、冷凍機の電気代の節約や冷凍機の
メンテナンス期間の長期化が行える利点がある。
Then, at time t2 when the pressure sensor 9 detects the maximum pressure setting value, a signal command to restart the refrigerator 10 is issued. When the refrigerator 10 is restarted, the condenser 4 is cooled again, the gas is liquefied in the condenser 4, and the pressure in the cryogen container 3 decreases. In this way, the pressure of the cryogen container 3 and the commands from the pressure sensor 9 result in intermittent operation, so the maximum
Cycles between minimum pressure settings. Furthermore, the refrigerator operating time is intermittently from to to tl and from t2 to t8, so it can be made shorter than before. Therefore, there is an advantage that electricity costs can also be saved. Furthermore, since the wear of the o-ring of the de-esplacer (not shown) in the main body of the refrigerator 10 is reduced, the maintenance period for the refrigerator 10 is also longer than before. Note that the cryogen container 3 may be a shield that surrounds an object that operates at a lower temperature (for example, a superconducting coil that operates at liquid helium temperature); in that case, the superconducting magnet 1 is not housed in the cryogen container 3. By linking the pressure sensor that detects the internal pressure of the cryogen container with the refrigerator, air will not flow into the cryogen container, and the electricity bill for the refrigerator will be saved and the maintenance period of the refrigerator will be reduced. It has the advantage of being able to last for a long time.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、冷凍機を断続的に運転して寒剤容器内
に大気が侵入することを防げるので電気代が従来よりも
少なくてすむこと及び冷凍機のメンテナンス期間が長く
なる効果がある。
According to the present invention, since the refrigerator can be operated intermittently to prevent air from entering the cryogen container, the electricity bill can be reduced compared to the conventional method, and the maintenance period for the refrigerator can be lengthened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るクライオスタットの断
面図、第2図は第1図の寒剤容器内圧の応答を示した特
性図である。 3・・・寒剤容器、4・・・凝縮器、9・・・圧力セン
サー。 10・・・冷凍機。
FIG. 1 is a sectional view of a cryostat according to an embodiment of the present invention, and FIG. 2 is a characteristic diagram showing the response of the internal pressure of the cryogen container shown in FIG. 3...Cryogen container, 4...Condenser, 9...Pressure sensor. 10... Refrigerator.

Claims (1)

【特許請求の範囲】[Claims] 1、寒剤容器が真空容器内に収められ、冷凍機に接続さ
れた凝縮器を前記寒剤容器内に取り付けて成るクライオ
スタットにおいて、圧力センサを前記寒剤容器と連通し
たパイプに接続してその圧力センサーの信号で冷凍機の
運転をオン・オフ制御することを特徴とするクライオス
タット。
1. In a cryostat in which a cryogen container is housed in a vacuum container and a condenser connected to a refrigerator is installed inside the cryogen container, a pressure sensor is connected to a pipe communicating with the cryogen container, and the pressure sensor is connected to a pipe communicating with the cryogen container. A cryostat that is characterized by controlling the operation of the refrigerator on and off using signals.
JP31627887A 1987-12-16 1987-12-16 Cryostat Pending JPH01159576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31627887A JPH01159576A (en) 1987-12-16 1987-12-16 Cryostat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31627887A JPH01159576A (en) 1987-12-16 1987-12-16 Cryostat

Publications (1)

Publication Number Publication Date
JPH01159576A true JPH01159576A (en) 1989-06-22

Family

ID=18075325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31627887A Pending JPH01159576A (en) 1987-12-16 1987-12-16 Cryostat

Country Status (1)

Country Link
JP (1) JPH01159576A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116363A (en) * 1990-09-05 1992-04-16 Mitsubishi Electric Corp Cryogenic apparatus
EP1376033A3 (en) * 2002-06-28 2005-08-03 Sanyo Electric Co., Ltd. Preserving system
US7251949B2 (en) 2004-02-09 2007-08-07 Sanyo Electric Co., Ltd. Refrigerant system
WO2006125060A3 (en) * 2005-05-17 2007-11-01 Praxair Technology Inc Cryogenic biological preservation unit with active cooling
WO2014147158A1 (en) * 2013-03-22 2014-09-25 Sartorius Stedim North America Inc. Monitoring of the freezing state of a biopharmaceutical fluid found in a container
US10005575B2 (en) 2013-03-22 2018-06-26 Sartorius Stedim North America Inc. Facility and method for producing a container loaded with a biopharmaceutical fluid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5197047A (en) * 1975-02-21 1976-08-26
JPH01111183A (en) * 1987-10-23 1989-04-27 Hitachi Ltd Liquefied-gas storage vessel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5197047A (en) * 1975-02-21 1976-08-26
JPH01111183A (en) * 1987-10-23 1989-04-27 Hitachi Ltd Liquefied-gas storage vessel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116363A (en) * 1990-09-05 1992-04-16 Mitsubishi Electric Corp Cryogenic apparatus
EP1376033A3 (en) * 2002-06-28 2005-08-03 Sanyo Electric Co., Ltd. Preserving system
US7251949B2 (en) 2004-02-09 2007-08-07 Sanyo Electric Co., Ltd. Refrigerant system
WO2006125060A3 (en) * 2005-05-17 2007-11-01 Praxair Technology Inc Cryogenic biological preservation unit with active cooling
WO2014147158A1 (en) * 2013-03-22 2014-09-25 Sartorius Stedim North America Inc. Monitoring of the freezing state of a biopharmaceutical fluid found in a container
FR3003644A1 (en) * 2013-03-22 2014-09-26 Sartorius Stedim North America Inc CHECKING THE FREEZING STATE OF A BIOPHARMACEUTICAL FLUID IN A CONTAINER.
US10005575B2 (en) 2013-03-22 2018-06-26 Sartorius Stedim North America Inc. Facility and method for producing a container loaded with a biopharmaceutical fluid
US10031033B2 (en) 2013-03-22 2018-07-24 Sartorius Stedim North America Inc. Monitoring of the freezing state of a biopharmaceutical fluid found in a container

Similar Documents

Publication Publication Date Title
US20190212049A1 (en) Apparatus and method for super-cooled operation of a cryostat with low quantities of coolant
US6318100B1 (en) Integrated electronic refrigerant management system
US6321549B1 (en) Electronic expansion valve control system
KR100197697B1 (en) Device and method for temperature rising prevention of a refrigerator
US4286438A (en) Condition responsive liquid line valve for refrigeration appliance
KR900008901B1 (en) Air conditioner for vehicle and refrigeration system for refrigerator
GB2074709A (en) Refrigerating apparatus for cooling a load
US4313309A (en) Two-stage refrigerator
US4581477A (en) Gas-insulated electrical apparatus
US6779355B2 (en) Refrigeration device
JPH01159576A (en) Cryostat
KR100561769B1 (en) Pulse pipe refrigerating machine and cryopump using the refrigerating machine
JP2923133B2 (en) Refrigeration equipment
US2248607A (en) Refrigerating system
US3786650A (en) Air conditioning control system
JPH04116363A (en) Cryogenic apparatus
JPH06283769A (en) Superconducting magnet refrigerating system
JPH04313672A (en) Refrigerator
JPH1038396A (en) Method of controlling freezer
JPH03152349A (en) Freezer device
JPH07133964A (en) Refrigerating apparatus
JPH0525264U (en) Refrigeration equipment
JP2705858B2 (en) Cryogenic refrigeration equipment
JPH10300243A (en) Refrigerator
JPH0320514Y2 (en)