JPH01155244A - Measuring method of concentration of substrate of organism and oxygen sensor used therefor - Google Patents

Measuring method of concentration of substrate of organism and oxygen sensor used therefor

Info

Publication number
JPH01155244A
JPH01155244A JP31410887A JP31410887A JPH01155244A JP H01155244 A JPH01155244 A JP H01155244A JP 31410887 A JP31410887 A JP 31410887A JP 31410887 A JP31410887 A JP 31410887A JP H01155244 A JPH01155244 A JP H01155244A
Authority
JP
Japan
Prior art keywords
enzyme
concentration
oxygen
luminescent material
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31410887A
Other languages
Japanese (ja)
Other versions
JPH0659236B2 (en
Inventor
Masao Kaneko
正夫 金子
Tetsuo Asakura
哲郎 朝倉
Takeshi Shimomura
猛 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
RIKEN Institute of Physical and Chemical Research
Original Assignee
Terumo Corp
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp, RIKEN Institute of Physical and Chemical Research filed Critical Terumo Corp
Priority to JP31410887A priority Critical patent/JPH0659236B2/en
Publication of JPH01155244A publication Critical patent/JPH01155244A/en
Publication of JPH0659236B2 publication Critical patent/JPH0659236B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To determine the concentration of substrate of an organism by making a luminous body coexist with a system of enzyme, by utilizing that luminescence based on the enzymic reaction of this luminous body is extinguished by oxygen, and by measuring the intensity of the luminescence by means of an oxygen sensor. CONSTITUTION:A luminous body formed of a metal complex is made to coexist with a system of enzyme, and the quantity of consumption of oxygen resulting from an enzymic reaction is determined from the excited state of this luminous body and a change in the intensity of luminescence due to its reaction with oxygen. Thereby the measurement of the concentration of substrate or the concentration of the substrate of an organism for measuring an enzymic reaction speed is conducted. Concretely, the substrate of the organism and dissolved oxygen are made to react with each other in the presence of the enzyme, a light in an ultraviolet region or a visible region is applied to the luminous body immersed in the solution thereof, and the concentration of the organism is measured by an oxygen sensor from the intensity of a light generated from this luminous body in accordance with the concentration of the dissolved oxygen which is consumed and reduced by said reaction. Then, the enzyme and the luminous body are fixed on a base plate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、生体の基質濃度や酵素反応速度を測定する方
法及びそれに使用する酵素センサーに関し、特に酵素の
系に発光体(金属錯体)を共存させ。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for measuring the substrate concentration and enzyme reaction rate of a living body, and an enzyme sensor used therein, and particularly relates to a method of measuring the substrate concentration and enzyme reaction rate of a living body, and in particular to a method for measuring the substrate concentration and enzyme reaction rate of living organisms, and in particular to a method for measuring the substrate concentration and enzyme reaction rate of living organisms, and in particular to a method of measuring the substrate concentration and enzyme reaction rate of living organisms, and an enzyme sensor used therein. Let them coexist.

該発光体の酵素反応にもとずく発光が酸素により消光さ
れることを利用して発光強度測定を行なうことにより生
体の基質濃度を測定する方法及びそれに使用する酵素セ
ンサーに関する。
The present invention relates to a method for measuring a substrate concentration in a living body by measuring the luminescence intensity by utilizing the fact that the luminescence caused by the enzymatic reaction of the luminescent material is quenched by oxygen, and an enzyme sensor used therefor.

(従来の技術) 従来、基質濃度や酵素反応速度を測定する場合。(Conventional technology) Traditionally, when measuring substrate concentration or enzyme reaction rate.

次の反応による。Due to the following reaction.

グルコース したがって、H20□やグルコノラクトンの発生量から
酸素消費量によりグルコース濃度を測定でき、これらの
測定にはH2O2電極、PR膜電極酸素電極などの電極
で行っている。
Therefore, the glucose concentration can be measured from the amount of generated H20□ and gluconolactone to the amount of oxygen consumed, and these measurements are performed using electrodes such as a H2O2 electrode, a PR membrane electrode, and an oxygen electrode.

しかしながら、これらの方法には (1)グルコノラクトンによるpH変化は小さい。However, these methods (1) The pH change caused by gluconolactone is small.

(2)酸素消費量は酸素電極上に到達した酸素分子のみ
を測定するのに限定され、又消費量を測定するので面倒
である。また、電極を用いて微小ながら電流を流さない
といけないので、生体系の測定には好ましくない。
(2) Oxygen consumption is limited to measuring only the oxygen molecules that have reached the oxygen electrode, and it is troublesome to measure the consumption. Furthermore, since it is necessary to apply a small current using an electrode, it is not preferable for measuring biological systems.

(3)過酸化水素(nzo*)量は膜電極を使用し、膜
透過するH、O□のみを測定するので界面上のH,O,
濃度が律速となる、という欠点があった。
(3) The amount of hydrogen peroxide (nzo*) uses a membrane electrode and measures only the H, O□ that permeates the membrane, so the H, O,
The drawback was that the concentration was rate-limiting.

(発明が解決しようとする問題点) 本発明は上記従来技術の問題点を解決すべく種々検討し
た結果1本発明を完成したもので、本発明の目的は、酵
素反応時の酸素消費量を周りの妨害物質に邪魔されずに
、酵素系の共存発光体の励起状態からの発光が酸素によ
り消光することを利用し、その時の発光強度測定により
基質濃度又は酵素反応速度を測定する生体基IJfvA
度の測定方法及びそれに使用する酵素セシサーを提供す
る。
(Problems to be Solved by the Invention) The present invention was completed as a result of various studies to solve the above-mentioned problems of the prior art.The purpose of the present invention is to reduce the amount of oxygen consumed during enzyme reactions. A biological group IJfvA that measures the substrate concentration or enzyme reaction rate by measuring the luminescence intensity at that time by utilizing the fact that the luminescence from the excited state of the coexisting luminescent material in the enzyme system is quenched by oxygen without being disturbed by surrounding interfering substances.
Provided are a method for measuring oxidation and an enzyme secessor used therefor.

(問題点を解決する手段) すなわち、本発明は生体基質を含む溶液中において、生
体基質と溶存酸素を酵素の下で反応させ。
(Means for Solving the Problems) That is, the present invention reacts a biological substrate with dissolved oxygen in the presence of an enzyme in a solution containing the biological substrate.

紫外領域または可視光領域の光を該溶液中に浸漬した発
光体に照射し、前記反応により消費されて低減した溶存
酸素濃度に応じて該発光体から発生する光の強度により
生体基質濃度を測定することを特徴とする生体基質濃度
の測定方法であり、また、基板上に酵素および発光体を
固定化したことを特徴とする酵素センサーである。
Irradiate the luminescent material immersed in the solution with light in the ultraviolet region or visible region, and measure the biological substrate concentration based on the intensity of the light generated from the luminescent material according to the dissolved oxygen concentration consumed and reduced by the reaction. The present invention is a method for measuring the concentration of a biological substrate, and an enzyme sensor is characterized in that an enzyme and a luminescent material are immobilized on a substrate.

すなわち、換言すれば、本発明は、酵素の系に発光体(
金属錯体)を共存させ、酵素反応に伴う酸素消費量を該
発光体励起状態と酸素との反応による発光強度変化によ
りi青濃度を求め、基質濃度又は酵素反応速度を測定す
る生体基質濃度の測定方法であり、また、その際、使用
する酵素センサーである。この場合、酵素反応系として
の酵素は酸素と直接または間接的に反応して酸素を消費
する酵素反応物質である。このような反応系の基質の例
としては、グルコース、尿酸、コレステロール、資化糖
、その他の糖(スクロース、マルトース、ガラクトース
)、ホスファチジルコリン、乳酸、ニコチン酸アミドジ
ヒドロキシナーゼ(NADH)、蓚酸、アミノ酸、アル
コール類、モノアミン、アスコルビン酸、ピルビン酸な
どが挙げられる。
In other words, the present invention provides an enzyme system with a luminescent material (
Measurement of biological substrate concentration in which the i-blue concentration is determined by the change in luminescence intensity due to the reaction between the excited state of the luminescent material and oxygen, and the substrate concentration or enzyme reaction rate is measured by coexistence of a metal complex) and the oxygen consumption accompanying the enzyme reaction. The method and enzyme sensor used in the process. In this case, the enzyme used as the enzyme reaction system is an enzyme reaction substance that reacts directly or indirectly with oxygen and consumes oxygen. Examples of substrates for such reaction systems include glucose, uric acid, cholesterol, assimilated sugars, other sugars (sucrose, maltose, galactose), phosphatidylcholine, lactic acid, nicotinamide dihydroxynase (NADH), oxalic acid, amino acids, Examples include alcohols, monoamines, ascorbic acid, and pyruvic acid.

従来の方法は前述したように、(1)式に示す例のよう
な酵素反応を生成H,O□やグルコノラクトンの発生量
、酸素消費量などよりグルコース濃度を各々電極法で(
Hz Os電極、pH電極、酸素電極など)測定するの
に対し、本発明では酵素の系に発光体(金属錯体)を共
存させ、酵素反応に伴う酸素消費量を該発光体励起状態
と酸素との反応による発光強度変化により酸素濃度を求
めるものであって、酵素の化学反応(酵素反応に直接又
は間接的に伴う酸素消費量)を周りの妨害物質に邪魔さ
れずに。
As mentioned above, in the conventional method, the enzyme reaction as shown in equation (1) is carried out, and the glucose concentration is measured using the electrode method (
Hz Os electrode, pH electrode, oxygen electrode, etc.), whereas in the present invention, a luminescent material (metal complex) is made to coexist in the enzyme system, and the oxygen consumption accompanying the enzyme reaction is measured based on the excited state of the luminescent material and oxygen. The oxygen concentration is determined by the change in luminescence intensity caused by the reaction, and the chemical reaction of the enzyme (oxygen consumption directly or indirectly associated with the enzyme reaction) is not interfered with by surrounding interfering substances.

共存発光体(金属錯体)励起状態と該酸素の化学反応を
利用し、酸素濃度を発光強度により測定してその時の酸
素濃度、すなわち基質濃度又は酵素反応速度を測定を算
出することができるのである。
Using the excited state of the coexisting luminescent material (metal complex) and the chemical reaction between the oxygen, the oxygen concentration can be measured by the luminescence intensity, and the oxygen concentration at that time, that is, the substrate concentration or enzyme reaction rate, can be calculated. .

次に、本発明における発光体および酵素センサーについ
て説明する。
Next, the luminescent material and enzyme sensor in the present invention will be explained.

発光体: 発光体とは、光励起状態からケイ光又はリン光を発して
元の基底状態に戻る化合物をいう6本発明においては、
その光励起状態で酸素と反応することにより発光強度が
減少することを利用し、発光強度を測定して酸素濃度を
求めることが原理となっているので、その光励起状態か
ら発光し且つその発光強度が酸素の共存により減少する
ような発光体なら何でも用いることができる0本発明で
使用できる発光体としては例えば2.21−ビピリジン
やその誘導体を配位子とする金属錯体、例えばトリス(
2,2ξビピリジン)ルテニウム錯体やその他イリジウ
ムなどの錯体、トリス(0−フェナントロリン)ルテニ
ウム錯体のピレンヤその誘導体(ピレンスルホン酸やピ
レン酪酸など)のような有機化合物などが挙げられる。
Luminescent substance: A luminescent substance refers to a compound that emits fluorescence or phosphorescence from a photoexcited state and returns to its original ground state.6 In the present invention,
The principle is to use the fact that the luminescence intensity decreases due to a reaction with oxygen in the photoexcited state and measure the luminescence intensity to determine the oxygen concentration. Any luminescent material that decreases when oxygen is present can be used. Examples of luminescent materials that can be used in the present invention include metal complexes having 2,21-bipyridine and its derivatives as ligands, such as tris(
Examples include organic compounds such as 2,2ξbipyridine) ruthenium complex and other complexes such as iridium, and derivatives thereof (pyrenesulfonic acid, pyrenebutyric acid, etc.) of tris(0-phenanthroline)ruthenium complex.

酵素センサー系: 酵素又は酵素群と基質および発光体を均一溶液中で共存
させて用いてもよい。あるいはこれらを合成または天然
の高分子膜中に固定化した膜を用いることができる。使
用できる合成高分子膜としては、アクリル酸、メタクリ
ル酸、ヒドロキシエチルメタクリレート、スチレン、N
−ビニルピロリドン、などの単独又は共重合体が挙げら
れる。また天然高分子膜としては絹、セルロース、ゼラ
チンなどの膜が挙げられる。本発明で用いられる酵素セ
ンサー膜とするためには、これらの高分子膜中に酵素お
よび発光体を物理的にあるいは化学的に固定する。固定
手段として物理的に固定する方法は、単に膜に吸着させ
るか、被吸着物質(酵素、発光体など)を含む膜成分の
溶液からキャスト法などにより成膜するか、あるいは被
吸着物質と単量体の混合物を光線などにより重合するこ
とにより膜化する。化学的に固定する方法は、高分子化
合物に予め酵素や発光体などを共有結合で導入して、後
に成膜するか、あるいは成膜した後に酵素や発光体など
を化学反応により導入、結合する。
Enzyme sensor system: An enzyme or a group of enzymes, a substrate, and a luminescent material may be used together in a homogeneous solution. Alternatively, a membrane in which these are immobilized in a synthetic or natural polymer membrane can be used. Synthetic polymer membranes that can be used include acrylic acid, methacrylic acid, hydroxyethyl methacrylate, styrene, N
-Vinylpyrrolidone, etc. alone or as a copolymer. Examples of natural polymer membranes include membranes made of silk, cellulose, gelatin, and the like. In order to obtain the enzyme sensor membrane used in the present invention, enzymes and luminescent materials are physically or chemically immobilized in these polymer membranes. Physical fixing methods include simply adsorbing the adsorbed substance to the membrane, forming a film from a solution of membrane components containing the adsorbed substance (enzyme, luminescent material, etc.) by a casting method, or simply attaching the adsorbed substance to the membrane. A film is formed by polymerizing a mixture of polymers using light or the like. For chemical fixation, enzymes, luminescent materials, etc. are introduced into a polymer compound in advance through covalent bonds, and then a film is formed, or after the film is formed, enzymes, luminescent materials, etc. are introduced and bonded through a chemical reaction. .

高分子化合物に発光体を化学的に共有結合で固定する例
としては、トリス(2,2−ビピリジン)ルテニウム錯
体(Ru(bpy)a2+と略す)構造をペンダント基
として有する次の重合体が挙げられる。
An example of chemically fixing a light emitter to a polymer compound through a covalent bond is the following polymer having a tris(2,2-bipyridine)ruthenium complex (abbreviated as Ru(bpy)a2+) structure as a pendant group. It will be done.

Ru[P(M−Vbpy)](bPy)a”÷(NNは
2,2ξビピリジンを表わす。)但し、X−はCl2−
1CQ O,−などのアニオン、には4−メチル−4′
−ビニル−2,22−ビピリジンまたはアクリル酸、メ
タクリル酸、ヒドロキシエチルメタクリレート、スチレ
ン、N−ビニルピロリドンなどの単量体単位、X、Y、
Zは各繰返し単位のモル分率でX、Yは0〜0,99.
Zは0.01〜1の範囲から選ばれる。この高分子ペン
ダント型発光体は単独で又は他の高分子化合物と一緒に
膜化し、その膜中には酵素または酵素群を共存させて酵
素センサーとして用いることができる。この高分子型発
光体は膜から溶出し難いので、安定な酵素センサーとし
て用いることができる。
Ru[P(M-Vbpy)](bPy)a”÷(NN represents 2,2ξbipyridine), where X- is Cl2-
Anions such as 1CQ O,- are 4-methyl-4'
- vinyl-2,22-bipyridine or monomer units such as acrylic acid, methacrylic acid, hydroxyethyl methacrylate, styrene, N-vinylpyrrolidone, X, Y,
Z is the mole fraction of each repeating unit, and Y is 0 to 0.99.
Z is selected from the range of 0.01 to 1. This polymer pendant light emitter can be formed into a film alone or together with other polymer compounds, and an enzyme or enzyme group can coexist in the film to be used as an enzyme sensor. Since this polymer type luminescent material is difficult to elute from the membrane, it can be used as a stable enzyme sensor.

これらの膜材料のうち、絹膜は生体成分になじむので、
生体系に直接挿入して用いられる酵素センサー用膜とし
て用いるのに極めて適している。
Among these membrane materials, silk membranes are compatible with biological components, so
It is extremely suitable for use as a membrane for enzyme sensors that are directly inserted into biological systems.

次に実施例をもって本発明の詳細な説明する。Next, the present invention will be explained in detail with reference to Examples.

実施例1 共栓付全面透明石英セル(光路長1cm)中に0.1M
グルコース、50μM(マイクロモル)、トリス(2,
2’ −ビピリジン)ルテニウム(II)tilt体の
塩化物のリン酸緩衝水溶液(PH7,0)3ccを加え
た。
Example 1 0.1M in a completely transparent quartz cell with a stopper (light path length 1cm)
Glucose, 50 μM (micromoles), Tris(2,
3 cc of a phosphate buffered aqueous solution (PH 7,0) of 2'-bipyridine)ruthenium (II) tilt chloride was added.

該セルを分光蛍光光度計(日本分光(製)製FP550
A)にセットし、励起光波長460nm、発光側分光器
波長605nmにて発光強度工0を測定した。
The cell was measured using a spectrofluorometer (FP550 manufactured by JASCO Corporation).
A), and the emission intensity was measured using an excitation light wavelength of 460 nm and an emission side spectrometer wavelength of 605 nm.

このように、発光側分光器波長605nmを一定にして
おき、上記セルのなかにグルコースオキシダーゼII!
1g/11112濃度の水溶液を1〜5μ阿添加する。
In this way, the emission side spectrometer wavelength is kept constant at 605 nm, and glucose oxidase II!
Add 1 to 5 μm of an aqueous solution having a concentration of 1 g/11112.

この時の酵素反応(グルコースの酵素酸化反応)により
酸素分子が消費されるので発光強度が増加するし、発光
強度の時間変化を測、定する。
At this time, oxygen molecules are consumed by the enzymatic reaction (enzymatic oxidation reaction of glucose), so the luminescence intensity increases, and the change in luminescence intensity over time is measured.

グルコースとグルコースオキシダーゼを共存させた系で
はグルコースの酸化により酸素が消費され発光強度が増
加する。酸素濃度と発光強度との関係を第1図に示す。
In a system in which glucose and glucose oxidase coexist, oxygen is consumed by oxidation of glucose and luminescence intensity increases. FIG. 1 shows the relationship between oxygen concentration and luminescence intensity.

この第1図より任意の時間における酸素濃度を知ること
ができ、したがって、酵素反応速度を知ることも可能で
ある。因に本条件下ではグルコースオキシダーゼ1μg
当り1分当りの発光強度増加は反応前の1.04倍で、
これは酸素濃度変化にして1.04+++M/win/
μgグルコースオキシダーゼに相当することになる。
From FIG. 1, it is possible to know the oxygen concentration at any given time, and therefore it is also possible to know the enzyme reaction rate. In fact, under these conditions, 1 μg of glucose oxidase
The increase in luminescence intensity per minute was 1.04 times that before the reaction,
This is a change in oxygen concentration of 1.04+++M/win/
This corresponds to μg glucose oxidase.

このように基質(ここではグルコース)濃度が酸素濃度
より過剰に共存する系を用いれば酵素(ここではグルコ
ースオキシダーゼ)の活性や反応速度を求めることがで
き、また逆に基質濃度が酸素濃度より充分小さい条件下
では、発光強度の測定により基質濃度を測定することが
可能である。
In this way, by using a system in which the substrate (glucose in this case) coexists in excess of the oxygen concentration, it is possible to determine the activity and reaction rate of the enzyme (in this case, glucose oxidase). Under low conditions, it is possible to determine the substrate concentration by measuring the luminescence intensity.

以上述べたように、まず、”(bpy)a”十水溶液に
おいて、 Ru錯体励起状態からの発光(605nm)
相対強度を溶液中の酸素濃度に対してプロットすると第
1図のような直線となり、これから発光の相対強度から
酸素濃度を求めることが可能である。
As mentioned above, first, in a 10-aqueous solution of "(bpy)a", the emission (605 nm) from the excited state of the Ru complex is detected.
When the relative intensity is plotted against the oxygen concentration in the solution, a straight line as shown in FIG. 1 is obtained, and from this it is possible to determine the oxygen concentration from the relative intensity of the emitted light.

実施例2 絹フィブロインの4%水溶液にグルコースオキシダーゼ
を絹に対して0.2%+Ru(bpy)s”十を0.1
mM濃度になるように添加し、アクリル板上にキャスト
して風乾し、厚さ約1μmの組込を得た。まず検量線を
作成するため、この組込を既知濃度の酸素を含む水溶液
に浸漬して、酸素濃度と相対発光強度の関係を求めると
第2図のような関係を得た。
Example 2 Glucose oxidase was added to a 4% aqueous solution of silk fibroin at a concentration of 0.2% relative to silk + 0.1% Ru(bpy)s''
It was added to a concentration of mM, cast on an acrylic plate, and air-dried to obtain an incorporation with a thickness of about 1 μm. First, in order to create a calibration curve, this assembly was immersed in an aqueous solution containing oxygen at a known concentration, and the relationship between oxygen concentration and relative luminescence intensity was determined, and the relationship shown in FIG. 2 was obtained.

このような特性を持つ酵素センサーをグルコースを0.
1〜1mM含み且つ空気を飽和させた水溶液中に浸漬し
、450nm光で励起して605nmの発光を測定した
。その発光強度の減少量から酸素濃度変化量を求め、従
って系中のグルコース濃度を定量することができた。
An enzyme sensor with such characteristics can be used to absorb glucose at 0.
It was immersed in an aqueous solution containing 1 to 1 mM and saturated with air, excited with 450 nm light, and emitted at 605 nm was measured. The amount of change in oxygen concentration was determined from the amount of decrease in the luminescence intensity, and it was therefore possible to quantify the glucose concentration in the system.

実施例3 実施例2においてグルコースオキシダーゼの他にインベ
ルターゼを絹に対して0.2%用い、他は実施例2と同
様にしてグルコース濃度を測定できるバイオセンサーを
作った。グルコースを0.05〜1d含みかつ空気を飽
和させた水溶液にこの酵素センサーを浸漬し、発光強度
の減少量と第2図の関係からグルコース濃度を定量する
ことができた。
Example 3 A biosensor capable of measuring glucose concentration was produced in the same manner as in Example 2 except that in addition to glucose oxidase, invertase was used at 0.2% based on silk. This enzyme sensor was immersed in an aqueous solution containing 0.05 to 1 d of glucose and saturated with air, and the glucose concentration could be determined from the decrease in luminescence intensity and the relationship shown in FIG. 2.

実施例4 実施例2においてRu(bpy)3”+の代わりに構造
式1においてMがアクリル酸、Xが(41’、 X=0
.924. Y=t、0.054、Z=0.022の高
分子ペンダント型Ru(bpy)a”十を1d錯体単体
濃度が0.1dになるように細膜水溶液に添加し、他は
実施例2と同様にしてグルコースセンサーを作り、その
検量線として第2図と同様な結果を得た。このグルコー
スセンサーにより水溶液中のグルコース濃度を発光法に
より測定できた。
Example 4 In Example 2, instead of Ru(bpy)3''+ in structural formula 1, M is acrylic acid and X is (41', X=0
.. 924. Polymer pendant type Ru(bpy)a'' with Y=t, 0.054, Z=0.022 was added to the thin film aqueous solution so that the concentration of 1d complex alone was 0.1d, and the other conditions were as in Example 2. A glucose sensor was made in the same manner as above, and the results obtained as a calibration curve were similar to those shown in Figure 2.With this glucose sensor, the glucose concentration in an aqueous solution could be measured by the luminescence method.

実施例5 実施例2においてRu(bpy)3”+の代わりにピレ
ン酪酸を用いた他は実施例2と同様にしてグルコースセ
ンサーを作った。このセンサーを既知濃度の酵素を含む
水中に浸漬し、338nm光で励起し、380nmの発
光の相対強度を測定したところ、第3図の関係を得た。
Example 5 A glucose sensor was made in the same manner as in Example 2 except that pyrenebutyric acid was used instead of Ru(bpy)3''+ in Example 2. This sensor was immersed in water containing enzyme at a known concentration. , 338 nm light and the relative intensity of 380 nm emission was measured, and the relationship shown in FIG. 3 was obtained.

この関係を用い、未知のグルコースを含む水溶液中のグ
ルコース濃度を定量することができた。
Using this relationship, it was possible to quantify the glucose concentration in an aqueous solution containing unknown glucose.

また、PMMA、石英などの光ファイバーの先端を基板
とし、酵素及び発光体を固定化させることにより、直径
数μmの微小酵素センサーが得られる。
Further, by using the tip of an optical fiber such as PMMA or quartz as a substrate and immobilizing an enzyme and a luminescent substance, a micro enzyme sensor with a diameter of several μm can be obtained.

本実施例では、生体基質としてグルコースを例にあげた
が、これに限られるものではなく前述の他の生体基質に
ついても同様である。また、組込は。
In this example, glucose is used as an example of the biosubstrate, but the present invention is not limited to this, and the same applies to the other biosubstrates mentioned above. Also, the built-in.

実施例に限られるものではなく家蚕再生絹フイブロイン
膜、野蚕再生絹フイブロイン膜を用いることもできる。
The present invention is not limited to the examples, and a regenerated silk fibroin membrane from domestic silkworms and a regenerated silk fibroin membrane from wild silkworms can also be used.

(効果) 以上、述べたように本発明は酵素反応系において酸素と
共に発光体を存在させ、共存発光体の励起状態からの発
光可視光線作成が酸素により消光することを利用し、そ
の時の発光強度測定により基質濃度又は酵素反応速度で
測定する酵素センサー及びそれを用いた生体基質濃度の
測定方法であるので電流を流す必要がなく、生体系の測
定に対しても極めて安全であり、又、溶液中の他の生体
基質、或は他の妨害イオンの影響をうけることなく高精
度の測定ができる等の効果を奏するのである。
(Effects) As described above, the present invention allows a luminescent substance to exist together with oxygen in an enzyme reaction system, and takes advantage of the fact that visible light is quenched by oxygen from the excited state of the coexisting luminescent substance, and the emission intensity at that time is Since the enzyme sensor measures the substrate concentration or enzyme reaction rate, and the method uses it to measure biological substrate concentration, there is no need to apply an electric current, making it extremely safe for measuring biological systems. This has the effect of enabling highly accurate measurements without being affected by other biological substrates or other interfering ions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1の酸素濃度に対する相対発光
強度の関係図、第2図は本発明の実施例2の酸素濃度に
対する相対発光強度の関係図及び第3図は実施例5の場
合の酸素濃度に対する相対発光強度の関係図である。
FIG. 1 is a diagram showing the relationship between relative luminescence intensity and oxygen concentration in Example 1 of the present invention, FIG. 2 is a diagram showing the relationship between relative luminescence intensity and oxygen concentration in Example 2 of the present invention, and FIG. FIG. 3 is a relationship diagram of relative luminescence intensity with respect to oxygen concentration in the case of FIG.

Claims (1)

【特許請求の範囲】 1、生体基質を含む溶液中において、生体基質と溶存酸
素を酵素の下で反応させ、紫外領域または可視光領域の
光を該溶液中に浸漬した発光体に照射し、前記反応によ
り消費されて低減した溶存酸素濃度に応じて該発光体か
ら発生する光の強度により生体基質濃度を測定すること
を特徴とする生体基質濃度の測定方法。 2、発光体は紫外領域、可視光領域の励起光により発光
し且つその発光が酸素により消光されることを特徴とす
る特許請求の範囲第1項記載の生体基質濃度の測定方法
。 3、発光体が遷移金属の有機金属錯化合物であることを
特徴とする特許請求の範囲第1項ないし第2項記載の生
体基質濃度の測定方法。 4、有機金属錯化合物は金属がルテニウムで、配位子が
2.2’−ビピリジン、o−フェナントロリンまたはそ
れらの誘導体であることを特徴とする特許請求の範囲第
3項記載の生体基質濃度の測定方法。 5、発光体が遷移金属の有機金属錯化合物を一成分とす
る高分子化合物である特許請求の範囲第2項ないし第4
項のいずれかに記載の生体基質濃度の測定方法。 6、基板上に酵素および発光体を固定化したことを特徴
とする酵素センサー。 7、発光体は紫外領域、可視光領域の励起光により発光
し且つその発光が酸素により消光されるものであること
を特徴とする特許請求の範囲第6項記載の酵素センサー
。 8、発光体が遷移金属の有機金属錯化合物であることを
特徴とする特許請求の範囲第6項記載または第7項記載
の酵素センサー。 9、有機金属錯化合物は金属がルテニウムで、配位子が
2.2’−ビピリジン、o−フェナントロリンまたはそ
れらの誘導体であることを特徴とする特許請求の範囲第
8項記載の酵素センサー。 10、発光体が遷移金属の有機金属錯化合物を一成分と
する高分子化合物であることを特徴とする特許請求の範
囲第7項ないし第9項のいずれかに記載の酵素センサー
。 11、酵素及び発生体の固定化物質が絹膜であることを
特徴とする特許請求の範囲第7項ないし第10項のいず
れかに記載の酵素センサー。
[Claims] 1. In a solution containing a biological substrate, the biological substrate and dissolved oxygen are reacted under the presence of an enzyme, and a luminescent material immersed in the solution is irradiated with light in the ultraviolet region or visible region, A method for measuring biological substrate concentration, characterized in that the biological substrate concentration is measured by the intensity of light generated from the luminescent material in accordance with the dissolved oxygen concentration that is consumed and reduced by the reaction. 2. The method for measuring biological substrate concentration according to claim 1, wherein the luminescent material emits light by excitation light in the ultraviolet region or visible light region, and the light emission is quenched by oxygen. 3. The method for measuring biological substrate concentration according to claims 1 or 2, wherein the luminescent material is an organometallic complex compound of a transition metal. 4. In the organometallic complex compound, the metal is ruthenium, and the ligand is 2,2'-bipyridine, o-phenanthroline, or a derivative thereof. Measuring method. 5. Claims 2 to 4, wherein the luminescent material is a polymer compound containing an organometallic complex compound of a transition metal as one component.
The method for measuring biological substrate concentration according to any one of paragraphs. 6. An enzyme sensor characterized by having an enzyme and a luminescent material immobilized on a substrate. 7. The enzyme sensor according to claim 6, wherein the luminescent material emits light by excitation light in the ultraviolet region or visible light region, and the light emission is quenched by oxygen. 8. The enzyme sensor according to claim 6 or 7, wherein the luminescent material is an organometallic complex compound of a transition metal. 9. The enzyme sensor according to claim 8, wherein the metal in the organometallic complex compound is ruthenium, and the ligand is 2,2'-bipyridine, o-phenanthroline, or a derivative thereof. 10. The enzyme sensor according to any one of claims 7 to 9, wherein the luminescent material is a polymer compound containing an organometallic complex compound of a transition metal as one component. 11. The enzyme sensor according to any one of claims 7 to 10, wherein the enzyme and generator immobilized substance is a silk membrane.
JP31410887A 1987-12-14 1987-12-14 Method for measuring biological substrate concentration and oxygen sensor used therefor Expired - Lifetime JPH0659236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31410887A JPH0659236B2 (en) 1987-12-14 1987-12-14 Method for measuring biological substrate concentration and oxygen sensor used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31410887A JPH0659236B2 (en) 1987-12-14 1987-12-14 Method for measuring biological substrate concentration and oxygen sensor used therefor

Publications (2)

Publication Number Publication Date
JPH01155244A true JPH01155244A (en) 1989-06-19
JPH0659236B2 JPH0659236B2 (en) 1994-08-10

Family

ID=18049338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31410887A Expired - Lifetime JPH0659236B2 (en) 1987-12-14 1987-12-14 Method for measuring biological substrate concentration and oxygen sensor used therefor

Country Status (1)

Country Link
JP (1) JPH0659236B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2699170A1 (en) * 1992-12-15 1994-06-17 Asulab Sa 2,2'-Bipyridine ligand transition metal complexes substituted with at least one alkylammonium radical, process for their production and their use as a redox mediator
US5580527A (en) * 1992-05-18 1996-12-03 Moltech Corporation Polymeric luminophores for sensing of oxygen
WO2003057904A1 (en) * 2001-12-28 2003-07-17 Arkray, Inc. Method of colorimetry and reagent for use therein
US7550273B2 (en) 2001-12-28 2009-06-23 Arkray, Inc. Colorimetric method and reagent used for the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580527A (en) * 1992-05-18 1996-12-03 Moltech Corporation Polymeric luminophores for sensing of oxygen
FR2699170A1 (en) * 1992-12-15 1994-06-17 Asulab Sa 2,2'-Bipyridine ligand transition metal complexes substituted with at least one alkylammonium radical, process for their production and their use as a redox mediator
EP0602488A1 (en) * 1992-12-15 1994-06-22 Asulab S.A. Complexes of a transition metal with 2,2-bipyridine ligands substituted by at least one ammonium alkyl radical, process for their fabrication and their use as redox mediator
WO2003057904A1 (en) * 2001-12-28 2003-07-17 Arkray, Inc. Method of colorimetry and reagent for use therein
US7550273B2 (en) 2001-12-28 2009-06-23 Arkray, Inc. Colorimetric method and reagent used for the same
US8574896B2 (en) 2001-12-28 2013-11-05 Arkray, Inc. Colorimetric method and reagent used for the same

Also Published As

Publication number Publication date
JPH0659236B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
US20060121547A1 (en) Diffusion layer for an enzyme-based sensor application
Liang et al. Biomedical application of immobilized enzymes
US4340448A (en) Potentiometric detection of hydrogen peroxide and apparatus therefor
JP3621084B2 (en) Biosensor
US6107083A (en) Optical oxidative enzyme-based sensors
Coulet Polymeric membranes and coupled enzymes in the design of biosensors
US20060030028A1 (en) Biosensor
US7267837B2 (en) Enzyme electrode and process for preparation thereof
Casero et al. Peroxidase enzyme electrodes as nitric oxide biosensors
JPH01155244A (en) Measuring method of concentration of substrate of organism and oxygen sensor used therefor
JPH02113897A (en) Method and sensor for detecting concentration of enzyme substrate
Jiang et al. Design and properties study of fiber optic glucose biosensor
JP4756284B2 (en) Apparatus for measuring glucose and ascorbic acid
CA2512282C (en) Process for preparation of enzyme electrode
JPH0690754A (en) Enzyme modified through spacer with mediator and sensor involving the same modified enzyme
JPH05203608A (en) Biosensor
JP4154485B2 (en) Method for measuring glucose and ascorbic acid
JPS6257942B2 (en)
Chittock et al. Modulation of firefly luciferase bioluminescence at bioelectrochemical interfaces
JPH0321857A (en) Enzyme sensor and production thereof
Radomska et al. Protein engineering for biosensors
Wolfbeis Fluorescence-based optical sensors for biomedical applications
JPH04215054A (en) Glucose biosensor
EP1588155A1 (en) Electrode a enzyme pour cholesterol
Curulli Electrochemical Synthesis of Poly (1, 2-diaminobenzene) Microstructures: A New Material for Biosensing Applications