JPH01157008A - Superconductive thin film - Google Patents

Superconductive thin film

Info

Publication number
JPH01157008A
JPH01157008A JP62314503A JP31450387A JPH01157008A JP H01157008 A JPH01157008 A JP H01157008A JP 62314503 A JP62314503 A JP 62314503A JP 31450387 A JP31450387 A JP 31450387A JP H01157008 A JPH01157008 A JP H01157008A
Authority
JP
Japan
Prior art keywords
thin film
substrate
superconductive
oxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62314503A
Other languages
Japanese (ja)
Inventor
Susumu Yoshimura
吉村 進
Soji Tsuchiya
土屋 宗次
Mutsuaki Murakami
睦明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62314503A priority Critical patent/JPH01157008A/en
Publication of JPH01157008A publication Critical patent/JPH01157008A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an inventive superconductive thin film having a transition point of superconductivity increased up to about 10K by forming high temperature superconductive thin film on a substrate covered with tin oxide on the surface thereof using a physical deposition method or the like. CONSTITUTION:The substrate is composed of a quartz plate covered with tin oxide using a common spray-pyrolysis method. Superconductive oxide formed in a thin film is prepared as follows. The ratio of 1:2:3 is taken as the standard ratio of Y:Ba:Cu. The specimen is pulverized in an agate mortar to be uniformly mixed and compressed in a pellet. The resultant YBCO superconductive oxide is used for a target and RF magnetron spattering is performed onto the quartz substrate having tin oxide of 5micron thickness, to thereby form a uniform black film of about 1micron. By spattering at 600 deg.C, it is possible to obtain a superconductive thin film with high stability, having the transition temperature of superconductivity of 115K and the zero-resistance temperature increased up to about 101K.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高い導電性を有し、高温超電導性を示す新規な
超電導体薄膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel superconductor thin film having high electrical conductivity and exhibiting high temperature superconductivity.

従来の技術 最近、ランタニウム(La)−バリウム(Ba)−銅(
Ou)−酸素(0)あるいはイツトリウム(Y ) −
Ba−Ou−0からなる酸化物導電体が高い超電導転移
点(Tc)を有するという重要な発見が為された。Tc
としては構成元素或は化合物組成の制御により30以上
LOOK(−173℃)迄の値が報告されている。特に
、Y−Ba−Ou−0系(以下YBOOと略す)では、
3金属の原子比率が1:2:3の時最も高いTcが得ら
れ、電気抵抗がゼロとなる温度(Toff  と略す)
は、最も再現性のあるデータで、95にであると言われ
ている。酸素の含有量に関しては、6.9程度であろう
と予想されている。更に、YBCO系でYをランタニド
系列元素(例えば、Lu、 Yb、 Tm、gr、 H
o、 Dy、 Gd、 Eu、 Sm、 Nd、 La
)で置き換えた化合物が多く合成されており、その犬、
半が90に以上のTcを示している。この様に、高い温
度で超電導を示す酸化物導電体は、Ou −0を基本元
素として含み、イツトリウムあるいはランタニド元素お
よびアルカリ土類元素により結晶構造及び電子状態をう
まく制御されたものであると言える。
Conventional technology Recently, lanthanium (La)-barium (Ba)-copper (
Ou) - oxygen (0) or yttrium (Y) -
An important discovery has been made that oxide conductors consisting of Ba-Ou-0 have a high superconducting transition temperature (Tc). Tc
Values of 30 or more up to LOOK (-173°C) have been reported by controlling the constituent elements or compound composition. In particular, in the Y-Ba-Ou-0 system (hereinafter abbreviated as YBOO),
The highest Tc is obtained when the atomic ratio of the three metals is 1:2:3, and the temperature at which the electrical resistance becomes zero (abbreviated as Toff)
is said to be the most reproducible data, with a value of 95. The oxygen content is expected to be around 6.9. Furthermore, in the YBCO system, Y is replaced by a lanthanide series element (for example, Lu, Yb, Tm, gr, H
o, Dy, Gd, Eu, Sm, Nd, La
) have been synthesized, and the dog,
Half of the samples showed a Tc of 90 or more. In this way, it can be said that oxide conductors that exhibit superconductivity at high temperatures contain Ou-0 as a basic element, and have their crystal structures and electronic states well controlled by yttrium or lanthanide elements and alkaline earth elements. .

また、極最近オプンンスキー氏らは、フッ素を含むY−
Ba−Cju−0系酸化物に於て150にのToffを
認めている(フィジカル レビュー レターズ;Phy
s、  r(、ev、Lett、  誌、58巻、25
97頁(1987年))。更に、他の元素を添加するこ
とにより室温以上での超電導の兆しが見えたとの報告も
ある。更に、江原氏らはY−B a−8r−Ou −0
から成る酸化物に於て、65°Cで抵抗がゼロになる現
象を報告している(ジャーナル オブ アプライド フ
ィツクス;J。
In addition, very recently, Mr. Opunski et al.
Toff of 150 is recognized in Ba-Cju-0 series oxides (Physical Review Letters; Phys.
s, r(, ev, Lett, Magazine, vol. 58, 25
97 pages (1987)). Furthermore, there are reports that signs of superconductivity at temperatures above room temperature can be seen by adding other elements. Furthermore, Mr. Ehara et al. Y-B a-8r-Ou -0
reported that the resistance becomes zero at 65°C in an oxide consisting of (Journal of Applied Fixtures; J.

Appl、Phys0誌、26巻、1987年)。Appl, Phys0 Journal, Volume 26, 1987).

一方、これらの超電導体がエレクトロニクスデバイスと
して用いられるには、薄膜あるいは厚膜の製造が必須で
ある。その様な観点から、酸化物@雷導体の皮膜化の検
討が行われ、スパッタリング、スクリーン印刷などによ
りある程度の特性を有する薄膜が調製されている。現在
酸化物超電導体の薄膜化で最も問題になっているのは、
基板材料の制約である。確実に再現性および安定性の高
い超電導体薄膜を与える基板材料はチタン酸ストロンチ
ウムのみであると言われている。
On the other hand, in order for these superconductors to be used as electronic devices, it is essential to manufacture thin or thick films. From this point of view, studies have been conducted on forming films of oxides@lightning conductors, and thin films with certain characteristics have been prepared by sputtering, screen printing, etc. Currently, the biggest problem in thinning oxide superconductors is
This is a limitation of the substrate material. It is said that strontium titanate is the only substrate material that reliably provides superconductor thin films with high reproducibility and stability.

発明が解決しようとする問題点 以上述べた、超電導体および薄膜の性質に関し、本発明
が解決しようとする問題点は二つある。最近報告されて
いる100に以上の転移点を有する超電導体は、再現性
に乏しく、安定性が殆ど無いことが第一の問題点である
。事実、IBMのグループの最近の発表によれば、それ
らのほとんどは測定上の問題点および組成の不均一性な
どを含んでいるといわれている。また、Y−Ba−Cu
−0系超電導体における元素置換効果の検討が多くの研
究者により行われているが、抵抗がゼロになる温度To
ff  として95に以上の値が得られたという信頼で
きる報告は一つもないのが現状である。
Problems to be Solved by the Invention There are two problems to be solved by the present invention regarding the properties of superconductors and thin films described above. The first problem with recently reported superconductors having a transition point of 100 or more is that they have poor reproducibility and almost no stability. In fact, according to a recent announcement by an IBM group, most of them are said to include measurement problems and compositional non-uniformity. Also, Y-Ba-Cu
Many researchers are investigating the effect of element substitution in −0-based superconductors, but the temperature at which the resistance becomes zero, To
At present, there is no reliable report that a value of 95 or higher has been obtained for ff.

第二の問題点は、超電導薄膜を形成する基板材料の制限
である。入手が簡単で、安定性の高い超電導特性を与え
る基板材料が切望されている。
The second problem is the limitation of the substrate material on which the superconducting thin film is formed. There is a need for substrate materials that are easily available and provide highly stable superconducting properties.

本発明は上記従来の問題点に鑑み、超電導転移点の向上
を図り、再現性および安定性に優れた超電導体薄膜の提
供を目的とするものである。
In view of the above-mentioned conventional problems, the present invention aims to improve the superconducting transition point and provide a superconducting thin film with excellent reproducibility and stability.

問題点を解決するための手段 本発明は上記目的を達成するもので、その技術的手段は
、基板上に酸化錫薄膜を介してイツトリウム、バリウム
、銅及び酸素からなる酸化物導電体の薄膜を形成したこ
とを特徴とする超電導体薄膜の提供にある。
Means for Solving the Problems The present invention achieves the above object, and its technical means is to deposit a thin film of an oxide conductor consisting of yttrium, barium, copper and oxygen on a substrate via a thin film of tin oxide. It is an object of the present invention to provide a superconductor thin film characterized in that it has been formed.

作用 本発明は、酸化錫基板の温度は実験装置の制約上600
℃迄しか上げられなかったが、500°C以上の温度で
スパッリングが行われた場合、得られた薄膜は明確な超
電導特性を示した。特に、600°Cでは、超電導転移
温度が115にで、抵抗がゼロとなる温度が約101K
まで上昇していた。また、この皮膜を800から920
°Cの間の温度で、酸素気流中で40時間アニールする
と、ゼロ抵抗温度は105Kになり、超電導の安定性も
著しく向上した。
Operation In the present invention, the temperature of the tin oxide substrate is set at 600°C due to the limitations of the experimental equipment.
When sputtering was carried out at temperatures above 500°C, the resulting thin films showed clear superconducting properties. In particular, at 600°C, the superconducting transition temperature is 115, and the temperature at which resistance becomes zero is approximately 101K.
It had risen to. In addition, this film is 800 to 920
When annealing for 40 hours in an oxygen stream at a temperature between 10°C and 10°C, the zero resistance temperature reached 105K, and the stability of the superconductor was also significantly improved.

本発明は、新規な基板材料を用いることにより、上に述
べた二つの問題点を同時に解決しようとするものである
。本発明者等は、鋭意研究を重ねた結果、構成元素の一
部として錫(Sn)を一部含むY−Ba−Cu−Q 系
酸化物が上記の問題点が解決することを見いだし、同一
出願人による発明として出願した。即ち、Y−Ba−C
u−0光導電体のBaの一部を錫に置き換えた導電体に
おいては、Tcが110°C迄上昇することを初めて明
らかにした。
The present invention attempts to simultaneously solve the above two problems by using a new substrate material. As a result of extensive research, the present inventors discovered that Y-Ba-Cu-Q-based oxides containing some tin (Sn) as a constituent element can solve the above problems. The application was filed as an invention by the applicant. That is, Y-Ba-C
It was revealed for the first time that in a conductor in which part of the Ba of the u-0 photoconductor was replaced with tin, Tc increased to 110°C.

更に、この発見に基づき、本発明者らは5nOzを基板
としてY −B a −Cu −0系の酸化物の薄膜を
形成すると、超電導転移点が105に一部で上昇し、安
定な超電導体薄膜が得られることを発見した。
Furthermore, based on this discovery, the present inventors formed a thin film of Y-Ba-Cu-0 based oxide using 5nOz as a substrate, and the superconducting transition point partially rose to 105, making it a stable superconductor. It was discovered that a thin film could be obtained.

本発明の超電導体薄膜の基本的な製造方法は次のとおり
である。基板として用いる酸化錫は、通常のスプレーパ
イロリンス法によって、石英板上に形成させたものを用
いた。また、薄膜を形成する酸化物導電体は次のように
して調製された。メノウの乳鉢を用いて、最初に定めら
れた組成比(Y:Ba:Ouの原子比率が1:2:3で
あることを基準にする)のY2O3、BaOおよびOu
O6るいはCu超微粒子を粉砕し、均一になるまで混合
する。粉砕後、120℃以上の温度で十分に乾燥させ、
成型を行う。成型圧力は、500Kq / ci以上で
あれば良かった。しかし、焼結体の均−性を考慮して、
一般には2.5t/7の圧力で成型した。作られたベレ
ットの焼成は、通常の管状炉を用いて、空気中で行った
。焼成温度は、850から945℃の間が適当であった
。焼成後、800℃に10時間、400°Cに10時間
放置してアニールを施した。この様にして得られたY−
Ba−Ou−0の焼結体は、95にで抵抗がゼロとなる
超電導体であったが、次に、これをターゲットにして高
周波スパッタリングを行う。励起源が13.6MHzの
マグネトロン゛スパッタリンーグ装置を用い、酸素を5
から15%を含むアルゴンガスの濃度を2から10 P
aとし、種々の基板温度でスパッタリングを行った。こ
のようにして、30から60分のスパッタリングにより
、3000から8000 オングストロームの均一な皮
膜が得られた。
The basic method for manufacturing the superconductor thin film of the present invention is as follows. The tin oxide used as the substrate was formed on a quartz plate by the usual spray pyrorinse method. Further, an oxide conductor forming a thin film was prepared as follows. Using an agate mortar, Y2O3, BaO and O of the initially determined composition ratio (based on the atomic ratio of Y:Ba:Ou being 1:2:3) were prepared.
Pulverize O6 or Cu ultrafine particles and mix until homogeneous. After pulverizing, thoroughly dry at a temperature of 120°C or higher,
Perform molding. The molding pressure had to be 500 Kq/ci or more. However, considering the uniformity of the sintered body,
Generally, molding was carried out at a pressure of 2.5t/7. Firing of the produced pellets was carried out in air using a conventional tube furnace. The firing temperature was suitably between 850 and 945°C. After firing, it was annealed by leaving it at 800°C for 10 hours and at 400°C for 10 hours. Y- obtained in this way
The Ba-Ou-0 sintered body was a superconductor whose resistance became zero at 95%, and next, high-frequency sputtering was performed using this as a target. Using a magnetron sputtering device with an excitation source of 13.6 MHz, oxygen was
The concentration of argon gas containing 15% from 2 to 10 P
a, and sputtering was performed at various substrate temperatures. In this way, a uniform film of 3000 to 8000 angstroms was obtained after 30 to 60 minutes of sputtering.

実施例 以上に本発明の実施例を詳細に説明する。Example The embodiments of the present invention will be described in detail above.

〔実施例1〕 試薬として入手したy2o3、BaOおよびOuOをメ
ノウの乳鉢で高純度エタノールを滴下しつつ、完全に粉
砕した。この粉末を507から102の間の重さとして
秤量し、直径13crnの成型治具の甲に充填し加圧し
た。圧力は約2500Ky/cr/lで、排気しつつ3
0分間行った。このペレットを白金板の上に置き、管状
炉の中のにセットして熱処理を行った。例えば、4時間
の熱処理の結果、900°Cでは2008/cmであっ
た。最高の電導度は900から940℃の間の温度で得
られ、500から7008/cInで4つだ。また、9
45℃以上の温度では、抵抗が再び上昇する傾向が見ら
れた(例えは980°Cで約7 Q S 7cm )。
[Example 1] y2o3, BaO, and OuO obtained as reagents were completely ground in an agate mortar while dropping high-purity ethanol. This powder was weighed to have a weight between 507 and 102, and was filled into the shell of a molding jig having a diameter of 13 crn and pressurized. The pressure is about 2500Ky/cr/l, and while exhausting
It lasted 0 minutes. The pellets were placed on a platinum plate and placed in a tube furnace for heat treatment. For example, the result of heat treatment for 4 hours was 2008/cm at 900°C. The highest conductivities are obtained at temperatures between 900 and 940° C. and 4 between 500 and 7008/cIn. Also, 9
At temperatures above 45°C, there was a tendency for the resistance to rise again (eg, about 7 Q S 7cm at 980°C).

このようにして作られたYBCO酸化物導電体をターゲ
ットにし、酸素を15%含むアルゴンガスを用い、[’
tFマグネトロンスパッタリングを行った。ガス圧は3
Paで、高周波入力は150Wに設定した。基板は5ミ
クロン厚の酸化錫を持つ石英基板(面積抵抗750)で
、スパッタリング甲の基板温度は550℃とした。約2
時間のスパッタリングにより、黒色の、約1ミクロンの
均一膜が形成された。この様にして得られた薄膜の固有
型導度は1208/cInで、温度−抵抗特性の測定か
ら明確な超電導性が確認された。即ち、室温から100
Kまでは殆ど抵抗の温度変化はないが、100により抵
抗が急激に降下し、96〜97にでゼロ抵抗を示した。
Targeting the YBCO oxide conductor made in this way, using argon gas containing 15% oxygen, ['
tF magnetron sputtering was performed. Gas pressure is 3
The high frequency input was set to 150W. The substrate was a 5 micron thick quartz substrate with tin oxide (area resistance 750), and the substrate temperature of the sputtering layer was 550°C. Approximately 2
After time sputtering, a black, uniform film of approximately 1 micron was formed. The intrinsic conductivity of the thin film thus obtained was 1208/cIn, and clear superconductivity was confirmed by measurement of temperature-resistance characteristics. That is, from room temperature to 100
There is almost no change in resistance with temperature up to 100 K, but the resistance drops rapidly at 100 K and shows zero resistance at 96 to 97 K.

これに反し、600°Cでスパッターされた皮膜はTc
が105にの急峻な超電導転移を示した、Toff  
が100にと著しい上昇を示した。その特性は非常に安
定で、空気中に放置した後でも、繰り返し再現をするこ
とが出来た。
In contrast, the film sputtered at 600°C
showed a steep superconducting transition at 105, Toff
showed a remarkable increase to 100. Its properties were extremely stable and could be reproduced repeatedly even after being left in the air.

〔実施例2〕 CuOの代わりに銅の超微粒子(平均粒径300オング
ストローム)を用い、Y:Ba:Cuの原子比率がl:
2:3となるような組成を用い、実施例1と同様の方法
で粉砕混合、焼結を行った。
[Example 2] Ultrafine copper particles (average particle size 300 angstroms) were used instead of CuO, and the atomic ratio of Y:Ba:Cu was l:
Grinding, mixing, and sintering were performed in the same manner as in Example 1 using a composition with a ratio of 2:3.

950℃で10時間焼結して得られた酸化物をターゲッ
トにして、350°Cの基板温度で1時間スパッターし
た。次に、得られた皮膜を酸素気流中で約10時間、8
50°Cのアニールを行った。抵抗−温度特性の測定の
結果、Tonは114Kまで上昇し、Torfは104
から105にの間であった。また、この特性は、サンプ
ルを湿気に曝さなければ倒産でも再現させることが出来
た。この様な高い転移点をもつセラミックス電導体は、
スパッタリングあるいはアニールの過程でBaがSnに
より部分的に置換された結果化じたものと思われる。た
だし、アニール条件が厳しくなる(900以上、数10
時間以上)と、スパッター膜の電導度が急激に低下し、
超電導特性が明確でなくなる傾向が観測された。
Using the oxide obtained by sintering at 950°C for 10 hours as a target, sputtering was performed at a substrate temperature of 350°C for 1 hour. Next, the obtained film was heated for about 10 hours in an oxygen stream for 8 hours.
Annealing was performed at 50°C. As a result of measuring resistance-temperature characteristics, Ton rose to 114K and Torf rose to 104K.
It was between 105 and 105. Moreover, this property could be reproduced even in bankruptcies as long as the sample was not exposed to moisture. Ceramic conductors with such a high transition point are
This appears to be the result of Ba being partially replaced by Sn during the sputtering or annealing process. However, the annealing conditions will be stricter (more than 900, several tens of
time), the conductivity of the sputtered film decreases rapidly,
A tendency for superconducting properties to become less clear was observed.

尚、現在知られている高温超電導体、Ln−Ba−Cu
−0(Lnはランタニド系列元素)、ではCu−0から
なる電導路を取り巻<Ba原子の存在が超電導の基本に
なっているので、本発明はそれらの材料にも同様に適用
できることは明らかである。
Furthermore, currently known high-temperature superconductors, Ln-Ba-Cu
-0 (Ln is a lanthanide series element), the existence of <Ba atoms surrounding a conductive path made of Cu-0 is the basis of superconductivity, so it is clear that the present invention can be applied to these materials as well. It is.

発明の効果 以上要するに、本発明は、酸化錫を表面に持つ基板上に
Y−Ba−Cu−0系の高温超電導薄膜を例えば物理蒸
着などにより形成することにより、BaがSnに部分的
に置換され、超電導転移点が約10に迄上昇させられた
新規な超電導体薄膜を開示するものである。
Effects of the Invention In short, the present invention provides a method in which Ba is partially replaced with Sn by forming a Y-Ba-Cu-0-based high-temperature superconducting thin film on a substrate having tin oxide on the surface, for example, by physical vapor deposition. The present invention discloses a novel superconductor thin film in which the superconducting transition point is raised to about 10.

現在の段階ではこの材料の結晶構造は決定されておらず
、本発明の効果の原因も今後基礎的に解明される必要が
ある。しかしながら、酸化物超電導体の構成元素の一部
としてSnを用いることは高温超電導体の製造及び特性
に大きな進歩をもたらすものである。
At the current stage, the crystal structure of this material has not been determined, and the cause of the effects of the present invention will need to be fundamentally elucidated in the future. However, the use of Sn as part of the constituent elements of oxide superconductors represents a major advance in the production and properties of high temperature superconductors.

Claims (1)

【特許請求の範囲】[Claims]  基板上に形成された酸化錫薄膜を下地とし、イットリ
ウム、バリウム、銅及び酸素から成る酸化物導電体の薄
膜を形成して得られることを特徴とする超電導体薄膜。
A superconductor thin film characterized in that it is obtained by forming a thin film of an oxide conductor consisting of yttrium, barium, copper, and oxygen on a tin oxide thin film formed on a substrate as a base.
JP62314503A 1987-12-11 1987-12-11 Superconductive thin film Pending JPH01157008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62314503A JPH01157008A (en) 1987-12-11 1987-12-11 Superconductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62314503A JPH01157008A (en) 1987-12-11 1987-12-11 Superconductive thin film

Publications (1)

Publication Number Publication Date
JPH01157008A true JPH01157008A (en) 1989-06-20

Family

ID=18054073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62314503A Pending JPH01157008A (en) 1987-12-11 1987-12-11 Superconductive thin film

Country Status (1)

Country Link
JP (1) JPH01157008A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103524131A (en) * 2013-09-06 2014-01-22 河南师范大学 Preparation method of rare-earth element doped YxSm(l-x)BCO superconducting thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103524131A (en) * 2013-09-06 2014-01-22 河南师范大学 Preparation method of rare-earth element doped YxSm(l-x)BCO superconducting thin film

Similar Documents

Publication Publication Date Title
EP0356722A1 (en) Oxide superconductor and method of producing the same
CA1337149C (en) Devices and systems based on novel superconducting material
KR100268698B1 (en) Process for making superconducting tl-pb-sr-ca-cu oxide films and devices
US4900710A (en) Process of depositing an alkali metal layer onto the surface of an oxide superconductor
JPH02212351A (en) Target material for forming superconducting ceramic film
JPH01157008A (en) Superconductive thin film
JPH01215712A (en) Production of thin film of superconductor
EP0299796A2 (en) Silver additives for ceramic superconductors
US5270292A (en) Method for the formation of high temperature semiconductors
KR910004862B1 (en) Target material for forming superconductive film
AU631956B2 (en) Vanadium-based superconducting metallic oxides
Paulose et al. Synthesis of YBa2SbO6: a possible new substrate for YBa2Cu3O7-delta thin films
JPH01157009A (en) Superconductor thin film
JPH01219156A (en) Manufacture of thin superconductor film
JPH01156463A (en) Thin superconductor film
JPH10510799A (en) Improved superconductor
JPH02120233A (en) Oxide superconducting material
JPH0238359A (en) Production of superconductor
JPH01157417A (en) Superconductor
JPH02116623A (en) Oxide superconducting material
JPH01227480A (en) Manufacture of superconducting thin-film
JPH01215713A (en) Production of superconductor
JPH02120226A (en) Superconducting material of oxide
EP0375134A1 (en) Bi-Ca-Sr-Cu-O superconducting glass ceramics
Kurian et al. Percolation Behavior of the Normal-State Resistivity and Superconductivity of the YBa 2 Cu 3 O 7− δ-Ba 2 GdNbO 6 Composite System