JPH01155120A - Tail pipe of gas turbine combustor - Google Patents

Tail pipe of gas turbine combustor

Info

Publication number
JPH01155120A
JPH01155120A JP31198687A JP31198687A JPH01155120A JP H01155120 A JPH01155120 A JP H01155120A JP 31198687 A JP31198687 A JP 31198687A JP 31198687 A JP31198687 A JP 31198687A JP H01155120 A JPH01155120 A JP H01155120A
Authority
JP
Japan
Prior art keywords
transition piece
strut
gas turbine
wall
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31198687A
Other languages
Japanese (ja)
Inventor
Sadao Umezawa
梅沢 貞夫
Kensho Matsuda
松田 憲昭
Shigeo Sakurai
茂雄 桜井
Hajime Toritani
初 鳥谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31198687A priority Critical patent/JPH01155120A/en
Publication of JPH01155120A publication Critical patent/JPH01155120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To reduce creep deformation due to pressure difference in a tail pipe by providing at the center of a tail pipe a strut which is interiorly hollow and pieces the tail pipe from the inner wall to the outer wall and through the hollow space of which the discharged current of air is in part made to flow so as to cool the strut from the inside. CONSTITUTION:A strut 9a of a supporting means 9 is interiorly hollow and provided on the interior surface with fin-shaped protrusions 10 and pin-shaped protrusions 15. Part of the discharged current of air 17 is made to flow directly to the outer side through this hollow space in the supporting means 9. Although heated on the inner side by the heat transfer by the gas current, a tail pipe 1 is thus cooled on the outer side by the heat transfer by the discharged current of air and its temperature is maintained below an allowable limit. Since the gas current 2 impinges at high velocities upon the strut 9a of the supporting means 9, the heat transferred from the gas current is especially large at the forward edge portion of the strut 9a. On the other hand, the inner side of the strut 9a at the forward edge is provided with many fin-shaped protrusions 10, upon which the discharged current of air 17 flowing through the strut impinges, resulting in a turbulence of air, and thus the heat transfer with a cooling effect takes place also at a large rate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービン燃焼器に係り、特に、缶タイプの
燃焼器の尾筒構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas turbine combustor, and more particularly to a transition piece structure for a can-type combustor.

〔従来の技術〕[Conventional technology]

従来のガスタービンの燃焼器尾筒は、米国特許筒4,4
22,288号に記載のように、円筒状の尾筒入口と部
分扇形の尾筒出口が滑らかに結ばれた形状となっており
、ガスの流路は入口から出口まで単−の流路となってい
た。
The conventional gas turbine combustor transition piece is the U.S. Patent No. 4,4
As described in No. 22,288, the cylindrical transition tube inlet and the partially fan-shaped transition tube outlet are smoothly connected, and the gas flow path is a single flow path from the inlet to the outlet. It had become.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術はその適用範囲内では十分有効な技術とし
て利用されるが、次のような状況では新たな問題が生じ
る。
Although the above-mentioned conventional technology is used as a sufficiently effective technology within the scope of its application, new problems arise in the following situations.

燃焼用空気が燃焼器内に入る際に必らず幾らかの圧力損
失を伴うため、尾筒の内側と外側ではそれによる圧力差
が生じ、尾筒は外周側から圧迫される。この圧力差は圧
力の絶対値が大きいほど大きくなる。尾筒の温度は、通
常、その材料のクリープ領域にあるから、長時間外圧が
作用し続けることにより、尾筒の外周壁と内周壁がクリ
ープ変形によって互いに近づくように変形して来る。こ
の変形は主に尾筒の温度が高いほど、また、圧力差が大
きいほど速やかに大きくなっていく。
When combustion air enters the combustor, there is always some pressure loss, which creates a pressure difference between the inside and outside of the transition piece, and the transition piece is compressed from the outer circumferential side. This pressure difference becomes larger as the absolute value of the pressure becomes larger. Since the temperature of the transition piece is usually in the creep region of the material, if external pressure continues to act on it for a long time, the outer peripheral wall and the inner peripheral wall of the transition piece will deform toward each other due to creep deformation. This deformation becomes larger mainly as the temperature of the transition piece becomes higher and as the pressure difference becomes larger.

今日、ガスタービンの高性能化が燃焼ガス温度の上昇と
、圧縮機の圧力比の増加によって達成されようとしてい
る状況では、従来技術で対応するとすれば尾筒の厚肉化
は避けられない。
Today, in a situation where higher performance of gas turbines is being achieved by increasing the temperature of combustion gas and increasing the pressure ratio of the compressor, thickening of the transition piece is unavoidable if conventional technology is used.

一方、尾筒の構造面でも、燃焼器の本数が比較的少ない
ガスタービンでは、尾筒出口の部分扇形の高さにくらべ
幅が大きくならざるを得ない。このような場合もクリー
プ変形の速度は大きくなり、従来技術での対応は困難と
なってくる。
On the other hand, in terms of the structure of the transition piece, in gas turbines with a relatively small number of combustors, the width must be larger than the height of the partial fan shape at the exit of the transition piece. In such cases as well, the speed of creep deformation increases, making it difficult to deal with it using conventional techniques.

本発明の目的は圧力差によるクリープ変形の少ない尾筒
を提供することにある。
An object of the present invention is to provide a transition piece that is less likely to undergo creep deformation due to pressure differences.

〔問題点を解決するための手段〕[Means for solving problems]

尾筒のような薄肉殻に−様な外圧が作用する場合のクリ
ープ変形は、円筒状の尾筒入口では小さく1部分扇形状
の出口部分で大きくなる。出口部分のクリープ変形を抑
制する手段として殻の肉厚を大きくするか、鉢巻状の補
強リブを設けることが容易に考えられるが、それによる
重量増加が避けられない。
Creep deformation when a -like external pressure acts on a thin shell such as a transition tube is small at the cylindrical transition tube inlet and becomes large at the partially fan-shaped exit portion. As a means of suppressing creep deformation at the exit portion, it is easy to consider increasing the wall thickness of the shell or providing a headband-shaped reinforcing rib, but this would inevitably result in an increase in weight.

尾筒出口部分のクリープ変形を梁の変形として考えると
、その変形速度δは、 ・・・・・・(1) (1)式でn、には材料のクリープひずみ速度εCと応
力σの関係を表わす定数で、 1c==k・σ1            ・・・(2
)Pは梁中央に加える単位厚さあたりの荷重、Qは梁の
支点間距離、hは梁の高さである。nは5〜10程度の
値を持つから、(1)式かられかるように構造的にδを
小さくするにはQを小さくするか、hを大きくすること
が考えられる。hを増すことは、前述したように、尾筒
の重量を増加させるので好ましくない。Qはガスタービ
ンの寸法と燃焼器の本数によって決まるため、Qを小さ
くするには燃焼器本数を増やす必要があるが、コストア
ップになるため好ましくない。
Considering the creep deformation at the exit of the transition piece as the deformation of the beam, the deformation rate δ is: (1) In equation (1), n is the relationship between the creep strain rate εC of the material and the stress σ. A constant representing 1c==k・σ1...(2
) P is the load per unit thickness applied to the center of the beam, Q is the distance between the supporting points of the beam, and h is the height of the beam. Since n has a value of about 5 to 10, it is conceivable to reduce Q or increase h in order to structurally reduce δ as seen from equation (1). Increasing h is not preferable because it increases the weight of the transition piece, as described above. Since Q is determined by the dimensions of the gas turbine and the number of combustors, it is necessary to increase the number of combustors in order to reduce Q, but this is not preferable because it increases cost.

本発明はこれら二つの手段のうち、燃焼器本数は増やさ
ずに実質的にQを小さくする手段を採用することにより
、目的を達成するものである。実質的にQを小さくする
には尾筒出口の中央で尾筒の外周壁と内周壁の間に支柱
を設ける。この支柱により尾筒の2寸法は実質的に半分
にすることができる。支柱を尾筒出口から」二流側に向
ってどの範囲まで設けるかが問題であるが、それについ
ては次のように考えることができる。
The present invention achieves the object by adopting a means of substantially reducing Q without increasing the number of combustors among these two means. In order to substantially reduce Q, a strut is provided between the outer circumferential wall and the inner circumferential wall of the transition tube at the center of the transition tube outlet. This strut allows two dimensions of the transition piece to be substantially halved. The problem is how far the support should be provided from the exit of the transition pipe toward the second-stream side, and this can be considered as follows.

前述のように、尾筒の圧力差によるクリープ変形は入口
の円筒状部分ではほとんど生じず、出口の部分扇形にな
っている領域で大きくなる。さらに、この部分の外周壁
と内周壁とをくらべると、内周壁の変形が圧倒的に大き
い。これは外周壁が外圧13対し凸のアーチ状となって
いるのに対し、内周壁では逆に外圧に対し凹のアーチ状
となっていることによる。そして、この形状面での特徴
は尾筒がタービン入口部の環状面をカバーしなければな
らないことから必然的に派生するもので、避けられない
ものである。内周壁が外圧に対し凹のアーチ状になって
いなければならないのは出口端だけであって、それより
上流側に向っては内部の流れに悪影響を及ぼさない範囲
で、徐々に、アーチの曲率を小さくし、遂には、外圧に
対し凸のアーチとなるように連続的に断面形状を変える
ことができる。
As mentioned above, creep deformation due to the pressure difference in the transition piece hardly occurs in the cylindrical part of the inlet, but increases in the partially fan-shaped part of the outlet. Furthermore, when comparing the outer circumferential wall and the inner circumferential wall of this portion, the deformation of the inner circumferential wall is overwhelmingly large. This is because the outer peripheral wall has an arch shape that is convex with respect to the external pressure 13, whereas the inner peripheral wall has an arch shape that is concave with respect to the external pressure. This feature in terms of shape is inevitably derived from the fact that the transition piece must cover the annular surface of the turbine inlet, and is unavoidable. It is only at the outlet end that the inner circumferential wall must have a concave arch shape in response to external pressure, and the curvature of the arch is gradually increased upstream from that point within a range that does not adversely affect the internal flow. can be made smaller, and the cross-sectional shape can finally be changed continuously so that it forms a convex arch in response to external pressure.

クリープ変形が生じ易いのは外圧に対し凹のアーチ状に
なっている部分であるので、支柱は概略この部分に設け
てやればよい。
Since creep deformation is likely to occur in the arched portion that is concave with respect to external pressure, the struts may be provided approximately in this portion.

支柱は尾筒内を流れる高温ガス中に設けられるため、そ
のままでは温度が高すぎて一般の材料では耐えられない
。そのため、本発明では支柱を中空状とし、内部に冷却
空気を流して材料の許容温度まで冷却する手段を採る。
Since the struts are installed in the high-temperature gas flowing inside the transition pipe, the temperature is too high for ordinary materials to withstand. Therefore, in the present invention, the support is made hollow and cooling air is allowed to flow inside to cool the support to the allowable temperature of the material.

缶タイプの燃焼器では圧縮機の吐出空気は尾筒の内周壁
に衝突した後、尾筒側面に沿って外周壁側に廻り込みな
がら上流側に流れ1尾筒の前側に設けられた燃焼筒に流
入して燃焼ガスとなる。本発明では尾筒中央に設けた支
柱を尾筒内周壁から外周壁まで貫通した中空形状とする
ので、吐出空気の一部はこの中空部分をする抜けて支柱
を内面から冷却することができる。
In a can-type combustor, the discharge air from the compressor collides with the inner peripheral wall of the transition tube, then flows upstream while going around the outer peripheral wall along the side of the transition tube. and becomes combustion gas. In the present invention, the strut provided at the center of the transition tube has a hollow shape that penetrates from the inner peripheral wall to the outer peripheral wall of the transition tube, so that part of the discharged air can pass through this hollow portion and cool the strut from the inside.

〔実施例〕〔Example〕

以下5本発明の実施例を用いて詳細に説明する。 The present invention will be explained in detail below using five examples.

第1図は本発明の一実施例を示す縦断面図、第2図は第
1図のAB断面図である。尾筒1の入口部は円筒状とな
っており、燻燃筒(図示なし)と接続される。尾筒1の
出口部は、第2図に示すように、断面が部分扇形状を呈
し、出口端には額縁状の補強リング8が溶接14により
取付けられる。
FIG. 1 is a longitudinal cross-sectional view showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AB in FIG. The inlet portion of the transition piece 1 is cylindrical and connected to a smoker (not shown). As shown in FIG. 2, the exit portion of the transition piece 1 has a partial fan-shaped cross section, and a frame-shaped reinforcing ring 8 is attached to the exit end by welding 14.

尾筒1の出口部の外周壁1a及び内周jj&1bは一部
分削除されており、その部分に支柱部材9がはめ込まれ
、溶接14によって固着される。支柱部材9の支柱9a
は中空状となっており、その内面にはフィン状凸起10
およびビン状凸起15が形成されている。支柱部材9の
外周壁側には円筒状の囲壁6が形成されており、囲壁6
の一部はニケ所で把持部13が突出している。把持部1
3はピン12を介して吊具4と連結され、吊具4によっ
てケーシング5に取付けられている。囲壁6の端部には
皿状のバッフル板11が溶接され、バッフル板11の外
周部には複数の排気孔16があけられている。尾筒1の
出口端はタービン静翼3と対向し、シール板7によって
両者の間は滑動自在に連結されている。
Parts of the outer circumferential wall 1a and inner circumferential walls jj & 1b of the exit portion of the transition piece 1 are removed, and the strut member 9 is fitted into the removed portion and fixed by welding 14. Support 9a of support member 9
is hollow and has 10 fin-like protrusions on its inner surface.
And a bottle-shaped protrusion 15 is formed. A cylindrical surrounding wall 6 is formed on the outer peripheral wall side of the support member 9.
The grip part 13 protrudes from a part of the part where the part is exposed. Grip part 1
3 is connected to a hanger 4 via a pin 12, and is attached to the casing 5 by the hanger 4. A dish-shaped baffle plate 11 is welded to the end of the surrounding wall 6, and a plurality of exhaust holes 16 are bored in the outer periphery of the baffle plate 11. The outlet end of the transition piece 1 faces the turbine stationary blade 3, and the two are slidably connected by a seal plate 7.

燃焼筒で生成された高温ガス流2は尾筒1の内部を流れ
、尾筒1の断面の変化に応じて流速の変化を伴いながら
出口部に向い、タービン静翼3に流入する。ガスの温度
は現行の陸用ガスタービンでは1000 ’C前後に達
し、尾筒内の流速は100 rn / s前後となる。
The high-temperature gas flow 2 generated in the combustion tube flows inside the transition piece 1, and is directed toward the outlet portion and flows into the turbine stationary blade 3 while the flow velocity changes depending on the change in the cross section of the transition piece 1. In current land-based gas turbines, the gas temperature reaches around 1000'C, and the flow velocity in the transition piece is around 100 rn/s.

また、ガスの圧力も十気圧前後となる。そのため、ガス
流と尾筒1の壁面との間の熱伝達率はl OOOkco
l/イh℃前後に達する。一方、圧縮機(図示なし)の
吐出空気17は尾筒1の内周側から流入し、内周壁16
に沿って上流側に向うと同時に、一部は尾筒1同士の間
の隙間をすり抜けて外周側へ廻り、外周壁1aに沿って
」−流側に向う。さらに、吐出空気17の一部は支柱部
材9の中空部分を通って直接外周側へ抜けて流れる。
Moreover, the pressure of the gas is also around 10 atmospheres. Therefore, the heat transfer coefficient between the gas flow and the wall of the transition piece 1 is l OOOkco
It reaches around l/ih°C. On the other hand, discharge air 17 from a compressor (not shown) flows into the transition piece 1 from the inner circumferential side, and the inner circumferential wall 16
At the same time, a part of the transition tubes 1 passes through the gap between the transition pieces 1 and turns to the outer circumferential side, and heads toward the -stream side along the outer circumferential wall 1a. Furthermore, a portion of the discharged air 17 passes through the hollow portion of the strut member 9 and flows directly toward the outer circumferential side.

吐出空気17の温度は350℃前後、圧力は十気圧前後
、流速は数十m/sとなり、それによる尾筒外面との熱
伝達率は数百kcal/n(h’c前後となる。尾筒1
はこのように内面からガス流の熱伝達により加熱される
が、外面を吐出空気の熱伝達によって冷却されて、尾筒
1の温度は許容値内に保たれろ。
The temperature of the discharge air 17 is around 350°C, the pressure is around 10 atmospheres, and the flow velocity is several tens of m/s, resulting in a heat transfer coefficient with the outer surface of the transition tube of around several hundred kcal/n (h'c). Cylinder 1
As described above, the transition piece 1 is heated from the inner surface by heat transfer from the gas flow, but the outer surface is cooled by heat transfer from the discharged air, so that the temperature of the transition piece 1 is maintained within an allowable value.

支柱部材9の支柱9aにはガス流2が高速で衝突するた
め、支柱9aの前縁部分は、特に、ガス流の熱伝達率が
大きくなる。一方、支柱9aの前轍の内面にはフィン状
の突起10が多数設けてあり、支柱内を流れる吐出空気
17は、このフィン状凸起10に衝突して乱流化が促進
されるため、冷却側の熱伝達率も大きくすることができ
る。フィン状突起10の寸法と配置はガス流側の熱伝達
と吐出空気側の熱伝達を考慮して1尾筒1全体に局部的
な温度差が生じないように調整して決められる。
Since the gas flow 2 collides with the strut 9a of the strut member 9 at high speed, the heat transfer coefficient of the gas flow is particularly high at the front edge portion of the strut 9a. On the other hand, a large number of fin-shaped protrusions 10 are provided on the inner surface of the front track of the column 9a, and the discharged air 17 flowing inside the column collides with these fin-shaped protrusions 10 to promote turbulence. The heat transfer coefficient on the cooling side can also be increased. The dimensions and arrangement of the fin-shaped protrusions 10 are adjusted and determined in consideration of heat transfer on the gas flow side and heat transfer on the discharge air side so that local temperature differences do not occur in the entire transition tube 1.

支柱9aの側面に沿ったガス流からの熱伝達も相当大き
くなるが、支柱9aの内面に設けたビン状凸起15によ
る吐出空気流の乱流促進効果により冷却側の熱伝達率が
適切な値となるように調整する。
Although the heat transfer from the gas flow along the side surface of the support column 9a is also considerably large, the heat transfer coefficient on the cooling side is maintained at an appropriate level due to the effect of promoting turbulence in the discharge air flow due to the bottle-shaped protrusion 15 provided on the inner surface of the support column 9a. Adjust to match the value.

尾f’?i1は入口側、出口側の少なくとも二ケ所でケ
ーシング等から支持してやる必要がある6人口部はガス
流速も比較的小さく、形状も円筒状で剛性の高い構造の
ため支持の方法は比較的容易である。それに対し、出口
部はガス流速が大きく尾筒1の温度も高くなり易く、平
板状の壁面を支持しなければならないため、支持構造の
取付部に無理な力が作用しないように考慮しなければな
らない。
Tail f'? i1 needs to be supported from the casing, etc. in at least two places, one on the inlet side and one on the outlet side.Since the gas flow velocity in the 6-port part is relatively low, the shape is cylindrical, and the structure is highly rigid, it is relatively easy to support it. be. On the other hand, at the outlet, the gas flow rate is high and the temperature of the transition piece 1 tends to be high, and the flat wall surface must be supported, so consideration must be given to avoid applying excessive force to the attachment part of the support structure. It won't happen.

第1図の実施例のように、支柱部材9の外周壁側には中
空円筒状の囲壁6が形成され、この囲壁6を把持部13
とピン12及び吊具4によってケーシング5に固定する
ようにしているので、尾筒1の外周壁1aには囲壁6の
全周に力が分散して作用することになり、無理な力が作
用することを防いでいる。
As in the embodiment shown in FIG.
Since it is fixed to the casing 5 by the pin 12 and the hanging device 4, the force is distributed and acts on the outer peripheral wall 1a of the transition piece 1 over the entire circumference of the surrounding wall 6, and an unreasonable force is applied. prevents you from doing so.

囲壁6で囲まれた尾筒外周壁1aの部分は、吐出空気1
7が囲壁6にさえぎられて冷却が不十分となる。第1図
の実施例では支柱9aの中空部をすり抜けた吐出空気1
7はバッフル板11に沿って囲壁6の外周に向い、排気
孔16から尾筒1の外周側へ抜けるので、この流れによ
って上記外周壁1aの部分は十分な冷却が行われる。排
気孔16の寸法と配置は圧力損失によって支柱9a内を
すり抜ける吐出空気流17の流量が不十分にならないよ
うに考慮して決定される。
The portion of the transition tube outer peripheral wall 1a surrounded by the surrounding wall 6 is
7 is obstructed by the surrounding wall 6, resulting in insufficient cooling. In the embodiment shown in FIG. 1, the discharge air 1 that has passed through the hollow part of the support column 9a
7 faces the outer periphery of the surrounding wall 6 along the baffle plate 11 and exits from the exhaust hole 16 to the outer periphery of the transition piece 1, so that the outer peripheral wall 1a is sufficiently cooled by this flow. The dimensions and arrangement of the exhaust holes 16 are determined in consideration so that the flow rate of the discharged air flow 17 passing through the support column 9a will not become insufficient due to pressure loss.

第3図は第1図、第2図に示した実施例を尾筒出口側上
方より見た斜視図である。支柱部材9は一体で製作され
、尾筒1の外周壁1aと内周壁1bとにくり抜かれた部
分にはめて、周囲を溶接14によって接合しである。尾
筒1の全体は複雑な三次元曲面から構成されるため、金
型を作りプレスによって製作する。その後、該当の部分
を機械加工によってくり抜く。一方、支柱部材9は精密
&8造技術により一体に成形する。両者を合わせて溶接
により接合する。このような製造プロセスにより本発明
に係る尾筒を確実に製造することができる。
FIG. 3 is a perspective view of the embodiment shown in FIGS. 1 and 2, viewed from above on the exit side of the transition piece. The strut member 9 is manufactured in one piece, and is fitted into a hollowed out portion of the outer circumferential wall 1a and inner circumferential wall 1b of the transition piece 1, and the periphery is joined by welding 14. Since the entire transition piece 1 is composed of a complicated three-dimensional curved surface, it is manufactured by making a mold and pressing it. After that, the corresponding part is hollowed out by machining. On the other hand, the strut member 9 is integrally molded using precision & eight-piece construction technology. The two are then joined together by welding. Through such a manufacturing process, the transition piece according to the present invention can be reliably manufactured.

第4図(a)、(b)、(c)は支柱部材9の詳細を示
すものである。第4図(a)は尾筒外周側から見た形状
で、バッフル板11は半分だけ図示し、他の半分はバッ
フル板の内側を示している。
4(a), (b), and (c) show details of the support member 9. FIG. FIG. 4(a) shows the shape as seen from the outer circumferential side of the transition piece, with only half of the baffle plate 11 shown, and the other half showing the inside of the baffle plate.

第4図(b)は側面より見た形状で、一部は断面を示し
ている。第4図(c)は尾筒出口側から見た形状である
。支柱部材9はバッフル板11を除き、この形状に精密
鋳造によって製作される。バッフル板11は別途プレス
により成形した後、囲壁6に溶接される。
FIG. 4(b) shows the shape as seen from the side, with a portion showing a cross section. FIG. 4(c) shows the shape seen from the exit side of the transition piece. The strut member 9, excluding the baffle plate 11, is manufactured into this shape by precision casting. The baffle plate 11 is separately formed by pressing and then welded to the surrounding wall 6.

第5図は支柱9aの断面形状を示す。前縁には支柱9a
を貫通する複数の冷却孔18が設けられる。この冷却孔
18の寸法と配置は、ガス流側の熱負荷に応じて適切な
冷却効果となるように決定される。吐出空気17は支柱
9aの内面を流れる際、その一部分が冷却孔18よりガ
ス流中に吹き出し、支柱9aの前縁部分に冷却空気のフ
ィルムを形成するので、この部分の温度上昇を防ぐこと
ができる。
FIG. 5 shows the cross-sectional shape of the support column 9a. Post 9a on the front edge
A plurality of cooling holes 18 are provided passing through. The dimensions and arrangement of the cooling holes 18 are determined to provide an appropriate cooling effect depending on the heat load on the gas flow side. When the discharged air 17 flows through the inner surface of the strut 9a, a portion of it is blown out into the gas flow from the cooling hole 18 and forms a film of cooling air on the leading edge of the strut 9a, making it possible to prevent a temperature rise in this area. can.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高温、高圧力のガスタービンの尾筒出
口部のクリープ変形を減少させることができる。
According to the present invention, it is possible to reduce creep deformation at the transition pipe exit portion of a high-temperature, high-pressure gas turbine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の縦断面図、第2図は第1図
のA−Bi断面図、第3図は本発明の一実施例の斜視図
、第4図は実施例の部分詳細図、第5図は実施例の部分
断面図である6 1・・・尾筒、6・・・囲壁、9・・・支柱部材、10
 フイ第10 f 茶31¥1
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, FIG. 2 is a sectional view taken along line A-Bi in FIG. 1, FIG. 3 is a perspective view of an embodiment of the invention, and FIG. Partial detail view, FIG. 5 is a partial cross-sectional view of the embodiment 6 1... Tail piece, 6... Surrounding wall, 9... Support member, 10
10th f tea 31 yen 1

Claims (1)

【特許請求の範囲】 1、缶タイプのガスタービン燃焼器尾筒において、前記
尾筒の出口部中央に前記尾筒の外周壁と内周壁とを一体
に連結する支柱を設けたことを特徴とするガスタービン
燃焼器の尾筒。 2、特許請求の範囲第1項において、 前記支柱の断面形状を流線形の中空形状とし、内面に複
数個の突起を設け、前記支柱の壁面に複数個の貫通孔を
設けたことを特徴とするガスタービン燃焼器の尾筒。 3、特許請求の範囲第1項において、 前記尾筒の外周壁の一部分と内周壁の一部分とを前記支
柱と共に一体に成形し、あらかじめ前記尾筒の前記外周
壁の一部分と前記内周壁の一部分を取除いてある前記尾
筒に、一体に成形した支柱部分を接合することを特徴と
するガスタービン燃焼器の尾筒。 4、特許請求の範囲第3項において、 一体に成形した前記支柱部分の前記尾筒の外周側に突出
し部を一体に設け、前記突出し部を介して前記尾筒をガ
スタービンケーシングに固定することを特徴とするガス
タービン燃焼器の尾筒。 5、特許請求の範囲第4項において、 前記突出し部を中空の囲壁状とし、前記囲壁の内周に蓋
状の薄板を取付け、前記蓋の外周部分に複数の孔を設け
たことを特徴とするガスタービン燃焼器の尾筒。
[Claims] 1. A can-type gas turbine combustor transition piece, characterized in that a strut is provided at the center of the outlet of the transition piece to integrally connect an outer peripheral wall and an inner peripheral wall of the transition piece. The transition piece of the gas turbine combustor. 2. Claim 1, characterized in that the cross-sectional shape of the support is a streamlined hollow shape, a plurality of protrusions are provided on the inner surface, and a plurality of through holes are provided in the wall surface of the support. The transition piece of the gas turbine combustor. 3. In claim 1, a portion of the outer circumferential wall and a portion of the inner circumferential wall of the transition piece are integrally molded together with the support column, and a portion of the outer circumferential wall and a portion of the inner circumferential wall of the transition piece are formed in advance. A transition piece for a gas turbine combustor, characterized in that an integrally formed strut portion is joined to the transition piece from which the tail piece has been removed. 4. In claim 3, a protruding portion is integrally provided on the outer peripheral side of the transition piece of the integrally molded support portion, and the transition piece is fixed to the gas turbine casing via the protruding portion. A transition piece of a gas turbine combustor featuring 5. Claim 4, characterized in that the protrusion has a hollow surrounding wall shape, a lid-like thin plate is attached to the inner periphery of the surrounding wall, and a plurality of holes are provided in the outer periphery of the lid. The transition piece of the gas turbine combustor.
JP31198687A 1987-12-11 1987-12-11 Tail pipe of gas turbine combustor Pending JPH01155120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31198687A JPH01155120A (en) 1987-12-11 1987-12-11 Tail pipe of gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31198687A JPH01155120A (en) 1987-12-11 1987-12-11 Tail pipe of gas turbine combustor

Publications (1)

Publication Number Publication Date
JPH01155120A true JPH01155120A (en) 1989-06-19

Family

ID=18023825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31198687A Pending JPH01155120A (en) 1987-12-11 1987-12-11 Tail pipe of gas turbine combustor

Country Status (1)

Country Link
JP (1) JPH01155120A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2028344A1 (en) * 2007-08-21 2009-02-25 Siemens Aktiengesellschaft Transition duct
US7584620B2 (en) * 2005-06-27 2009-09-08 Siemens Energy, Inc. Support system for transition ducts
CN104235879A (en) * 2014-08-08 2014-12-24 北京华清燃气轮机与煤气化联合循环工程技术有限公司 Gas-turbine combustion-chamber transition-section structure
KR20170091678A (en) * 2014-12-03 2017-08-09 애틀랜틱 이너셜 시스템스 리미티드 Oversampling noise-shaping successive approximation adc
JP2018502267A (en) * 2014-12-11 2018-01-25 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Method for providing transition duct support and adjustment levels of support stiffness
WO2018167913A1 (en) * 2017-03-16 2018-09-20 株式会社 東芝 Transition piece

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7584620B2 (en) * 2005-06-27 2009-09-08 Siemens Energy, Inc. Support system for transition ducts
US7721547B2 (en) 2005-06-27 2010-05-25 Siemens Energy, Inc. Combustion transition duct providing stage 1 tangential turning for turbine engines
EP2028344A1 (en) * 2007-08-21 2009-02-25 Siemens Aktiengesellschaft Transition duct
CN104235879A (en) * 2014-08-08 2014-12-24 北京华清燃气轮机与煤气化联合循环工程技术有限公司 Gas-turbine combustion-chamber transition-section structure
KR20170091678A (en) * 2014-12-03 2017-08-09 애틀랜틱 이너셜 시스템스 리미티드 Oversampling noise-shaping successive approximation adc
JP2018502267A (en) * 2014-12-11 2018-01-25 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Method for providing transition duct support and adjustment levels of support stiffness
US11066941B2 (en) 2014-12-11 2021-07-20 Siemens Energy Global GmbH & Co. KG Transition duct support and method to provide a tuned level of support stiffness
WO2018167913A1 (en) * 2017-03-16 2018-09-20 株式会社 東芝 Transition piece
US11098600B2 (en) 2017-03-16 2021-08-24 Toshiba Energy Systems & Solutions Corporation Transition piece

Similar Documents

Publication Publication Date Title
US7229249B2 (en) Lightweight annular interturbine duct
US7229247B2 (en) Duct with integrated baffle
US8137056B2 (en) Impingement cooled structure
US6508623B1 (en) Gas turbine segmental ring
US2510645A (en) Air nozzle and porting for combustion chamber liners
US6823676B2 (en) Mounting for a CMC combustion chamber of a turbomachine by means of flexible connecting sleeves
US4380906A (en) Combustion liner cooling scheme
US9970320B2 (en) Exhaust housing hub for a turbomachine
US6679062B2 (en) Architecture for a combustion chamber made of ceramic matrix material
US7909570B2 (en) Interturbine duct with integrated baffle and seal
US20120039710A1 (en) Intermediate casing of aircraft turbomachine including structural connecting arms which perform separate mechanical and aerodynamic functions
US6269628B1 (en) Apparatus for reducing combustor exit duct cooling
JP6587251B2 (en) Flow path forming plate, flow path forming assembly member and vane including the same, gas turbine, flow path forming plate manufacturing method, and flow path forming plate remodeling method
JP2011525953A (en) Structural frame for turbomachinery
US5326222A (en) Bearing arrangement for a thermal turbo machine
JPS58190525A (en) Cooling structure
JPH10510907A (en) Fairing for partition wall cooling
JPH01155120A (en) Tail pipe of gas turbine combustor
US10502084B2 (en) Module for a gas turbine
US4262487A (en) Double wall combustion chamber for a combustion turbine
JP6563431B2 (en) Channel assembly for a gas turbine engine
JPH06505314A (en) turbine scroll
JPS63131924A (en) Cooling structure for tail of combustor
JP2895274B2 (en) Gas turbine scroll
JPH0223989Y2 (en)