JPH01155025A - Intake device for multi-cylinder engine - Google Patents

Intake device for multi-cylinder engine

Info

Publication number
JPH01155025A
JPH01155025A JP31343287A JP31343287A JPH01155025A JP H01155025 A JPH01155025 A JP H01155025A JP 31343287 A JP31343287 A JP 31343287A JP 31343287 A JP31343287 A JP 31343287A JP H01155025 A JPH01155025 A JP H01155025A
Authority
JP
Japan
Prior art keywords
intake
passage
control valve
speed rotation
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31343287A
Other languages
Japanese (ja)
Inventor
Kenji Harima
健司 播磨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP31343287A priority Critical patent/JPH01155025A/en
Publication of JPH01155025A publication Critical patent/JPH01155025A/en
Pending legal-status Critical Current

Links

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To improve charging efficiency by opening the other end of a vacuum passage opening one end at a venturi member in an exhaust passage to the down stream of an intake control valve for other cylinder. CONSTITUTION:A venturi portion 7 is provided in an exhaust passage 3a. The other end of a vacuum passage 8 opening one end at the venturi portion 7 is opened at an intake passage 2a situated downstream of an intake control valve 6 for a cylinder whose stroke is turned to be intake stroke when the cylinder concerned is in exhaust stroke. In the vacuum passage 8 is provided a vacuum control valve 9, which is opened and closed in following to opening and closing of the intake control valve 6. Thereby, blowing back in a low revolution speed range is prevented while intake air is made to increase, so charging efficiency can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、低速回転域での吸気通路への排出ガスの吹き
返しを防止する多気筒型エンジンの吸気装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an intake system for a multi-cylinder engine that prevents exhaust gas from blowing back into the intake passage in a low speed rotation range.

[従来の技術] 一般に、4サイクルエンジンでは、中速回転および高速
回転域の吸気効率を高めるために、排気行程終期と吸気
行程初期との間に、バルブオーバラップ期間が設定され
ている。
[Prior Art] Generally, in a four-stroke engine, a valve overlap period is set between the end of the exhaust stroke and the beginning of the intake stroke in order to improve intake efficiency in medium and high speed rotation ranges.

中速回転および高速回転域では、吸気慣性が大きいので
、上記バルブオーバラップ期間中に吹き返しが発生する
ことはほとんどないが、低速回転域では吸気流速が低く
、その分、吸気慣性が小さくなり吹き返しが発生しやづ
くなる。
In the medium and high speed rotation ranges, the intake inertia is large, so blowback hardly occurs during the above-mentioned valve overlap period. However, in the low speed rotation range, the intake flow velocity is low, and the intake inertia is correspondingly small, causing blowback. occurs more easily.

この対策として最近では、例えば特1if1昭60〜1
47536M公報に開示されているように、各気筒に対
し2本の吸気通路を個別に連通し、この吸気通路の一方
に吸気制御弁を介装し、低速回転域では吸気通路の一方
を閉弁して、吸気流速を高め、吸気の慣性効果を得るよ
うにした吸気装置が種々案出採用されている。
Recently, as a countermeasure for this, for example, special 1if1
As disclosed in Publication No. 47536M, two intake passages are communicated individually to each cylinder, an intake control valve is interposed in one of the intake passages, and one of the intake passages is closed in the low speed rotation range. Therefore, various intake devices have been devised and adopted that increase the intake air flow velocity and obtain the inertia effect of intake air.

[発明が解決しようとづる問題点] しかし、この先行技術に開示されている吸気装置では、
低速回転域でのバルブオーバラップ期間中に、上記吸気
制御弁にj;り閉塞されている一方の吸気通路側に排出
ガスが滞留しやηい。
[Problems to be solved by the invention] However, in the intake device disclosed in this prior art,
During the valve overlap period in the low-speed rotation range, exhaust gas tends to accumulate in one of the intake passages that is blocked by the intake control valve.

その結果、以下に列記する問題が生じる。As a result, the following problems occur.

(1)吸気行程時、上記滞留υ1出ガスが燃焼室へ流入
して吸入空気量の実質的な低下を招く。
(1) During the intake stroke, the retained υ1 gas flows into the combustion chamber, causing a substantial decrease in the amount of intake air.

(2)上記滞留υ1出ガスにより吸入空気温度が上昇し
てしまい充填効率の低下を招く。
(2) The above-mentioned retained υ1 gas causes the intake air temperature to rise, resulting in a decrease in filling efficiency.

(3)上記滞留排出ガスにより、中速回転域あるいは高
速回転域へ移行する際に、上記吸気制御弁が開弁されて
も、ここから新気が直ちに流入され難く、立上がりに一
時的な遅れが生じる。
(3) Due to the above-mentioned accumulated exhaust gas, even if the above-mentioned intake control valve is opened when shifting to the medium-speed rotation range or high-speed rotation range, it is difficult for fresh air to flow in from here immediately, resulting in a temporary delay in startup. occurs.

[発明の目的コ 本発明は、上記事情に鑑みてなされたもので、低速回転
域での吹返しを防止するどともに、吸入空気の増大が図
れ、且つ、充填効率が向上し、低速回転域から中速回転
域、および、高速回転域へ移行する際の追従性がJ:り
、その上、低速回転域から高速回転域まで高い出力トル
クが1qられる多気筒型エンジンの吸気装置を提供づる
ことを目的としている。
[Object of the Invention] The present invention has been made in view of the above circumstances, and it is possible to prevent blowback in the low speed rotation range, increase intake air, improve filling efficiency, and improve the flow rate in the low speed rotation range. It is an object of the present invention to provide an intake system for a multi-cylinder engine that has excellent followability when transitioning from a low speed rotation range to a high speed rotation range and a high speed rotation range, and also has a high output torque of 1q from a low speed rotation range to a high speed rotation range. The purpose is

[問題点を解決するための手段及び作用]本発明による
多気筒型エンジンの吸気装置は、複数の気筒に、少なく
ともひとつの低速回転用吸気通路を右ηる複数の吸気通
路が個別に連通され、且つこの低速回転用吸気通路以外
の各吸気通路の少なくともひとつに、低速回転域で閉弁
づ゛る吸気制御弁が介装され、また上記各気筒に連通す
る排気通路にベンチュリ部が設りられ、このベンチコリ
部に一端を開口する負圧通路の他端が、当該気筒がυ1
気行程の際に吸気行程となる他の気筒の」二足吸気制御
弁が介装された上記吸入通路の下流側に開口されている
とともに、この負圧通路に上記吸気制御弁の開閉に追従
して閉開する負圧制御弁が介装されているものである。
[Means and effects for solving the problem] In the intake system for a multi-cylinder engine according to the present invention, a plurality of intake passages are individually connected to a plurality of cylinders, with at least one intake passage for low-speed rotation being connected to the right side. , and at least one of the intake passages other than the intake passage for low-speed rotation is provided with an intake control valve that closes in the low-speed rotation range, and a venturi portion is provided in the exhaust passage communicating with each of the cylinders. The other end of the negative pressure passage, which opens at one end in this bench stiffness part, is
It is opened downstream of the above-mentioned intake passage in which the two-legged intake control valve of the other cylinder that is in the intake stroke is interposed during the intake stroke, and this negative pressure passage follows the opening and closing of the above-mentioned intake control valve. It is equipped with a negative pressure control valve that closes and opens.

すなわち、低速回転域では、吸気通路に介装された吸気
制御弁が閉弁されるとともに、負圧通路に介装された負
圧制御弁が所定量量弁される。すると、排気行程時の排
気通路に設(プられたベンチュリ部に発生づる負圧が、
上記負圧通路を介して、吸気行程時の他の気筒の上記吸
気制御弁が介装された吸気通路の下流側に導入される。
That is, in a low speed rotation range, the intake control valve installed in the intake passage is closed, and the negative pressure control valve installed in the negative pressure passage is opened by a predetermined amount. Then, the negative pressure generated in the venturi part installed in the exhaust passage during the exhaust stroke,
It is introduced through the negative pressure passage into the downstream side of the intake passage in which the intake control valve of the other cylinder is interposed during the intake stroke.

その結果、この吸気通路の下流側に滞留する排出ガスが
上記排気通路へ導出される。
As a result, the exhaust gas that remains on the downstream side of the intake passage is led out to the exhaust passage.

[発明の実施例コ 以下、図面を参照して本発明の詳細な説明する。[Embodiments of the invention] Hereinafter, the present invention will be described in detail with reference to the drawings.

図面は本発明の一実施例を示し、第1図(a)は吸気装
置の断面平面図、第1図(b)は第1図(a)のB−B
断面図、第2図は各気筒のバルブタイミングを示すタイ
ミングチャート、第3図は制御手段の制御手順を示すフ
ローチャートである。
The drawings show one embodiment of the present invention, and FIG. 1(a) is a cross-sectional plan view of an intake device, and FIG. 1(b) is a cross-sectional plan view taken along line BB in FIG.
2 is a sectional view, FIG. 2 is a timing chart showing the valve timing of each cylinder, and FIG. 3 is a flow chart showing the control procedure of the control means.

図中の符号1は多気筒型のエンジン本体で、このエンジ
ン本体1の各気筒#1〜#4に、高速回転用吸気通路2
aど低速回転用吸気通路2b、および、2木の排気通路
3a、3bが個別に連通されている。また、この各吸気
通路2a、 2bがサージタンク4に連通され、さらに
、このサージタンク1の上流側に、スロットルナ1フン
バ5が連通され、このスロツl〜ルチャンバ5にスロッ
トルバルブ5aが介装されている。
Reference numeral 1 in the figure is a multi-cylinder engine body, and each cylinder #1 to #4 of this engine body 1 is provided with an intake passage 2 for high-speed rotation.
An intake passage 2b for low speed rotation such as a, and two exhaust passages 3a and 3b are individually communicated. Each of the intake passages 2a and 2b communicates with a surge tank 4, and furthermore, a throttle valve 5a is connected to the upstream side of the surge tank 1, and a throttle valve 5a is interposed between the throttle chamber 1 and the throttle chamber 5. has been done.

また、上記高速回転用吸気通路2aに吸気制御弁6が介
装され、一方、この高速回転用吸気通路2aに対し、気
筒の中心を挾んで斜めに対設する上記排気通路3bにベ
ンチュリ部7が介装されている。
An intake control valve 6 is interposed in the intake passage 2a for high-speed rotation, and a venturi portion 7 is provided in the exhaust passage 3b, which is diagonally opposed to the intake passage 2a for high-speed rotation, with the center of the cylinder in between. is interposed.

上記各気筒の点火順序は、図の実施例では、#1−#3
−#2−#4に設定されており、そのバルブタイミング
は第2図の通りであり、また、各気筒の排気行程と吸気
行程との関係は下表の通りである。
The firing order of each cylinder is #1-#3 in the example shown in the figure.
-#2-#4, the valve timing is as shown in FIG. 2, and the relationship between the exhaust stroke and intake stroke of each cylinder is as shown in the table below.

上記ベンチュリ部7に一端を開口する負圧通路8の他端
は、当該気筒がDI気行程の時に吸気行程どなる他の気
筒の上記高速回転用吸気通路2aの上記吸気制御弁6の
下流側く吸気ボート近傍)に開口されている。
The other end of the negative pressure passage 8, which opens one end to the venturi portion 7, is connected to the downstream side of the intake control valve 6 of the high-speed rotation intake passage 2a of another cylinder that undergoes an intake stroke when the cylinder is in the DI stroke. (near the intake boat).

すなわち、上記各負圧通路8は、気筒#1側の上記吸気
通路2aの下流と気筒#3側の上記ベンチュリ部7、気
筒#3側の上記吸気通路2aの下流ど気筒#2側の上記
ベンチュリ部7、気筒#2側の上記吸気通路2aの下流
と気筒#4側の上記ベンチュリ部7、および、気筒#4
側の上記吸気通路2aの下流と気筒#1側の上記ベンチ
コリ部7をそれぞれ連通している。
That is, each of the negative pressure passages 8 is connected to the venturi section 7 downstream of the intake passage 2a on the cylinder #1 side, the venturi section 7 on the cylinder #3 side, and the downstream side of the intake passage 2a on the cylinder #2 side. Venturi section 7, the venturi section 7 downstream of the intake passage 2a on the cylinder #2 side and the venturi section 7 on the cylinder #4 side, and the cylinder #4
The downstream side of the intake passage 2a on the side communicates with the bench stiffness section 7 on the cylinder #1 side, respectively.

また、上記各負圧通路8の中途に負圧制御弁9が介装さ
れている。さらに、上記各吸気制御弁6がステッピング
モータなどのバルブ開閉手段10に連設されている。ま
た、上記エンジン本体1のクランクシャフト1aにシグ
ナルディスクプレート11が軸名され、このシグナルデ
ィスクプレー1〜11にクランク角センザ12が対設さ
れている。
Further, a negative pressure control valve 9 is interposed in the middle of each of the negative pressure passages 8. Further, each of the intake control valves 6 is connected to a valve opening/closing means 10 such as a stepping motor. Further, a signal disk plate 11 is mounted on the crankshaft 1a of the engine main body 1, and a crank angle sensor 12 is provided opposite to the signal disk plates 1-11.

一方、鍔号13は制御手段で、この制御手段13に、上
記クランク角しンリ=12からエンジン回転数信号Nお
よびクランク角信号θが入力される。
On the other hand, the collar number 13 is a control means, and the engine rotational speed signal N and the crank angle signal θ are inputted from the crank angle signal 12 to the control means 13.

また、この制御手段13から上記各負圧制御弁9、およ
び、バルブ開閉手段10に制御信号が出力される。
Further, control signals are outputted from the control means 13 to each of the negative pressure control valves 9 and the valve opening/closing means 10.

次に、上記構成による実施例の作用について説明する。Next, the operation of the embodiment with the above configuration will be explained.

エンジンが稼働すると、クランクシャフト1aに軸名さ
れているシグナルディスクプレート11に対設するクラ
ンク角センリ−12から制御手段13ヘ工ンジン回転数
信号N1クランク角信号Oの各パルスが入力される。
When the engine is in operation, each pulse of the engine rotational speed signal N1 and the crank angle signal O is inputted to the control means 13 from a crank angle sensor 12 provided opposite to a signal disk plate 11 attached to the crankshaft 1a.

この制御手段13では、上記エンジン回転数信号Nから
エンジン回転数を演算し、現運転状態が低速回転域か、
中速回転域か、あるいは、高速回転域かを判別する。
This control means 13 calculates the engine speed from the engine speed signal N, and determines whether the current operating state is in the low speed rotation range or not.
Determine whether it is a medium speed rotation range or a high speed rotation range.

(低速回転域) 低速回転域の場合、各気筒#1〜#4の各高速回転用吸
気通路2aに介装されている吸気制御弁6に連設するバ
ルブ開閉手段1oに閉弁信号を出ノjするどどもに、負
圧通路8に介装されている負圧制御弁9に閉弁信号を出
力する。
(Low speed rotation range) In the case of a low speed rotation range, a valve closing signal is output to the valve opening/closing means 1o connected to the intake control valve 6 installed in each high speed rotation intake passage 2a of each cylinder #1 to #4. In response to this, a valve closing signal is output to the negative pressure control valve 9 installed in the negative pressure passage 8.

すると、上記高速回転用吸気通路2aが吸気制御弁6に
より閉弁される。また、上記負圧通路8が負圧制御弁9
により、エンジン回転数に応じた量だ(プ開弁される。
Then, the intake passage 2a for high-speed rotation is closed by the intake control valve 6. Further, the negative pressure passage 8 is connected to the negative pressure control valve 9.
The valve is opened by an amount corresponding to the engine speed.

上記高速回転用吸気通路2aが閉弁されると、新気は低
速回転用吸気通路2b側からのみ各気筒#1〜#4に供
給される。よって、低速回転時の吸気流路は絞られるこ
とになり、その分、流速が高められ、吸気の慣性効果が
得られ、高トルクが確保される。
When the high-speed rotation intake passage 2a is closed, fresh air is supplied to each cylinder #1 to #4 only from the low-speed rotation intake passage 2b side. Therefore, the intake flow path during low speed rotation is constricted, the flow velocity is correspondingly increased, an inertia effect of the intake air is obtained, and high torque is ensured.

一方、排気行程終期と吸気行程初期との間には、バルブ
オーバラップ期間(第3図のT)が設定されているが、
低速回転域でのバルブオーバラップ期間は相対的に長い
。よって、上記各吸気通路2a、 2bに排出ガスの吹
返しが発生しやすくなるが、低速回転用吸気通路2b側
には、吸気慣性により新気が充満しており、吹返しが阻
止される。
On the other hand, a valve overlap period (T in Figure 3) is set between the end of the exhaust stroke and the beginning of the intake stroke.
The valve overlap period in the low speed rotation range is relatively long. Therefore, exhaust gas blowback tends to occur in each of the intake passages 2a and 2b, but the low-speed rotation intake passage 2b is filled with fresh air due to intake inertia, and blowback is prevented.

しかし、高速回転用吸気通路2a側は、吸気制御弁6に
より閉弁されているので、この吸気制御弁6までの流路
間に排出ガスが滞留しやすい。
However, since the high-speed rotation intake passage 2a side is closed by the intake control valve 6, exhaust gas tends to accumulate between the flow paths up to the intake control valve 6.

ところで、図においては、点火順序が#1−#3−#2
−#4に設定されており、例えば、気筒#1が吸気行程
の場合、気筒#3排気行程になる。
By the way, in the figure, the firing order is #1-#3-#2
- #4, and for example, when cylinder #1 is in the intake stroke, cylinder #3 is in the exhaust stroke.

この排気行程の気筒の排出ガスは、各排気通路3a、3
bを通り排出される。その間、排気通路3bに介装され
たベンチコリ部7に負圧が発生し、この負圧が上記負圧
通路8を通り、吸気行程時の例えば上記気筒#1の上記
吸気通路2aに導かれ、この通路に滞留している排出ガ
スを吸引づる。その結果、排出ガスの吹返しが有効に防
止され、吸気効率が良くなる。また、この負圧通路8を
開閉する負圧制御弁9がエンジン回転数に応じた量だ【
プ開弁されるので、必要以上の新気が導出されることは
ない。
The exhaust gas from the cylinder during this exhaust stroke is
It is discharged through b. During this time, negative pressure is generated in the bench stiffness section 7 installed in the exhaust passage 3b, and this negative pressure passes through the negative pressure passage 8 and is led to the intake passage 2a of the cylinder #1 during the intake stroke, for example, The exhaust gas staying in this passage is sucked out. As a result, blowback of exhaust gas is effectively prevented and intake efficiency is improved. Also, the amount of negative pressure control valve 9 that opens and closes this negative pressure passage 8 is determined according to the engine speed.
Since the valve is opened, more fresh air than necessary will not be drawn out.

また、上記ベンチュリ部7は低速回転用吸気通路2bに
連なる側の排気通路3bに設りられているので、吸気行
程初期のバルブオーバラップ期間に、このベンチコリ部
7が流動抵抗となり、この排気通路3bからの吸気の吹
抜けが防止され、スワールが生起されやすくなり、燃焼
効率が良くなる。
Furthermore, since the venturi portion 7 is provided in the exhaust passage 3b on the side connected to the intake passage 2b for low-speed rotation, this bench stiffness portion 7 becomes a flow resistance during the valve overlap period at the beginning of the intake stroke, and the exhaust passage Blow-by of intake air from 3b is prevented, swirl is more likely to occur, and combustion efficiency is improved.

また、この負圧通路8から上記排気通路3bへ新気の一
部が2次空気として導入されることも期待できる。
Furthermore, it can be expected that a portion of the fresh air will be introduced from the negative pressure passage 8 into the exhaust passage 3b as secondary air.

(中速回転、8速回転域) また、上記制御手段13にて現運転が中速回転域、ある
いは、高速回転域と判別されると、この制御手段13か
ら上記バルブ開閉手段10に開弁信号を出力Jるどとも
に、上記負圧制御弁9へ閉弁信号出力する。
(Medium speed rotation, 8th speed rotation range) Furthermore, when the control means 13 determines that the current operation is in the medium speed rotation range or the high speed rotation range, the control means 13 causes the valve opening/closing means 10 to open the valve. In addition to outputting the signal, a valve closing signal is also output to the negative pressure control valve 9.

その結果、上記吸気制御弁6が開弁され、両吸気通路2
a、2bから新気が供給されるとともに、上記負圧通路
8が閉弁されて、定常運転が行われる。低速回転域のと
ぎに閉ざされていた上記高速回転用吸気通路2aには排
気成分が存在していないので、吸気制御弁6が開弁され
れば、この吸気通路2aから直ちに新気が導入される。
As a result, the intake control valve 6 is opened, and both intake passages 2
Fresh air is supplied from a and 2b, and the negative pressure passage 8 is closed to perform steady operation. Since there are no exhaust components in the high-speed rotation intake passage 2a, which is closed during the low-speed rotation range, fresh air is immediately introduced from this intake passage 2a when the intake control valve 6 is opened. Ru.

次に、上記制御手段13による低速回転域での制御動作
を第3図のフローヂャ−1へに従って説明する。
Next, the control operation in the low speed rotation range by the control means 13 will be explained according to flowchart 1 in FIG.

まず、吸気制御弁6が開弁状態かどうかが判定され(ス
テップ101)、開弁状態であればステップ107ヘジ
ヤブし、通常の吸気制御プログラムを実行する。また、
上記吸気制御弁6が閉弁されている場合、クランク角セ
ンザ12のクランクパルス(エンジン回転数信号Nどク
ランク角信号θ)を取入れ(ステップ102)、次いで
、エンジン回転数倍@Nからエンジン回転数を計算Jる
(ステップ103)。
First, it is determined whether or not the intake control valve 6 is open (step 101). If the intake control valve 6 is open, the routine proceeds to step 107 and a normal intake control program is executed. Also,
When the intake control valve 6 is closed, the crank pulse of the crank angle sensor 12 (engine rotation speed signal N and crank angle signal θ) is taken in (step 102), and then the engine rotation speed is increased from engine rotation speed times @N. Calculate the number (step 103).

そして、現運転時のエンジン回転数が設定回転数200
Orpm以下かどうかが判定され(ステップ104)、
設定回転数以上の場合、ステップ107ヘジ1/プして
通常の吸気制御プログラムを実行する。
Then, the engine rotation speed during current operation is the set rotation speed 200.
It is determined whether or not it is less than Orpm (step 104),
If the rotation speed is higher than the set rotation speed, the routine goes to step 107 and executes a normal intake control program.

一方、設定回転数以下場合、低速回転域と判断し、上記
エンジン回転数信号Nとクランク角信号θどから気筒を
判別し、各気筒#1〜#4の吸気通路2aに連通する負
圧通路8に介装された負圧制御弁9の開度を、上記クラ
ンクパルスに応じて可変設定(ステップ106 ) L
、(の後、通常の吸気制= 12 − 御プログラムを実行する(ステップ107)。
On the other hand, if the rotation speed is lower than the set rotation speed, it is determined that the rotation speed is low, and the cylinder is determined from the engine rotation speed signal N and crank angle signal θ, etc., and the negative pressure passage is connected to the intake passage 2a of each cylinder #1 to #4. The opening degree of the negative pressure control valve 9 interposed in the valve 8 is variably set according to the crank pulse (step 106) L
, (after that, the normal intake control=12-control program is executed (step 107).

なお、本発明は上記実施例に限るのではなく、例えば、
吸気通路は気筒に3本以上個別に連通されていてもよく
、そのうちの少なくともひとつを低速回転用吸気通路と
し、他の少なくともひとつの吸気通路に吸気制御弁を介
装するようにしてもよい。
Note that the present invention is not limited to the above embodiments, but includes, for example,
Three or more intake passages may be individually connected to the cylinders, and at least one of them may be used as a low-speed rotation intake passage, and at least one other intake passage may be provided with an intake control valve.

[発明の効果コ 以上説明したように本発明によれば、低速回転域での吹
返しを防止することができるとともに、吸入空気の実質
的な増大が図れ、且つ、吹返しのυ1出ガスによる吸入
空気温度の上胃が防止され、その分、充填効率が向上す
る。
[Effects of the Invention] As explained above, according to the present invention, it is possible to prevent blowback in the low speed rotation range, to substantially increase the amount of intake air, and to reduce the amount of blowback due to the υ1 output gas. The upper stomach of the intake air temperature is prevented, and the filling efficiency is improved accordingly.

その結果、低速回転域から中速回転域、および、高速回
転域へ移行する際の追従性がよくなり、且つ、低速回転
域から高速回転域まで高い出力トルクを得ることができ
るなど優れた効果が奏される。
As a result, excellent followability is achieved when transitioning from low-speed rotation range to medium-speed rotation range and high-speed rotation range, and high output torque can be obtained from low-speed rotation range to high-speed rotation range. is played.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図(a)は吸気装
置の断面平面図、第1図(b)は第1図(a)のB−B
断面図、第2図は各気筒のバルブタイミングを示すタイ
ミングチャート、第3図は制御手段の制御手順を示すフ
ローチャートである。 #1〜#4・・・気筒、2a・・・吸気通路、2b・・
・低速回転用吸気通路、3a、3b・・・排気通路、6
・・・吸気制御弁、7・・・ベンチュリ部、8・・・負
圧通路、9・・・負圧制御弁。
The drawings show one embodiment of the present invention, and FIG. 1(a) is a cross-sectional plan view of an intake device, and FIG. 1(b) is a cross-sectional plan view taken along line BB in FIG.
2 is a sectional view, FIG. 2 is a timing chart showing the valve timing of each cylinder, and FIG. 3 is a flow chart showing the control procedure of the control means. #1 to #4...Cylinder, 2a...Intake passage, 2b...
・Intake passage for low speed rotation, 3a, 3b...Exhaust passage, 6
...Intake control valve, 7...Venturi section, 8...Negative pressure passage, 9...Negative pressure control valve.

Claims (1)

【特許請求の範囲】[Claims]  複数の気筒に、少なくともひとつの低速回転用吸気通
路を有する複数の吸気通路が個別に連通され、且つこの
低速回転用吸気通路以外の各吸気通路の少なくともひと
つに、低速回転域で閉弁する吸気制御弁が介装され、ま
た上記各気筒に連通する排気通路にベンチュリ部が設け
られ、このベンチュリ部に一端を開口する負圧通路の他
端が、当該気筒が排気行程の際に吸気行程となる他の気
筒の上記吸気制御弁が介装された上記吸入通路の下流側
に開口されているとともに、この負圧通路に上記吸気制
御弁の開閉に追従して閉開する負圧制御弁が介装されて
いることを特徴とする多気筒型エンジンの吸気装置。
A plurality of intake passages having at least one intake passage for low-speed rotation are individually communicated with a plurality of cylinders, and at least one of each intake passage other than the intake passage for low-speed rotation has an intake air valve that closes in a low-speed rotation range. A control valve is interposed, and a venturi portion is provided in the exhaust passage communicating with each cylinder, and one end of the negative pressure passage opens in the venturi portion, and the other end of the negative pressure passage opens during the intake stroke when the cylinder is in the exhaust stroke. The intake passage is opened downstream of the intake passage in which the intake control valve of the other cylinder is interposed, and the negative pressure passage is provided with a negative pressure control valve that opens and closes in accordance with the opening and closing of the intake control valve. An intake system for a multi-cylinder engine characterized by being equipped with an air intake system.
JP31343287A 1987-12-11 1987-12-11 Intake device for multi-cylinder engine Pending JPH01155025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31343287A JPH01155025A (en) 1987-12-11 1987-12-11 Intake device for multi-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31343287A JPH01155025A (en) 1987-12-11 1987-12-11 Intake device for multi-cylinder engine

Publications (1)

Publication Number Publication Date
JPH01155025A true JPH01155025A (en) 1989-06-16

Family

ID=18041224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31343287A Pending JPH01155025A (en) 1987-12-11 1987-12-11 Intake device for multi-cylinder engine

Country Status (1)

Country Link
JP (1) JPH01155025A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335213B1 (en) 1991-06-19 2002-01-01 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335213B1 (en) 1991-06-19 2002-01-01 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same
US6756258B2 (en) 1991-06-19 2004-06-29 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6797548B2 (en) 1991-06-19 2004-09-28 Semiconductor Energy Laboratory Co., Inc. Electro-optical device and thin film transistor and method for forming the same
US6847064B2 (en) 1991-06-19 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a thin film transistor

Similar Documents

Publication Publication Date Title
JPS62210219A (en) Intake device of internal combustion engine
JP4032906B2 (en) Multi-cylinder engine intake system
JPS614823A (en) Intake devce for internal-combustion engine
JPH01155025A (en) Intake device for multi-cylinder engine
JPS60233314A (en) Aspiration control device for internal-combustion engine
JPS63280821A (en) Intake device for engine
JPS6350427Y2 (en)
JPS6125915A (en) Intake-air device in internal-combustion engine
JPS614821A (en) Intake device for internal-combustion engine
JPS6337476Y2 (en)
JPS61132719A (en) Duplex air intake unit of internal-combustion engine
JP2995200B2 (en) Engine air supply
JPS6013920A (en) Intake apparatus for multi-cylinder engine
JPS6161918A (en) Air intake device of internal-combustion engine
JPS6128714A (en) Intake device of internal-combustion engine
JPS61201825A (en) Air intake device for multicylinder engine
JPS61201824A (en) Air intake device for multicylinder engine
JPH0740662Y2 (en) Engine intake system
JPS6053631A (en) Control device for number of operating cylinder controlled engine
JPS61212628A (en) Intake apparatus for 4-cycle engine
JPH0663456B2 (en) Engine intake system
JPH044446B2 (en)
JPS60125723A (en) Intake apparatus for internal combustion engine
JPS64587B2 (en)
JPS6220624A (en) Suction device for four-cycle v-type multicylinder engine