JPH01156467A - Manufacture of sputtering target - Google Patents

Manufacture of sputtering target

Info

Publication number
JPH01156467A
JPH01156467A JP62315613A JP31561387A JPH01156467A JP H01156467 A JPH01156467 A JP H01156467A JP 62315613 A JP62315613 A JP 62315613A JP 31561387 A JP31561387 A JP 31561387A JP H01156467 A JPH01156467 A JP H01156467A
Authority
JP
Japan
Prior art keywords
transition metal
rare earth
target
ingot
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62315613A
Other languages
Japanese (ja)
Inventor
Akira Aoyama
明 青山
Toshihiko Yamagishi
山岸 敏彦
Tadatoshi Shimokawa
下川 渡聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62315613A priority Critical patent/JPH01156467A/en
Priority to EP88308503A priority patent/EP0308201B1/en
Priority to DE3885690T priority patent/DE3885690T2/en
Priority to KR1019880011970A priority patent/KR930007159B1/en
Priority to CN88106744A priority patent/CN1033654A/en
Publication of JPH01156467A publication Critical patent/JPH01156467A/en
Priority to HK130197A priority patent/HK130197A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • G11B11/10589Details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a target reduced in oxygen content and causing no distribution of composition in the film-formation plane by placing a transition metal powder and an ingot of rare earth-transition metal alloy in a mold, heating the mold at a temp. between the melting points of both, and then subjecting the resulting formed body after cooling to working. CONSTITUTION:A powder 4 of transition metal and an ingot 3 of rare earth- transition metal alloy are placed in a crucible 1, etc., which is evacuated. The crucible 1 is heated at a temp. between the melting point of the transition metal and the melting point of the rare earth-transition metal alloy by means of a high-frequency induction heating coil 2, etc., by which the molten metal of the ingot 3 is infiltrated into the pores of the powder 4 to fill the pores. The ingot after cooling is formed into three phases of a rare-earth single phase 22, a rare earth-transition metal alloy phase 23, and a transition-metal single phase 21. By working and grinding the above ingot, a sputtering target is formed. As to the principal composition of the target, it is desirable to incorporate one or more light rare earth metals among Sm, Nd, Pr, and Ce, one or more heavy rare earth metals among Gd, Tb, and Dy, and either or both of transition metals of Fe and Co.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類遷移金属合金スパッタリング用ターゲッ
トの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a rare earth transition metal alloy sputtering target.

〔従来の技術〕[Conventional technology]

希土類遷移金属系光磁気記録膜を作匠するスパッタリン
グ用ターゲットに従来工り鋳造法、焼結法、半溶融法な
どがある。ここでいう鋳造法とは鋳込んだ鋳塊上その一
!ま外径・着面加工にてターゲットにするものであり、
焼結法とに一度鋳込んだ鋳塊を粉砕し、焼結にてターゲ
ット形状とするものである。又、半溶融法とは特開昭6
1−99640に示すものである〇 しかしながら萌述の焼結法に、本質的に酸素量を多く含
み(2000ppm程度)、酸化され易い希土類遷移金
属系には適していない。一方、鋳造法はT bFe系に
関しては非常に脆く、新しい組底系としてNdDyFe
0O系が注目されている(特開昭6l−16C322,
62−129a1等)〔発明が解決しようとする問題点
〕 しかしながら、萌述の従来技術による鋳造法によるNd
DyFe0o 、 NaTbFe0o 、 PrDyF
eCo 。
Sputtering targets for creating rare earth transition metal-based magneto-optical recording films include conventional casting methods, sintering methods, and semi-melting methods. The casting method referred to here is the first step in casting an ingot! It is targeted for outer diameter and surface machining.
In the sintering method, the cast ingot is crushed and sintered into a target shape. Moreover, the semi-melting method is
1-99640. However, the sintering method described by Moe is not suitable for rare earth transition metal systems that essentially contain a large amount of oxygen (about 2000 ppm) and are easily oxidized. On the other hand, the casting method is extremely brittle for the TbFe system, and NdDyFe is a new type of casting system.
The 0O system is attracting attention (JP-A-6L-16C322,
62-129a1, etc.) [Problems to be solved by the invention] However, the Nd
DyFe0o, NaTbFe0o, PrDyF
eCo.

PrTbFeCo系鋳造合金ターゲットでスパッタリン
グにて底膜した場合、基板面内で組底分布が生じるとい
う問題点を有する。(工sMO°2721B−1a) 又、半溶融法で作放したターゲラ)rI基板面内で組取
分布が生じにくいという特長がある。(第10回日本応
用磁気学会学術講演概要集5aB−7,5aB−8) しかし、半溶融法に基本的には焼結による製造であるた
め、ターゲットは完全な密状態となっておらず、大気中
に放置された場合にターゲットの宍面層が酸化されてし
まい、予備スパッタリングでに表面層tクリーニングで
きないほどの酸化層となってしまう。
When a bottom film is formed by sputtering using a PrTbFeCo based casting alloy target, there is a problem in that a bottom layer distribution occurs within the substrate surface. (Engineering sMO°2721B-1a) Also, the target layer released by the semi-melting method has the advantage that it is difficult to cause a pattern distribution within the surface of the rI substrate. (The 10th Japanese Society of Applied Magnetics Academic Lecture Abstracts 5aB-7, 5aB-8) However, because the semi-melting method is basically sintering, the target is not completely dense. If the target is left in the atmosphere, the oxidized layer of the target will become so oxidized that the surface layer cannot be cleaned by preliminary sputtering.

そこで本発明にこのような問題点を解決するもので、そ
の目的とするところに従来の鋳造合金ターゲットがもつ
底膜面内で[11111に分布が生じるという欠点r克
服し、さらに半溶融法によるターゲットのもつ酸化され
やすいという欠点に克服するターゲットを提供するとこ
ろにある。
Therefore, the present invention is intended to solve these problems, and aims to overcome the drawback of the conventional cast alloy target that a distribution of The object of the present invention is to provide a target that overcomes the drawback of being easily oxidized.

〔問題点を解決するための手段〕[Means for solving problems]

希土類遷移金属合金からなる光磁気記録層?スパッタリ
ングにて製造するための鋳造合金ターゲットの製造方法
において、型中に遷移金属の粉末と希土類遷移金属合金
の鋳塊を入れ、遷移金属の融点と希土類遷移金属合金の
融点の間の温度で型に−710熱し、その後冷却してで
@た既形体を加工することを特徴とする。
Magneto-optical recording layer made of rare earth transition metal alloy? In a method for manufacturing a cast alloy target for manufacturing by sputtering, a transition metal powder and a rare earth transition metal alloy ingot are placed in a mold, and the mold is heated at a temperature between the melting point of the transition metal and the melting point of the rare earth transition metal alloy. It is characterized by processing the already formed body by heating it to -710℃ and then cooling it.

〔作用〕[Effect]

従米工り実験室で用いられているTMメタ−ゲット上R
Eナツプを配して底膜する複合ターゲットのそれとは逆
の傾向を示す。
TM Meta-Get Top R used in the Jubei Manufacturing Laboratory
This shows a tendency opposite to that of a composite target in which an E-nup is arranged as a bottom film.

つまり複合ターゲットの場合はターゲットの直上になる
ほどREが多く、俳画はどTMが多い。
In other words, in the case of a compound target, there are more REs as the target is directly above the target, and in haiga, there are more TMs.

一方、鋳造合金ターゲットのそれにターゲットの直上に
なるほどTMが多く、側面はどBEが多い。これらtニ
ジ詳細に見てみると、TMの飛び方に複合ターゲット、
鋳造合金ともほぼ同じで大きな差aなかった1一方R1
11iの飛び方が複合ターゲット鋳造合金とで大きな差
があることがわかった。
On the other hand, compared to that of a cast alloy target, there is more TM in the area directly above the target, and there is more BE in the side surface. If we look at these details, we can see that there are complex targets and
It was almost the same as the cast alloy and there was no big difference1, while R1
It was found that there is a big difference in the flight of 11i between the composite target cast alloy and the composite target cast alloy.

つまり、複合ターゲットのときの1’tKiターゲツト
の上方向に飛び易く、鋳造合金ターゲットのときのRE
ljターゲットの横方向に飛び易いのである。つまりR
Fi単体相と%RE−TM合金相と、TM単単独音適当
に混存させ九鋳造合金ターゲットができれば、基板面内
で組放分布が少ない均一な底膜が可能となる。さらに鋳
造合金である九めの本来の酸素含有量も少な(、予備ス
パッタリングも非常く短くなる。
In other words, the 1'tKi target is easier to fly upwards when a composite target is used, and the RE when a cast alloy target is used.
It is easy to fly laterally to the lj target. In other words, R
If a 9-cast alloy target is made by appropriately mixing the Fi single phase, the %RE-TM alloy phase, and the TM single sound, a uniform bottom film with a small assembly distribution within the substrate surface will be possible. Furthermore, the inherent oxygen content of the cast alloy is also low (and the pre-sputtering time is also very short).

〔実施例1〕 まず原料として(N a O32Dy o、s ) 7
2.2(Feo、s COO,2) 27.8 a t
% の鋳塊を作る(以下この鋳塊’l R+ RIT2
鋳塊と呼ぶ)。この鋳塊の融点σ830″C程度と低い
。そして次にFe80co2゜at%の200μm粒径
の粉末を用意した。この粉末の融点d1500’c程度
と高く、又この粉末の空孔率は62.4%である。
[Example 1] First, as a raw material (N a O32Dyo, s ) 7
2.2 (Feo, s COO, 2) 27.8 a t
% (hereinafter referred to as this ingot'l R+RIT2)
(called ingot). The melting point of this ingot is low, about σ830'C. Next, we prepared a powder of 200 μm particle size of Fe80Co2 at%.The melting point of this powder is high, about d1500'C, and the porosity of this powder is 62. It is 4%.

この粉末を4り内径のルツボ中に入れ、その上にR+R
IT、鋳塊に入れる。この状Mk示した模式図が第1図
である。1がルツボ、2が高周波誘導加熱コイル、5が
R+ RlT、鋳塊、4がF e B。
Place this powder in a crucible with an inner diameter of 4 mm, and place R+R on top of it.
IT, put it in the ingot. FIG. 1 is a schematic diagram showing this state Mk. 1 is a crucible, 2 is a high frequency induction heating coil, 5 is R+ RIT, an ingot, and 4 is F e B.

Oo2g  at%粒末である。この状態を真空に引き
、その後1050°Cまで温度を上げる。このときR十
R1T 2鋳塊は溶解されており、Fe−Co粉末に溶
解しないまま粒末の状態で存在している。つまりR十R
1T2鋳塊が溶解した溶湯71 F e −Oo粉末の
空孔中に浸み込み空孔を埋めることになる。
Oo2g at% granules. This state is evacuated and then the temperature is raised to 1050°C. At this time, the R1R1T2 ingot has been melted and remains in the form of granules without being dissolved in the Fe--Co powder. In other words, R1R
The 1T2 ingot penetrates into the pores of the molten metal 71 Fe -Oo powder and fills the pores.

その後冷却し、ルツボ中の鋳塊?取り出し外周加工、研
磨し4’glX3tのスパッタリンク用ターゲットを作
放した。このターゲット組11[N(1,,5D722
 Fe5s、o  0014.581% となっている
。コノターゲットの表面組織の模式図を第2図に示す。
After that, it is cooled and the ingot in the crucible? It was taken out, the outer periphery was processed and polished, and a 4'gl x 3t sputter link target was released. This target set 11[N(1,,5D722
Fe5s, o 0014.581%. A schematic diagram of the surface structure of KonoTarget is shown in Fig. 2.

21の相にFe−COの粒子、22の相げNd1D74
の希土類単独相、23r! (Ndo、zD70.s 
) 1 (F eO08000,2)2の希土類遷移金
属合金相である。つまり希土類単独相と希土類遷移金属
合金相と遷移金属単独相の3相になっているのである。
Fe-CO particles in phase 21, phase Nd1D74 in phase 22
Rare earth single phase, 23r! (Ndo, zD70.s
) 1 (F eO08000,2)2 is a rare earth transition metal alloy phase. In other words, there are three phases: a rare earth single phase, a rare earth transition metal alloy phase, and a transition metal single phase.

コ(7)NdDyFeCo ターゲットを第5図に示す
様なスパッタリング装置に装着し、放膜しその磁気特注
及び組既分布?調べてみ*05R3図の31が、スパッ
タリングターゲットであり、52が基板ホルダー(30
01)である。放膜条件(l A r圧2、5 mTo
rr、  初期真空度3 X 10’ Torr、投入
電力dDo電源を用い1. OA 340 Vでおこな
った。第4図に本発明ターゲットを用い九基板ホルダー
内組取分布及び磁気特注分布図である。この図に示す様
に組[iRKが2aO〜2a5atチで均一であり、磁
気特注もHcがj7〜1α5KCeで均一である。基本
ホルダー内にほとんどといっても良いほど均一な膜が成
膜できている。当然このターゲラ)d鋳造合金であるの
で酸素tは少な(350ppm  であった。
(7) The NdDyFeCo target is mounted on a sputtering device as shown in Fig. 5, and the film is released and its magnetic custom-made and pre-assembled distribution is performed. I looked it up *05R3 In the diagram, 31 is the sputtering target, and 52 is the substrate holder (30
01). Film release conditions (l A r pressure 2, 5 mTo
rr, initial vacuum level 3 x 10' Torr, input power dDo power supply 1. It was performed at OA 340V. FIG. 4 is a diagram showing the machining distribution and magnetic custom distribution in a nine-substrate holder using the target of the present invention. As shown in this figure, the group [iRK is uniform between 2aO and 2a5at, and the magnetic custom order has a uniform Hc between j7 and 1α5KCe. A nearly uniform film was formed inside the basic holder. Naturally, since this was a cast alloy, the oxygen content was low (350 ppm).

一方、比較のために従来の製造方法で NaDy1e Co  ターゲットを作広し友。丁なわ
ちNdDyFθCO金組[11500’Cでルツボ中に
て溶解し、そして鋳型に注湯し鋳塊を作つ窺。そしてこ
の鋳塊を切断、研磨し4〃φX6tのNbDyFe0o
 ターケラト七作成した。
On the other hand, for comparison, a NaDy1e Co target was prepared using a conventional manufacturing method. That is, NdDyFθCO gold set [melted in a crucible at 11,500'C, then poured into a mold to make an ingot. Then, this ingot was cut and polished to form a 4〃φX6t NbDyFe0o
Created Terkerat Seven.

このターゲラ)t[3図に示す装置で成膜tおこなった
。放膜条件に先述の本発明ターゲットの場合と同じであ
る。第5図にこの従来の製造方法による鋳造合金NdD
yFe0o  ターゲットを用い九基板ホルダー内組原
分布及び磁気特注分布[−示す。この図に示す様に組[
dRffiが29.8〜2&8at%で、 基板ホルダ
ー中心へいくほどFImが多く、逆にホルダー外周へい
くほどRF、が少なくなっている。又、磁気特注もHc
が12〜6KCe  とホルダー中心へいくほどHcが
大きくなっている。これ1組底分布とも一致する。つま
り従来の製造方法による鋳造合金NdDyFe0oター
ゲツトバターゲツトの上方向はどTM(遷移金属)がと
びやすく、横方向はどRw(希土類金属)がとびや丁い
特tit示し、基板ホルダー内で組底分布を生じさせて
しまう。
Film formation was carried out using the apparatus shown in Figure 3. The film release conditions were the same as those for the target of the present invention described above. Figure 5 shows the cast alloy NdD produced by this conventional manufacturing method.
Using the yFe0o target, the microorganism distribution and magnetic custom distribution in the nine-substrate holder [-shown]. As shown in this figure, the set [
dRffi is 29.8 to 2&8 at%, and FIm increases toward the center of the substrate holder, and conversely, RF decreases toward the outer periphery of the holder. In addition, magnetic special orders are also available.
is 12 to 6 KCe, and Hc increases toward the center of the holder. This also coincides with the 1-set base distribution. In other words, in the upper direction of the cast alloy NdDyFe0o target butter target by the conventional manufacturing method, the TM (transition metal) tends to jump out, and in the lateral direction, the Rw (rare earth metal) tends to jump out. This will cause a distribution.

さらに半溶融法に工9製遺し次ターゲットと比較するた
め、先述の本発明ターゲット組底と同様のNa5,5 
D7zz ”5B、OC014,581%の組氏で半溶
融法を用い4#g3X3t  のターゲラ)k作放し九
In addition, in order to compare with the target made by the semi-melting method and the target made by the process 9, Na5,5
D7zz "5B, OC014, 581% group using semi-melting method 4 #g3

そして、これら本発明品と半溶融品のターゲットのプレ
スバッタリング時間を評価した。結果は保磁力が11K
Ce  に飽和するのに、本発明品に20分のプレスパ
ツタ時間で済むのに対し、半溶融品に120分かかった
。当然同一条件でおこなっており、1.0A340V 
 Ar圧2.5 mTorrである。半溶融品にターゲ
ラ)ft面の酸化層がそれだけ多いという証左であり、
これは量産時におけるコスト面で不利となる。
Then, the press battering time of the targets of the present invention and the semi-molten target was evaluated. The result is a coercive force of 11K.
It took 120 minutes for the semi-molten product to become saturated with Ce, whereas the product of the present invention required only 20 minutes of press sputtering time. Of course it was done under the same conditions, 1.0A340V
The Ar pressure was 2.5 mTorr. This is proof that there is a large oxidized layer on the ft surface of the semi-molten product.
This is disadvantageous in terms of cost during mass production.

〔実施例2〕 矢にPrTbFe0o について本発明法による効果を
確認した。製造方法は実施例1と同じであり、まず原料
として(Pr o、z ’rb0.8) 8゜(”o、
s COo、z )zo ateの鋳塊を作る。この鋳
塊の融点1−j810’U程度である。そして次にFe
goCo2゜81%の200μm粒径の粉末を用意し、
この粉末1.41φ内径のルツボ中に入れ、その上に鋳
塊を入れる。その後真空中で1050°Cまで温度を上
げ、鋳塊が溶解した後冷却し、ルツボ中の鋳°塊t−取
り出し外周方ロエ、研磨し41φX3t  のスパッタ
リング用ターゲットを作放し友。そして実施例1と同様
の底膜會試みた所、基板ホルダー内に均一な組底、均一
な磁気特注の膜が祷られ九。
[Example 2] The effect of the method of the present invention on PrTbFe0o was confirmed. The manufacturing method is the same as in Example 1, and first, as raw materials (Pro, z'rb0.8) 8°("o,
Make an ingot of s COo, z ) zo ate. The melting point of this ingot is about 1-j810'U. And then Fe
Prepare a powder of 200 μm particle size of goCo2゜81%,
This powder is placed in a crucible with an inner diameter of 1.41φ, and an ingot is placed on top of it. After that, the temperature was raised to 1050°C in a vacuum, and after the ingot was melted, it was cooled, and the ingot was taken out from the crucible and polished to form a sputtering target of 41φ x 3t. When we tried to form a bottom film similar to that in Example 1, we found a uniform bottom and a uniform magnetic custom-made film inside the substrate holder.

このターゲットの酸素11は580 PPm  であっ
た。
The oxygen 11 in this target was 580 PPm.

又ターゲット組織もRK、RE−TM、TMの3相とな
っており、全体の組底はPr 5.6 Tl)22.。
In addition, the target structure has three phases: RK, RE-TM, and TM, and the overall assembly bottom is Pr 5.6 Tl) 22. .

F B 58.OOO14,581%であつkO〔実施
例3〕 次にBmGdleOOについて本発明法による効果を確
認した。製造方法は実施例1と同じであり、まず原料と
して(Smo4Gdo、a)72.2(Feo、s C
oo、2)zy、s at%の鋳塊7作る。コノ鋳塊の
融点に808°C程度である。そして次にFe8oCO
26at% の200 μmm径径粉末を用意し、この
粉末241φ内径のルツボ中に入れ、その上に鋳塊を入
れる。その後真空中で1050″Cまで温度を上げ、鋳
塊が溶解した後冷却し、ルツボ中の鋳塊を取り出し外周
加工、研磨し4’1llX3tのスパッタリング用ター
ゲットを作成した。そして実施列1と同様の底膜を試み
九所、基板ホルダー内に均一な組成、均一な磁気%註の
膜が得られ九。このターゲットの酸素量は390 PP
mであつ之。又ターゲット組織もRE、RE−’I’M
、TMの3相となっており、全体の組IEtffSm5
,5Ga2□、0F”58.OC014,5at%であ
った。
F B 58. OOO was 14,581% and kO [Example 3] Next, the effect of the method of the present invention on BmGdleOO was confirmed. The manufacturing method is the same as in Example 1, and first, (Smo4Gdo, a) 72.2 (Feo, s C
oo, 2) Make ingot 7 of zy, sat%. The melting point of Kono ingot is about 808°C. And then Fe8oCO
A powder of 26 at% and a diameter of 200 μmm is prepared, and this powder is placed in a crucible having an inner diameter of 241φ, and an ingot is placed on top of the crucible. Thereafter, the temperature was raised to 1050"C in a vacuum, and after the ingot was melted, it was cooled. The ingot in the crucible was taken out, and the outer periphery was processed and polished to create a sputtering target of 4'111 x 3t.Then, it was the same as in Example 1. Attempts were made to form a bottom film with a uniform composition and a uniform magnetic % within the substrate holder.The oxygen content of this target was 390 PP.
Atsushi in m. Also, the target organization is RE, RE-'I'M
, TM, and the entire set IEtffSm5
,5Ga2□,0F"58.OC014,5at%.

〔実施例4〕 次にNd8mDyTbFe0o  について本発明法に
よる効果を確認した。製造方法に実施例1と同じであり
、まず原料として(Ndo 、18m0.1 D70.
4Tbo、4) 72.2 (yeo、8 Coo、2
)27.8 ’t%の鋳塊を作る。この鋳塊の融点σ8
30″C程度である。そして次に’FeBoC!o2(
1at%の200 μmm径径粉末を用意し、この粉末
t−41gl内径のルツボ中に入れ、その上に鋳塊を入
れる。その後真空中で1050’Cまで温度r上げ、鋳
塊が溶解した後冷却し、ルツボ中の鋳塊を取り出し外用
加工、研時し4#1IIX3t  のスパッタリング用
ターゲットを作成した。そして実施例1と同様の底膜を
試みた所、基板ホルダー内に均一な組成、均一な磁気特
注の膜が得られ友。このターゲットの酸素fa375 
PPm  であった。又ターゲット組織もRK。
[Example 4] Next, the effect of the method of the present invention on Nd8mDyTbFe0o was confirmed. The manufacturing method is the same as in Example 1, and first, as a raw material (Ndo, 18 m0.1 D70.
4Tbo, 4) 72.2 (yeo, 8 Coo, 2
) 27.8 't% ingot is made. The melting point of this ingot σ8
It is about 30″C. Then, 'FeBoC!o2(
Prepare 1at% powder with a diameter of 200 μmm, put this powder into a T-41gl inner diameter crucible, and put an ingot on top of it. Thereafter, the temperature was raised to 1050'C in a vacuum, and after the ingot was melted, it was cooled, and the ingot in the crucible was taken out and subjected to external processing and polishing to create a sputtering target of 4#1IIX3t. When we tried using the same bottom film as in Example 1, we were able to obtain a custom-made magnetic film with a uniform composition and uniformity inside the substrate holder. This target oxygen fa375
It was PPm. Also, the target organization is RK.

RE−TM、TMの3相となっており、全体の組51 
ri  Nd2.75  am 2,75  D711
.OT bll、OF 65B、(1co 14.5a
t%であった。
It has three phases of RE-TM and TM, and the total number of sets is 51.
ri Nd2.75 am 2,75 D711
.. OT bll, OF 65B, (1co 14.5a
It was t%.

これら実施例1,2,5.4に示す組放系以外にNdG
dFe0o 、NdTbFe0o 、NdPrDyFe
0o。
In addition to the combined release systems shown in Examples 1, 2, and 5.4, NdG
dFe0o, NdTbFe0o, NdPrDyFe
0 o.

NdPrDyTbFe0o 、PrDyFeCo、Nd
8mGdFe0o 。
NdPrDyTbFe0o, PrDyFeCo, Nd
8mGdFe0o.

CeNdDyFe0o 、CeNdPrDyFeoo等
の8m。
8m of CeNdDyFe0o, CeNdPrDyFeoo, etc.

Nd、Pr、Ceのうちの少なくとも1種以上の軽希土
と、Fe、Coのうちの少なくとも1種以上の遷移金属
と金含む全ての組成系について本発明効果が存在するこ
とを確認し几。
It was confirmed that the effect of the present invention exists for all composition systems containing at least one light rare earth among Nd, Pr, and Ce, at least one transition metal among Fe and Co, and gold. .

〔発明の効果〕〔Effect of the invention〕

このように本発明を用いれば、ターゲット中の酸素量が
少ないという鋳造合金の特質?保つ九まま、放膜面内で
組放分布が生じないといつ効果會有する。しかもプレス
パツタ時間が少なくて済み作成し皮膜の製品コストも減
らすことができる。
If the present invention is used in this way, the characteristic of the cast alloy that the amount of oxygen in the target is small? It is effective as long as the radial distribution does not occur within the radial plane. Moreover, it requires less time for press sputtering, and the product cost of the film can also be reduced.

尚、本製造方法a実施列に示し九方法のみでなく、ルツ
ボのかわりに耐熱レンガ等を用いてもよく、さらに高周
波加熱以外に抵抗加熱等でも艮い。
In addition to the nine methods shown in the production method a, a heat-resistant brick or the like may be used in place of the crucible, and resistance heating or the like may also be used in addition to high-frequency heating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a本発明製造法の模式(8)。 第2図は本発明法によるターゲットの赤面組織の模式図
。 第3図にスパッタリング装置の概略図。 第41i4H本発明法ターゲツ)k用いた基板ホルダー
内組成分布及び磁気%注分布図。 第5図に従来の製造方法による鋳造合金ターゲラ)k用
い九基板ホルダー内組反分布及び磁気特注分布図。 1・・・・・・ルツボ 2・・・・・・高周波肪導加熱コイル 3・・・・・・R+R1T2鋳塊 4・旧・・Fe8oCO□。at%粒末21−・lFe
−Co粒子 22・・・NdlDy4の希土類金属単独相23 ”・
(Nd0,2D70.8 ) 1(Fe、)9gooo
、2 ) 2の希土類遷移金属合金層 31・・・スパッタリンクターゲット 52・・・基板ホルダー(500φ)  以 上出血人
 セイコーエプソン株式会社 地2図
FIG. 1a is a schematic diagram (8) of the production method of the present invention. FIG. 2 is a schematic diagram of the blushing structure of the target obtained by the method of the present invention. FIG. 3 is a schematic diagram of the sputtering apparatus. 41i4H Present invention method target) k Composition distribution and magnetic % distribution diagram in the substrate holder. FIG. 5 shows the distribution of mass and the custom-made magnetic distribution in the nine-substrate holder using the conventional manufacturing method. 1... Crucible 2... High frequency fat conduction heating coil 3... R+R1T2 ingot 4 Old... Fe8oCO□. at% grain powder 21-lFe
-Co particles 22...NdlDy4 rare earth metal single phase 23''.
(Nd0,2D70.8) 1(Fe,)9gooo
, 2) Rare earth transition metal alloy layer 31...Sputter link target 52...Substrate holder (500φ) or more Bleeding person Seiko Epson Corporation Map 2

Claims (2)

【特許請求の範囲】[Claims] (1)希土類遷移金属合金からなる光磁気記録層をスパ
ッタリングにて製造するための鋳造合金ターゲットの製
造方法において、型内に遷移金属の粉末と希土類遷移金
属合金の鋳塊を入れ、前記遷移金属の融点と前記希土類
遷移金属合金の融点の間の温度で前記型内を加熱し、そ
の後冷却してできた成形体を加工することを特徴とする
スパッタリング用ターゲットの製造方法。
(1) In a method for manufacturing a cast alloy target for manufacturing a magneto-optical recording layer made of a rare earth transition metal alloy by sputtering, transition metal powder and a rare earth transition metal alloy ingot are placed in a mold, and the transition metal A method for producing a sputtering target, comprising heating the inside of the mold at a temperature between the melting point of the rare earth transition metal alloy and the melting point of the rare earth transition metal alloy, and then processing the formed body by cooling.
(2)前記スパッタリング用ターゲットの主たる組成が
、Sm、Nd、Pr、Ceのうち少なくとも1種以上の
軽希土類金属(LR)と、Gd、Tb、Dyのうち少な
くとも1種以上の重希土類金属(HR)とを含み、さら
にFe、Coのうち少なくとも1種以上の遷移金属(T
M)を含むことを特徴とする特許請求の範囲第1項記載
のスパッタリング用ターゲットの製造方法。
(2) The main composition of the sputtering target is a light rare earth metal (LR) of at least one kind among Sm, Nd, Pr, and Ce, and a heavy rare earth metal (LR) of at least one kind among Gd, Tb, and Dy. HR), and at least one transition metal (T
2. The method for manufacturing a sputtering target according to claim 1, comprising: M).
JP62315613A 1987-09-17 1987-12-14 Manufacture of sputtering target Pending JPH01156467A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62315613A JPH01156467A (en) 1987-12-14 1987-12-14 Manufacture of sputtering target
EP88308503A EP0308201B1 (en) 1987-09-17 1988-09-14 Method of forming a sputtering target for use in producing a magneto-optic recording medium
DE3885690T DE3885690T2 (en) 1987-09-17 1988-09-14 A method of manufacturing a sputtering target for use in the manufacture of a magneto-optical recording medium.
KR1019880011970A KR930007159B1 (en) 1987-09-17 1988-09-16 Optical recording material and manufacturing method
CN88106744A CN1033654A (en) 1987-09-17 1988-09-17 The manufacture method of Magnetooptic recording medium, sputtering target and sputtering target
HK130197A HK130197A (en) 1987-09-17 1997-06-26 Method of forming a sputtering target for use in producing a magneto-optic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62315613A JPH01156467A (en) 1987-12-14 1987-12-14 Manufacture of sputtering target

Publications (1)

Publication Number Publication Date
JPH01156467A true JPH01156467A (en) 1989-06-20

Family

ID=18067470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62315613A Pending JPH01156467A (en) 1987-09-17 1987-12-14 Manufacture of sputtering target

Country Status (1)

Country Link
JP (1) JPH01156467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106407A (en) * 2021-03-26 2021-07-13 福建省长汀金龙稀土有限公司 Manufacturing device and method of rare earth metal and rare earth alloy rotary target material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106407A (en) * 2021-03-26 2021-07-13 福建省长汀金龙稀土有限公司 Manufacturing device and method of rare earth metal and rare earth alloy rotary target material

Similar Documents

Publication Publication Date Title
US5641363A (en) Sintered magnet and method for making
JPH0553853B2 (en)
JPH0768612B2 (en) Alloy powder for rare earth metal-iron group metal target, rare earth metal-iron group metal target, and methods for producing the same
US4824481A (en) Sputtering targets for magneto-optic films and a method for making
JP2003226944A (en) Sintered magnet using rare earth-iron-boron alloy powder for magnet
JP2639609B2 (en) Alloy ingot for permanent magnet and method for producing the same
JPS61139637A (en) Target for sputter and its manufacture
KR930007159B1 (en) Optical recording material and manufacturing method
JPS60230903A (en) Production of alloy target
JPH01156467A (en) Manufacture of sputtering target
JPH02107762A (en) Alloy target for magneto-optical recording
JPH07272914A (en) Sintered magnet, and its manufacture
JP2597380B2 (en) Method for producing rare earth metal-transition metal target alloy powder and method for producing rare earth metal-transition metal target
JPH0119448B2 (en)
JP2894695B2 (en) Rare earth metal-iron group metal target and method for producing the same
JPS6195788A (en) Compound target material and its production
US5710384A (en) Magneto-optical recording medium target and manufacture method of same
JPH01156470A (en) Manufacture of sputtering target
JP2002226970A (en) Co TARGET AND PRODUCTION METHOD THEREFOR
JPH01156469A (en) Manufacture of sputtering target
JPS6350469A (en) Manufacture of alloy target for sputtering
JPH01156468A (en) Manufacture of sputtering target
JP2586562B2 (en) Sputtering target and method of manufacturing sputtering target
JPH062131A (en) Sputtering target for magneto-optical recording medium and its production
JP2692139B2 (en) Manufacturing method of sputtering target