JPH01151438A - Intracorporeal insert utensil for measuring magnetism of living body - Google Patents

Intracorporeal insert utensil for measuring magnetism of living body

Info

Publication number
JPH01151438A
JPH01151438A JP62311299A JP31129987A JPH01151438A JP H01151438 A JPH01151438 A JP H01151438A JP 62311299 A JP62311299 A JP 62311299A JP 31129987 A JP31129987 A JP 31129987A JP H01151438 A JPH01151438 A JP H01151438A
Authority
JP
Japan
Prior art keywords
magnetism
ring
magnetic flux
living body
measure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62311299A
Other languages
Japanese (ja)
Other versions
JP2519275B2 (en
Inventor
Takeo Haneda
羽田 健夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP62311299A priority Critical patent/JP2519275B2/en
Publication of JPH01151438A publication Critical patent/JPH01151438A/en
Application granted granted Critical
Publication of JP2519275B2 publication Critical patent/JP2519275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Endoscopes (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To perform the insertion to the deep part of a living body and to measure magnetism with high sensitivity in close vicinity to the region of the deep part in the living body, by providing a magnetic measuring part utilizing Josephson effect and a cooling means to the leading end part of an elongated member capable of being inserted in the body cavity. CONSTITUTION:A magnetism detecting pickup part 13 is fixed to the interior of the cooling chamber 11 provided to the leading end part 9 of a catheter 2 through a support member 112 and the cooling chamber 11 is filled with a cooling medium 14 and the pickup part 13 is cooled by the cooling medium 14 and a superconductor 23 is held to a superconductive state. When magnetic flux is applied to the superconductive ring 23 having weak coupling part due to Josephson junction 22 from the outside the magnetic flux entering the ring 23 is integer-times a magnetic flux quantum. The sharp change in the magnetic field entering the ring 23 induces voltage in an RF resonance circuit and a SQUID flux meter for guiding weak induced voltage to an RF amplifier 5 and amplifying the same to make it possible to measure a weak magnetic field is formed. The SQUID flux mater is brought to a structure inserted in the body cavity to make it possible to measure magnetism and inserted in the body cavity to make it possible to measure the magnetism at the deep part of a living body at the position close to said deep part with high sensitivity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はジョセフソン効果を利用した磁気計測を行う生
体磁気計測用体腔内挿入用具に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a biomagnetism measurement device inserted into a body cavity that performs magnetic measurement using the Josephson effect.

[従来の技術] 近年、心磁図、脳磁図とか脳磁図等が研究され、臨床に
応用されている。例えばその例として、内用義則、小谷
誠:生体電磁場分布計測、医用電子と生体工学、 Vo
l、24 、6. 411〜416 (1986)があ
る。
[Prior Art] In recent years, magnetocardiography, magnetoencephalography, magnetoencephalography, and the like have been studied and applied clinically. For example, Yoshinori Naiyo, Makoto Kotani: Bioelectromagnetic Field Distribution Measurement, Medical Electronics and Bioengineering, Vo.
l, 24, 6. 411-416 (1986).

これらは、生体から発生する磁気とか生体に磁気を印加
した時の残留磁気などを測定し、各々生体の機能等の診
断を行なうというものであり、心電図どか他の診断礪能
で得られない、あるいは(9にくい生体の情報を1qる
為に用いられつつある。
These methods measure the magnetism generated by a living body or the residual magnetism when magnetism is applied to a living body, and diagnose the functions of the living body. Alternatively, it is being used to obtain difficult biological information.

上記生体磁気の計測にはSQU TD (Su per
conducting  Quantum  1nte
rference  [)evice)磁束計とかフラ
ックスゲート磁束計を用い、体外より34側する方法が
とられていた。
SQU TD (Super
conducting Quantum 1nte
rference [)evice) A method was used in which a magnetometer or a fluxgate magnetometer was used to measure the 34 side from outside the body.

[発明が解決しようとする問題点] しかし、上記生体磁気は元来微弱なものであり、正確な
測定のためには、より計測部位に磁束計を近接させて測
定することが望ましいが、体外よりの測定ではおのずと
限界があり、正確な測定がしずらかった。
[Problems to be solved by the invention] However, the above-mentioned biomagnetism is inherently weak, and for accurate measurement it is desirable to place the magnetometer closer to the measurement site. Naturally, there are limits to the measurement, making it difficult to make accurate measurements.

本発明は上述した点にかんがみてなされたもので、従来
より正確に生体磁気を計測することのできる生体磁気計
測用体腔内挿入具を提供することを目的とする。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a body cavity insertion device for measuring biomagnetism that can measure biomagnetism more accurately than before.

E問題点を解決する手段及び作用] 本発明では体腔内に挿入可能な細長の部材の先端部に、
ジョセフソン効果を利用した磁気計測手段と、冷却手段
とを設けることにより、生体内の深部にも挿入可能で、
生体内の深部の部位に対しても近接して高感度の磁気測
定を行えるようにしている。
Means and operation for solving problem E] In the present invention, at the distal end of an elongated member that can be inserted into a body cavity,
By providing a magnetic measurement means that utilizes the Josephson effect and a cooling means, it can be inserted deep into the living body.
This enables highly sensitive magnetic measurements to be performed in close proximity to sites deep within the body.

[実施例コ 以下、図面を参照して本発明を具体的に説明する。[Example code] Hereinafter, the present invention will be specifically explained with reference to the drawings.

第1図ないし第3図は本発明の第1実施例に係り、第1
図は第1実施例の電気系の構成図、第2図は第1実施例
の概略の外観図、第3図はカテーテルの先端部の構造を
示す断面図である。
Figures 1 to 3 relate to the first embodiment of the present invention.
FIG. 2 is a schematic diagram of the electrical system of the first embodiment, FIG. 2 is a schematic external view of the first embodiment, and FIG. 3 is a sectional view showing the structure of the distal end of the catheter.

第2図に示すように第1実施例の生体磁気計測用体腔内
挿入用具1は、体腔内に挿入できるように細長形状にし
たカテーテル2と、このカテーテル2の後端から延出さ
れた接続コード3が接続され、高周波を出力する高周波
(以下RFと記す)発振器4と、共振回路により取出し
たRF倍信号増幅するRFアンプ5と、このRFアンプ
5の出力を基準信丹に同期して増幅づるロックインアン
プ6と、このロックインアンプ6の出力を信号処理する
プロセッサ7と、このプロセッサ7の出力を表示するモ
ニタ8とからなる。
As shown in FIG. 2, the biomagnetic measurement intrabody cavity insertion device 1 of the first embodiment includes a catheter 2 that is elongated so as to be inserted into the body cavity, and a connection extending from the rear end of the catheter 2. The cord 3 is connected to a high frequency (hereinafter referred to as RF) oscillator 4 which outputs a high frequency, an RF amplifier 5 which amplifies the RF signal taken out by a resonant circuit, and the output of this RF amplifier 5 is synchronized with the reference Shintan. It consists of a lock-in amplifier 6 that is an amplification system, a processor 7 that processes the output of the lock-in amplifier 6, and a monitor 8 that displays the output of the processor 7.

上記カテーテル2の先端部9は第3図に示すように冷却
室11が設けてあり、この冷却v11内には支持部材1
2を介して磁気検出用ピックアップ部13が固定されて
おり、このピックアップ部13の周囲の冷却室11内は
冷媒14を充填でさるようにしである。
The distal end 9 of the catheter 2 is provided with a cooling chamber 11 as shown in FIG.
A pickup section 13 for magnetic detection is fixed via a magnet 2, and the inside of the cooling chamber 11 around the pickup section 13 is filled with a refrigerant 14.

つまり上記冷却室11は、例えば2@所において外部と
連通する出入口15.16が設けられ、これら出入口1
5.16から冷媒14としての液体等を注入できるよう
にしである。これら出入口15.16はそれぞれ閉塞用
ねじ17.18によって塞ぐことができる。尚、各ねじ
17.18の出入口15.16への固定部にはOリング
19゜20を介装して漏れを防止できるようにしである
In other words, the cooling chamber 11 is provided with entrances and exits 15 and 16 that communicate with the outside at, for example, 2@ places, and these entrances and exits 1
From 5.16 onwards, liquid etc. as the refrigerant 14 can be injected. These openings 15.16 can each be closed by a closing screw 17.18. Incidentally, O-rings 19 and 20 are interposed at the fixing portions of the screws 17 and 18 to the entrances and exits 15 and 16 to prevent leakage.

上記ピックアップ部13は第1図に示す構成である。The pickup section 13 has the configuration shown in FIG.

つまり、このピックアップ部13は、2次勾配型磁束劃
の形をとるピックアップコイル21と、ジョセフソン接
合22を1箇所持ら、超伝導体(例えばY−Ba−Cu
O系酸化物)からなるリング23とから構成される。
That is, this pickup section 13 has a pickup coil 21 in the form of a quadratic gradient type magnetic flux field, one Josephson junction 22, and a superconductor (for example, Y-Ba-Cu).
The ring 23 is made of (O-based oxide).

上記ピックアップコイル21は、生体からの磁束をピッ
クアップするものであり、超伝導リング23にはRF発
振器4から共振回路を介してRF電磁束供給される。こ
れらピックアップ部13は液体窒素等の冷媒14で冷却
され、リング23は超伝導状態に保持される。
The pickup coil 21 is for picking up magnetic flux from a living body, and RF electromagnetic flux is supplied to the superconducting ring 23 from the RF oscillator 4 via a resonance circuit. These pickup sections 13 are cooled with a coolant 14 such as liquid nitrogen, and the ring 23 is maintained in a superconducting state.

」−2超伝導リング23にはピックアップコイル21か
らの被測定磁束と、共振回路を通したRF電磁束導かれ
、このリング23に入ろうとする磁束はリング23を流
れる電流によって完全に打ち消され、結果的にはリング
23内には磁束は入らない。しかしながら、外部磁界を
強めていくと、それに応じてリング電流も増加するが、
このリング電流が臨界電流と呼ばれる値に達した時、接
合部において超伝導がくずれ常伝導となり磁束がリング
内に入り、リング電流が減少りる。このときリング23
内に入る最小磁束密度は2.07X 10  柿であり
、磁束伍子と呼ばれる。更に外部磁界を強めていくど、
再びリング電流が増加し、臨界電流に達すると超伝導が
くずれ、リング23内に更に磁束m子だけ磁束が入る。
”-2 The magnetic flux to be measured from the pickup coil 21 and the RF electromagnetic flux through the resonant circuit are guided to the superconducting ring 23, and the magnetic flux that attempts to enter the ring 23 is completely canceled by the current flowing through the ring 23. As a result, no magnetic flux enters the ring 23. However, as the external magnetic field is strengthened, the ring current increases accordingly;
When this ring current reaches a value called the critical current, superconductivity breaks down at the junction and becomes normal conduction, allowing magnetic flux to enter the ring and reducing the ring current. At this time, ring 23
The minimum magnetic flux density that can enter inside is 2.07X 10 persimmon, which is called magnetic flux Wuji. As the external magnetic field is further strengthened,
The ring current increases again, and when it reaches a critical current, superconductivity breaks down and a magnetic flux of m magnetic flux further enters the ring 23.

このようにジョセフソン接合22による弱結合部を持っ
た超伝導リング23に外部から磁束を加えた場合、リン
グ23内に入る磁束は磁束M子の整数倍である。
When a magnetic flux is applied from the outside to the superconducting ring 23 having a weakly coupled portion due to the Josephson junction 22 as described above, the magnetic flux entering the ring 23 is an integral multiple of the magnetic flux M.

上記リング23内に入る磁束の急な変化は、RF共振回
路に電圧を誘起する。この微小誘起電圧をRFアンプ5
側に導き増幅して微弱磁界を測定でさる5QUID磁束
計を形成している。尚、第1図に示すようにロックイン
アンプ6の出力は抵抗Rを介して共振回路側にフィード
バックしている。
A sudden change in the magnetic flux entering the ring 23 induces a voltage in the RF resonant circuit. This minute induced voltage is transferred to the RF amplifier 5.
It forms a 5QUID magnetometer that measures a weak magnetic field by guiding it to the side and amplifying it. Incidentally, as shown in FIG. 1, the output of the lock-in amplifier 6 is fed back to the resonant circuit side via a resistor R.

尚、第3図に示すように先端部9の後方側は、可撓性チ
ューブ25で被覆されている。又、ピックアップ部13
からリード腺26が延出されている。
Incidentally, as shown in FIG. 3, the rear side of the distal end portion 9 is covered with a flexible tube 25. Also, the pickup section 13
A lead gland 26 extends therefrom.

このように構成された第1実施例の動作を以下に説明す
る。
The operation of the first embodiment configured in this way will be described below.

第3図に示す先端部9の出入口15.16のねじ17.
18を外して開き、冷媒14を注入する。
Screws 17. of the openings 15.16 of the tip 9 shown in FIG.
18, open it, and inject the refrigerant 14.

その後、ねじ17,18を締め、冷部室11を密閉する
。しかる後、このカテーテル2を体腔内に挿入し、先端
部9を測定部位に近い位置まで送り込む。例えば食道を
通して心臓の近くに挿入したり、気管支を通して肺の内
部又はその近くに挿入して、これらの臓器の磁気を測定
する。しかして、測定部位が磁気を発する部位であると
、その磁束がピックアップコイル21を通る。また、R
F発振器4からも共振回路にRF雷電流供給され、リン
グ23には磁束が通ろうとする。この場合、ピックアッ
プコイル21に誘起される電流の大きさに応じて、リン
グ23には電流変化が生じる。この電流変化のタイミン
グはピックアップコイル21に誘起される電流の大きさ
に応じてずれる。この変化はバ振回路の゛辻圧変化とな
り、RFアンプ5で増幅され、ロックインアンプ6によ
り位相検波される。このロックインアンプ6の出力は抵
抗Rを介して共振回路にフィードバックする。このフィ
ードバック電流を取り出し、プロセッサ7により処理し
、モニタ8上に第1図に示すように画像化する。
Thereafter, screws 17 and 18 are tightened to seal the cold compartment 11. Thereafter, this catheter 2 is inserted into the body cavity, and the distal end portion 9 is sent to a position close to the measurement site. For example, it is inserted through the esophagus near the heart or through the bronchus into or near the lungs to measure the magnetism of these organs. Therefore, if the measurement site is a site that emits magnetism, the magnetic flux passes through the pickup coil 21. Also, R
RF lightning current is also supplied from the F oscillator 4 to the resonant circuit, and magnetic flux attempts to pass through the ring 23. In this case, a current change occurs in the ring 23 depending on the magnitude of the current induced in the pickup coil 21. The timing of this current change is shifted depending on the magnitude of the current induced in the pickup coil 21. This change becomes a cross-pressure change in the vibration circuit, is amplified by the RF amplifier 5, and phase-detected by the lock-in amplifier 6. The output of this lock-in amplifier 6 is fed back to the resonant circuit via a resistor R. This feedback current is taken out, processed by the processor 7, and displayed as an image on the monitor 8 as shown in FIG.

この第1実施例によれば、5QLIID磁束計を体腔内
に挿入し、磁気計測できる構造にしであるので、今まで
測定が困難であった体内深部での磁気を体腔内に挿入し
て近い位置にて高感度で測定ザることができる。
According to this first embodiment, since the 5QLIID magnetometer is inserted into the body cavity and has a structure that allows magnetic measurement, magnetism deep inside the body, which has been difficult to measure until now, can be measured at a nearby position by inserting it into the body cavity. Measurements can be made with high sensitivity.

第4図は本発明の第2実施例を示す。FIG. 4 shows a second embodiment of the invention.

この第2実施例は内視鏡41にピックアップ部13を設
けた構造にしている。
This second embodiment has a structure in which an endoscope 41 is provided with a pickup section 13.

上記内視tA41は、細長の挿入部42内に照明光を伝
送するライトガイド43が例えば上部側に偏心して挿通
され、挿入部先端部44に固定された出射端面から照明
光を出射づる。先端部44にはライトガイド43に隣接
して、対物レンズ45が取付けられ、この対物レンズ4
5の焦点面にはファイババンドルで形成したイメージガ
イド46の入射端面が配置され、このイメージガイド4
6により光学像を伝送し、図示しない接眼側の出射端面
に対向配置した接眼レンズを介して肉眼観察できるよう
にしである。
In the endoscopic view tA41, a light guide 43 for transmitting illumination light is inserted into the elongated insertion portion 42, for example, eccentrically toward the upper side, and emits illumination light from an output end face fixed to the insertion portion distal end portion 44. An objective lens 45 is attached to the tip 44 adjacent to the light guide 43.
The incident end surface of an image guide 46 formed of a fiber bundle is arranged at the focal plane of the image guide 4.
6, the optical image is transmitted so that it can be observed with the naked eye through an eyepiece (not shown) disposed opposite to the output end face on the eyepiece side.

上記先端部44における下部側には、冷却室51が設け
られ、この冷fJI室51内にはピックアップ部13が
収納され、このピックアップ部13は固定部材52を介
して冷却室51に固定される。
A cooling chamber 51 is provided on the lower side of the tip portion 44, and the pickup section 13 is housed in the cold fJI chamber 51, and the pickup section 13 is fixed to the cooling chamber 51 via a fixing member 52. .

この固定部材52は例えばパイプ状で、その内側にはピ
ックアップ部13とRFアンプ5等とを接続する信号伝
送線53が通しである。
This fixing member 52 has a pipe shape, for example, and a signal transmission line 53 connecting the pickup section 13 and the RF amplifier 5 etc. is passed through the inside thereof.

上記冷却室51内には、液体窒素等の冷媒54を注入可
能にする出入口55.56が設けである。
The cooling chamber 51 is provided with ports 55 and 56 through which a refrigerant 54 such as liquid nitrogen can be injected.

各出入口55.56は第5図に示すように例えば円弧形
状(この円弧より小ざな開口でも良い。)であり、それ
ぞれピン57.58の軸の回りで回動可能な蓋59.6
0にて開閉できるようにしである。つまり、f159.
60は円板形状の一部を切欠いた切欠き又は孔が設けて
あり、第4図及び第5図に示す状態では出入口55.5
6はU■いた状態になり、第6図に示すように’n5’
9.60を例えば180°回動した状態では閉じた状態
になる。 尚、先端部44の後端には可撓性のチューブ
61の前端が固着されている。このチューブ61の内側
には例えば(図示しない)関節層を縦列して湾曲部が形
成されている。
As shown in FIG. 5, each of the entrances and exits 55, 56 is, for example, in the shape of a circular arc (an opening smaller than this circular arc may also be used), and each lid 59, 56 is rotatable around the axis of a pin 57, 58.
It is designed so that it can be opened and closed at 0. In other words, f159.
Reference numeral 60 has a notch or hole formed by cutting out a part of the disk shape, and in the state shown in FIGS. 4 and 5, the entrance 55.5
6 is in the state of U■, and as shown in Figure 6, 'n5'
For example, when 9.60 is rotated by 180 degrees, it is in a closed state. Note that the front end of a flexible tube 61 is fixed to the rear end of the distal end portion 44 . A curved portion is formed inside the tube 61 by arranging articular layers (not shown) in tandem, for example.

このように構成された第2実施例の動作を以下に説明す
る。
The operation of the second embodiment configured in this way will be described below.

先端部44の159.60を回動して、第5図に示ずよ
うに出入口55.56と659.60の切欠きとを連通
させ、冷媒54を注入し、その後1159.60を回動
し、第6図に示すように出入口55.56を塞ぐ。しか
る後、内視鏡41を通常の内視鏡検査のように、体腔内
に挿入した後、観察しながら先端部44を測定部位へと
近接する位置へと移動操作をする。しかして測定部位か
らの磁束をピックアップ部13のピックアップコイル2
1により取り込み、適宜処理を行ない、診断を行なう。
Turn 159.60 of the tip 44 to communicate the inlet/outlet 55.56 with the notch 659.60 as shown in FIG. 5, inject the refrigerant 54, and then turn 1159.60. Then, as shown in FIG. 6, the entrances and exits 55 and 56 are closed. Thereafter, the endoscope 41 is inserted into the body cavity as in a normal endoscopy, and the distal end 44 is moved to a position close to the measurement site while observing. Therefore, the magnetic flux from the measurement site is transferred to the pickup coil 2 of the pickup section 13.
1, perform appropriate processing, and perform diagnosis.

この第2実施例によれば、目視により位置を確認しなが
ら磁気測定を行なうことができるので、より正確な測定
が可能となる。というのは、ただでさえ微弱な磁束なの
で測定位冒により1りられる知見が大きく異なってくる
からである。また、磁気による診断と同時に目視による
診断も行なえる。
According to this second embodiment, magnetic measurement can be performed while visually confirming the position, so more accurate measurement is possible. This is because the magnetic flux is already weak, so the findings that can be obtained will vary greatly depending on the measurement position. In addition, visual diagnosis can be performed simultaneously with magnetic diagnosis.

従って、術とは診断を短時間で終了できると共に、患者
の苦痛も大幅に軽減される。
Therefore, the surgery allows diagnosis to be completed in a short period of time, and the patient's pain is significantly reduced.

第7図は本発明の第3実施例の主要部を示す。FIG. 7 shows the main parts of a third embodiment of the present invention.

この実施例も第2実施例と同様に内視141’にピック
アップ部13′を設けたものである。先端部44′には
、例えば前端面に凹部を形成し、ピックアップ部13′
が収納すると共に、半導体冷却素子71を収納している
。この半導体冷却素子71の反対側のピックアップ部1
3′の周囲は断熱材72で覆われている。
This embodiment is also similar to the second embodiment in that a pickup section 13' is provided in the endoscope 141'. For example, a recess is formed in the front end surface of the tip portion 44', and the pickup portion 13'
, and also houses a semiconductor cooling element 71. The pickup section 1 on the opposite side of this semiconductor cooling element 71
3' is covered with a heat insulating material 72.

上記半導体冷却素子71は、リード線73を介して冷却
用電力が供給される。尚、ピックアップ部13′の前端
側は、断熱性のガラス等で覆われ、このガラスで覆われ
た前端側を磁気を検出しようと望む被検部位に近接でき
るようにしである。
The semiconductor cooling element 71 is supplied with cooling power through a lead wire 73. The front end side of the pickup section 13' is covered with a heat insulating glass or the like, so that the front end side covered with this glass can be brought close to the test site where the magnetic field is to be detected.

尚、ピックアップ部13′において、ピックアップコイ
ル21′はそのループ面が先端部44′の前端面と平行
に配置して磁束をピックアップし易いように設定しであ
る。その他は上記第2実施例と同様の構造であり、同一
要素には同一符号に111!1を付りて示しである。
In the pickup section 13', the pickup coil 21' is arranged so that its loop surface is parallel to the front end surface of the tip section 44' to facilitate pickup of magnetic flux. The rest of the structure is the same as that of the second embodiment, and the same elements are indicated by the same reference numerals with 111!1 added.

この第3実施例は半導体冷却素子71によってピックア
ップ部13′を冷却する構造であるので、ジョセフソン
効果を利用した超伝導リング23としては、高温度で超
伝導になるセラミック系を用いている。
Since this third embodiment has a structure in which the pickup section 13' is cooled by a semiconductor cooling element 71, a ceramic material that becomes superconductive at high temperatures is used as the superconducting ring 23 that utilizes the Josephson effect.

上述した各実施例では5QUID磁束計として、ジョセ
フソン接合が1つのRFスクイドを用いたが、ジョセフ
ソン接合が2つとしたDCスクイドを用いても良い。
In each of the embodiments described above, an RF SQUID with one Josephson junction was used as the 5QUID magnetometer, but a DC SQUID with two Josephson junctions may be used.

また、ピックアップ部が2次勾配型磁束計でなく、1次
勾配型磁束計を用いても良い。また冷媒は用いる超伝導
材料によって、液体へり1クム、液体窒素、液体濱素を
用いても良い。また近年、製作後項期間のみ高温で超伝
導となる材料が報告されているが、これらを用いた場合
、液体二酸化炭素、ドライアイス、アルコールとか塞材
等を冷媒に用いても良い。また、ピックアップコイルに
用1、、Nル材料ハY−Ba−CuOのみでなく Ba
−3r−’/−Cu−0系でもBa−Y−Cu−0−F
系でも[u−Ba−Cu系でも[u−3r−Cu系など
の材料を用いても良い。
Furthermore, the pickup section may use a first-order gradient magnetometer instead of a second-order gradient magnetometer. Further, depending on the superconducting material used, the refrigerant may be liquid 1 cum, liquid nitrogen, or liquid hydrogen. Furthermore, in recent years, materials have been reported that become superconductive at high temperatures only during the post-production period, but when these are used, liquid carbon dioxide, dry ice, alcohol, or a plugging material may be used as a refrigerant. In addition, not only Y-Ba-CuO but also Ba
-3r-'/-Cu-0 system also Ba-Y-Cu-0-F
Materials such as [u-Ba-Cu system, [u-3r-Cu system] may be used.

またこの他、カテーテル内視鏡に処理用のヂ1!ンネル
を設けても良い。またスクイド素子のみでなく、超伝導
磁気抵抗素子を組み込んでも良い。
In addition to this, there is also one for processing in catheter endoscopes! A channel may also be provided. In addition to the SQUID element, a superconducting magnetoresistive element may also be incorporated.

また、フラックスゲート磁束計、ホール素子磁束計等を
用いても良い。
Alternatively, a fluxgate magnetometer, a Hall element magnetometer, or the like may be used.

また、内視鏡、カテーテルの本体はセラミック、プラス
チック、非磁性金属等の非磁性材料を用いて作成する。
In addition, the bodies of endoscopes and catheters are made using non-magnetic materials such as ceramics, plastics, and non-magnetic metals.

これにより測定部以外からの磁気(特に内視鏡、カテー
テルの本体からの磁気)が測定結果に影響を与えること
がない。
This prevents magnetism from sources other than the measuring section (particularly magnetism from the endoscope and catheter body) from affecting the measurement results.

尚、第2又は第3実施例において、ピックアップ部とか
その周囲の冷却室等を着脱自在の構造にすることもでき
る。
Incidentally, in the second or third embodiment, the pickup section and the cooling chamber around it can also be constructed to be detachable.

[発明の効果] 以上述べたように本発明によれば体腔内に挿入可能な挿
入用具にジョセフソン接合を利用した磁束のピックアッ
プ手段を収納しているので、体腔内の深部の部位に対し
て近接して磁気を測定することができる。
[Effects of the Invention] As described above, according to the present invention, the magnetic flux pickup means using Josephson junction is housed in the insertion tool that can be inserted into the body cavity. Magnetism can be measured in close proximity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の第1実施例に係り、第1
図は第1実論例の電気系の構成図、第2図は第1実施例
の概略の外観図、第3図はカテーテルの先端部の構造を
示す断面図、第4図は本発明の第2実施例の先端側の構
造を示す概略断面図、第5図は第4図の底面図、第6図
は冷却室の出入口を閉じた状態での第4図の底面図、第
7図は本発明の第3実施例の先端側を示す概略断面図で
ある。 1・・・生体磁気計測用体腔内挿入用具2・・・カテー
テル    3・・・接続コード4・・・RF発振器 
   5・・・RFアンプ6・・・ロックインアンプ 
7・・・プロセッサ8・・・モニタ      11・
・・冷却室13・・・ピックアップ部 14・・・冷媒
21・・・ピックアップコイル 22・・・ジョセフソン接合 23・・・リング 第2図 第3図 第6図 第7図
Figures 1 to 3 relate to the first embodiment of the present invention.
The figure is a configuration diagram of the electrical system of the first practical example, FIG. 2 is a schematic external view of the first embodiment, FIG. A schematic sectional view showing the structure on the tip side of the second embodiment, FIG. 5 is a bottom view of FIG. 4, FIG. 6 is a bottom view of FIG. 4 with the entrance and exit of the cooling chamber closed, and FIG. 7 FIG. 3 is a schematic sectional view showing the distal end side of a third embodiment of the present invention. 1... Intrabody cavity insertion tool for biomagnetic measurement 2... Catheter 3... Connection cord 4... RF oscillator
5...RF amplifier 6...Lock-in amplifier
7...Processor 8...Monitor 11.
...Cooling chamber 13...Pickup section 14...Refrigerant 21...Pickup coil 22...Josephson junction 23...Ring Fig. 2 Fig. 3 Fig. 6 Fig. 7

Claims (1)

【特許請求の範囲】[Claims] 体腔内に挿入される体腔内挿入具の先端にジョセフソン
効果を利用した磁気計測手段を設けたことを特徴とする
生体磁気計測用体腔内挿入用具。
1. A body cavity insertion device for biomagnetism measurement, characterized in that a magnetic measurement means utilizing the Josephson effect is provided at the tip of the body cavity insertion device inserted into a body cavity.
JP62311299A 1987-12-08 1987-12-08 Tool for inserting into body cavity for biomagnetic measurement Expired - Fee Related JP2519275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62311299A JP2519275B2 (en) 1987-12-08 1987-12-08 Tool for inserting into body cavity for biomagnetic measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62311299A JP2519275B2 (en) 1987-12-08 1987-12-08 Tool for inserting into body cavity for biomagnetic measurement

Publications (2)

Publication Number Publication Date
JPH01151438A true JPH01151438A (en) 1989-06-14
JP2519275B2 JP2519275B2 (en) 1996-07-31

Family

ID=18015460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62311299A Expired - Fee Related JP2519275B2 (en) 1987-12-08 1987-12-08 Tool for inserting into body cavity for biomagnetic measurement

Country Status (1)

Country Link
JP (1) JP2519275B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006122203A1 (en) * 2005-05-11 2006-11-16 The University Of Houston System An intraluminal magneto sensor system and method of use
US8380279B2 (en) 2005-05-11 2013-02-19 The University Of Houston System Intraluminal multifunctional sensor system and method of use
JPWO2016021633A1 (en) * 2014-08-05 2017-08-03 国立大学法人 東京医科歯科大学 Biomagnetic measurement device
WO2021070094A1 (en) * 2019-10-07 2021-04-15 Asahi Intecc Co., Ltd. Intracardiac catheter device and methods of use thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006122203A1 (en) * 2005-05-11 2006-11-16 The University Of Houston System An intraluminal magneto sensor system and method of use
US8212554B2 (en) 2005-05-11 2012-07-03 The University Of Houston System Intraluminal magneto sensor system and method of use
US8380279B2 (en) 2005-05-11 2013-02-19 The University Of Houston System Intraluminal multifunctional sensor system and method of use
JPWO2016021633A1 (en) * 2014-08-05 2017-08-03 国立大学法人 東京医科歯科大学 Biomagnetic measurement device
US10952631B2 (en) 2014-08-05 2021-03-23 National University Corporation Tokyo Medical And Dental University Biomagnetism measurement device
WO2021070094A1 (en) * 2019-10-07 2021-04-15 Asahi Intecc Co., Ltd. Intracardiac catheter device and methods of use thereof
CN114554959A (en) * 2019-10-07 2022-05-27 朝日英达科株式会社 Intracardiac catheter apparatus and methods of use

Also Published As

Publication number Publication date
JP2519275B2 (en) 1996-07-31

Similar Documents

Publication Publication Date Title
Knappe et al. Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications
JP3081237B2 (en) Biomagnetometer with remote pickup coil
US8212554B2 (en) Intraluminal magneto sensor system and method of use
US6408202B1 (en) Transesophageal magnetic resonance analysis method and apparatus
US5339811A (en) Magnetoencephalograph
US5061680A (en) Superconducting biomagnetometer with remote pickup coil
KR19980024447A (en) Temperature sensing system near insertion device during magnetic resonance procedure
WO1988007835A1 (en) Low noise cryogenic apparatus for making magnetic measurements
WO2011148948A1 (en) Brain function measuring device
US8000767B2 (en) Magneto-optical apparatus and method for the spatially-resolved detection of weak magnetic fields
Clarke et al. Focus on SQUIDs in biomagnetism
JPH01151438A (en) Intracorporeal insert utensil for measuring magnetism of living body
Ichkitidze et al. Magnetic field sensors in medical diagnostics
Bock et al. A Faraday effect position sensor for interventional magnetic resonance imaging
JP2610301B2 (en) Biomagnetic measurement device
US5635888A (en) Super-conducting magnets
Richert et al. Magnetic monitoring as a diagnostic method for investigating motility in the human digestive system
Kobayashi et al. Development of a high spatial resolution SQUID magnetometer for biomagnetic measurement
JP2575395B2 (en) Antenna device for NMR measurement
JP2004121667A (en) Instrument for detecting magnetic fluid
Fagaly et al. Superconducting quantum interference (SQUIDs)
Zamani et al. Myocardial ischemia detection by a sensitive pump-probe atomic magnetometer
Farrell et al. A new instrument designed to measure the magnetic susceptibility of human liver tissue in vivo
CA2379800A1 (en) Method and device for measuring biomagnetic and in particular cardiomagnetic fields
JP2519272B2 (en) Endoscope magnetic detection device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees