JPH01150003A - Low/high pressure liquid supply mechanism by cylinder - Google Patents

Low/high pressure liquid supply mechanism by cylinder

Info

Publication number
JPH01150003A
JPH01150003A JP62308979A JP30897987A JPH01150003A JP H01150003 A JPH01150003 A JP H01150003A JP 62308979 A JP62308979 A JP 62308979A JP 30897987 A JP30897987 A JP 30897987A JP H01150003 A JPH01150003 A JP H01150003A
Authority
JP
Japan
Prior art keywords
liquid
piston
pressure
chamber
liquid chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62308979A
Other languages
Japanese (ja)
Inventor
Masabumi Isobe
磯部 正文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP62308979A priority Critical patent/JPH01150003A/en
Publication of JPH01150003A publication Critical patent/JPH01150003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To simplify a boosting mechanism by housing valve bodies to be switched by means of pressure in the end part of the ram of a booster piston. CONSTITUTION:A booster piston 8 is fitted in a second cylinder 2, while valve bodies 11, 15, 17 are housed in the end part of the ram 9 of the booster piston 8. A boosting mechanism can be simplified accordingly, since it is not necessary to provide the valve bodies 11, 15, 17 separately.

Description

【発明の詳細な説明】 本発明の機構は他の装置の機器の一部として組込んで低
圧力及び高圧力の液を供給するのが一般である。第6図
及び第7,8図はその例を示したものである。先に第6
図について説明する。一般に供給液体はエヤー、供給液
体はオイルが使用されるので、以下の説明では供給流体
はエヤー、液はオイルとする。本発明の機構を、シリン
ダー28、カバーブロック29、ピストン26、ロッド
27に組込みをしてJ液室にオイルを満す。この装置は
空油圧シリンダーである。液出入口5′よりC′液室内
のオイルをJ液室に供給する。ピストン26とロッド2
7は図上左方に移動する。このときロッド27に負荷(
荷重)が無ければ低圧力のオイルが早い速度で供給され
、ロッド27は移動する。
DETAILED DESCRIPTION OF THE INVENTION The mechanism of the present invention will generally be incorporated as part of the equipment of other devices to supply low pressure and high pressure fluids. FIG. 6 and FIGS. 7 and 8 show examples thereof. 6th first
The diagram will be explained. Generally, air is used as the supply liquid and oil is used as the supply liquid, so in the following description, the supply fluid is assumed to be air and the liquid is oil. The mechanism of the present invention is assembled into the cylinder 28, cover block 29, piston 26, and rod 27, and the J liquid chamber is filled with oil. This device is an air-hydraulic cylinder. The oil in the C' liquid chamber is supplied to the J liquid chamber from the liquid inlet/outlet 5'. Piston 26 and rod 2
7 moves to the left in the figure. At this time, the rod 27 is loaded (
If there is no load), low pressure oil is supplied at a high speed and the rod 27 moves.

次にロッド27に負荷がかかったものとする。負荷抵抗
のためJ液室のオイル圧は上昇する。このとき本発明の
機構は、このオイル圧の上昇を感知して自動的に高圧力
のオイルを供給し、ピストン26とロッド27を加圧し
て、ロッド27に大きな力を与へるものである。作業が
完了すれば、K室にエヤーを供給する。ピストン26は
加圧されるので回上右方に移動し、J液室のオイルはC
′液室に供給され第6図の如くに復帰する。これまでの
空油圧シリンダーでは、作業工程の途中に於いて被加工
物の位置の調整、リミットスイッチ等のセンサーに依り
、被加工物の位置を感知し弁の切替へを行い、低圧力か
ら高圧力にする等の工程を必要とする。本発明の機構を
用いた空油圧シリンダーでは低圧力から高圧力の切替へ
が自動的に行はれるので、上記の工程が省略できるので
、不便、非能率、センサー取付に伴う不経済を解消する
ことができる。次に第7図は、他装置の液室31に本発
明の機構を組込んだもので、L液室にオイルを満し、液
出入口5″よりオイルを供給する。第8図に其の使用例
を示す。尚、第6図に依る例では、液出入口5′,5″
からのオイルの供給に本発明の機構の作動用のエヤーを 用いることにしてあるが、実際の使用では其の装置独自
の方法でオイルを供給すればよい。
Next, assume that a load is applied to the rod 27. The oil pressure in the J liquid chamber increases due to the load resistance. At this time, the mechanism of the present invention senses this increase in oil pressure and automatically supplies high-pressure oil to pressurize the piston 26 and rod 27, thereby applying a large force to the rod 27. . When the work is completed, air will be supplied to the K room. Since the piston 26 is pressurized, it rotates and moves to the right, and the oil in the J liquid chamber becomes C.
'The liquid is supplied to the liquid chamber and returned as shown in FIG. With conventional air-hydraulic cylinders, the position of the workpiece is adjusted during the work process, and sensors such as limit switches are used to sense the position of the workpiece and switch the valve, from low pressure to high pressure. Requires processes such as applying pressure. Since the air-hydraulic cylinder using the mechanism of the present invention automatically switches from low pressure to high pressure, the above steps can be omitted, eliminating inconvenience, inefficiency, and waste associated with sensor installation. be able to. Next, Fig. 7 shows a system in which the mechanism of the present invention is incorporated into the liquid chamber 31 of another device, and the L liquid chamber is filled with oil, and oil is supplied from the liquid inlet/outlet 5''. An example of use is shown below. In the example shown in FIG.
It is assumed that the air for operating the mechanism of the present invention is used to supply oil from the apparatus, but in actual use, oil may be supplied using a method unique to the apparatus.

第1〜5図に依り説明する。1,2は第1,2シリンダ
ー。3は液室で隔壁ブロック4と一体化し、ピストンの
嵌装部25を有し、嵌装部よりH側をC液室G側をD液
室とする、そしてC液室に液出入口5を設ける。6はカ
バーブロック。7は遊動ピストンで第1,2シリンダー
1,2に嵌装し、E供給流体室(以下E室と云う)とA
液室を形成する。
This will be explained with reference to FIGS. 1 to 5. 1 and 2 are the first and second cylinders. 3 is a liquid chamber which is integrated with the bulkhead block 4 and has a piston fitting part 25, the H side from the fitting part is a C liquid chamber, and the G side is a D liquid chamber, and a liquid inlet/outlet 5 is provided in the C liquid chamber. establish. 6 is a cover block. 7 is a floating piston fitted into the first and second cylinders 1 and 2, and is connected to the E supply fluid chamber (hereinafter referred to as E chamber) and the A
Forms a liquid chamber.

8は増圧ピストンで第2シリンダーに嵌装し、F供給流
体室(以下F室と云う)とB液室を形成する。9はラム
で増圧ピストン8と一体化し隔壁ブロック4を嵌装貫通
してC,D液室に突出する、そして内部は中空となりB
液室とC液室を連通する液通路10を形成して、弁体1
1を持つ、更に増圧ピストン8より小径で液室3の嵌装
部25に嵌装するピストン13を持つ。又弁体11はD
液室とB液室の差圧に依り、ばね16の力に抗して液通
路10を閉とする、このとき適当に定めた差圧P1以上
にならなければ閉とならないように、ばね16の力を設
定する、そして差圧小となればばね16に依り戻り作動
するように構成する。次に弁体11はD液室とB,C液
室を連通する液通路14を有し、D液室とC液室の差圧
に依り液通路14を閉とし、差圧が無くなれば開となる
弁体15を持つ。12は通路で、ピストン13が嵌装部
25に嵌装した状態で、D液室とC液室を連通させるこ
とを目的とする。17は弁体でD液室とC液室の差圧に
依り、ばね18の方に抗して通路12を開とし、そして
差圧が無くなれば、ばね18に依り戻り作動する、この
際適当に定めた差圧P2以上にならなければ開とならな いようにばね18の力を設定する、そして、P2はP1
より大とする。19は液通路で、AとB液室を連通する
。20,21は通路でEとF室に連通する。22,23
は管路で切替弁24と通路20,21を連通する。A,
B,C,D液室とそれ等を連通する通路にオイルを満す
。次に作動について説明する。C,D液室に負荷が無い
ものとする。
8 is a pressure increasing piston fitted into the second cylinder to form an F supply fluid chamber (hereinafter referred to as F chamber) and a B liquid chamber. 9 is a ram that is integrated with the pressure booster piston 8, fits through the bulkhead block 4, projects into the liquid chambers C and D, and is hollow inside.
A liquid passage 10 communicating between the liquid chamber and the C liquid chamber is formed, and the valve body 1
1, and further has a piston 13 having a smaller diameter than the pressure boosting piston 8 and fitting into the fitting part 25 of the liquid chamber 3. Also, the valve body 11 is D
Depending on the pressure difference between the liquid chamber and the B liquid chamber, the liquid passage 10 is closed against the force of the spring 16. At this time, the spring 16 The force is set, and when the differential pressure becomes small, the spring 16 is configured to return to operation. Next, the valve body 11 has a liquid passage 14 that communicates the D liquid chamber with the B and C liquid chambers, and closes the liquid passage 14 depending on the pressure difference between the D liquid chamber and the C liquid chamber, and opens it when the pressure difference disappears. It has a valve body 15 which is as follows. Reference numeral 12 denotes a passage whose purpose is to communicate the D liquid chamber and the C liquid chamber when the piston 13 is fitted into the fitting part 25. Reference numeral 17 denotes a valve element which opens the passage 12 against the spring 18 depending on the differential pressure between the D and C liquid chambers, and when the differential pressure disappears, the spring 18 returns to operation. The force of the spring 18 is set so that the spring 18 will not open unless the differential pressure P2 is greater than the pressure difference P2 defined in P1.
Make it bigger. A liquid passage 19 communicates the A and B liquid chambers. 20 and 21 communicate with chambers E and F through passages. 22, 23
communicates the switching valve 24 with the passages 20 and 21 through a conduit. A,
Fill the B, C, and D liquid chambers and the passages that communicate them with oil. Next, the operation will be explained. Assume that there is no load on liquid chambers C and D.

管路22よりエヤーを供給する。切替弁24に依り管路
23は大気開放となる。E室は加圧され、遊動ピストン
7はH方向に移動し、A液室のオイルはB液室に移り、
増圧ピストン8は加圧されG方向に移動して、ピストン
13は嵌装部25に嵌装して通過しようとする。D液室
のオイルは液通路14を通りBとC液室に移動する。こ
のとき嵌装部25の断面積は、液通路14の断面積より
はるかに大きいので、オイルが液通路14を早い速度で
通過するとき、流体抵抗に依る差圧がD液室とB,C液
室との間に発生する。弁体15はオイルの流れと差圧に
依り移動し最後には差圧に依り液通路14を閉とする。
Air is supplied from the conduit 22. The switching valve 24 opens the pipe line 23 to the atmosphere. The E chamber is pressurized, the floating piston 7 moves in the H direction, and the oil in the A liquid chamber moves to the B liquid chamber.
The pressure increasing piston 8 is pressurized and moves in the G direction, and the piston 13 attempts to fit into the fitting portion 25 and pass through. The oil in the D liquid chamber passes through the liquid passage 14 and moves to the B and C liquid chambers. At this time, the cross-sectional area of the fitting part 25 is much larger than the cross-sectional area of the liquid passage 14, so when the oil passes through the liquid passage 14 at a high speed, a pressure difference due to fluid resistance is created between the liquid chambers D and B, C. Occurs between the liquid chamber and the liquid chamber. The valve body 15 moves depending on the flow of oil and the differential pressure, and finally closes the liquid passage 14 due to the differential pressure.

即ち、ピストン13が嵌装部25を通過する途中に於い
て液通路14が閉となる。D液室は密封され、増圧ピス
トン8の移動は停止する。A液室のオイルはB液室を通
ってC液室に流入し、液出入口5より他の装置の液室に
流入し加圧する。(第6図に於いてはJ液室に流入して
ピストン26とロッド27を加圧する)。この状態での
オイル圧は、負荷が無いので低圧である。E室のエヤー
はオイルの送出しに使はれるので上昇しない。(約1k
g/cm2〜2.5kg/cm2)次に負荷が生じたも のとする。(第6図ではロッド27に荷重がかかった状
態)上記の低圧でのオイルの送出しは停止し、C,B,
A液室のオイル圧は上昇する。同時にD液室のオイル圧
も上昇する。
That is, the liquid passage 14 is closed while the piston 13 is passing through the fitting part 25. The D liquid chamber is sealed and the movement of the pressure boosting piston 8 is stopped. The oil in the A liquid chamber flows into the C liquid chamber through the B liquid chamber, and then flows into the liquid chambers of other devices through the liquid inlet/outlet 5 and is pressurized. (In FIG. 6, it flows into the J liquid chamber and pressurizes the piston 26 and rod 27). The oil pressure in this state is low because there is no load. The air in chamber E is used to send oil, so it does not rise. (about 1k
g/cm2 to 2.5 kg/cm2) Next, assume that a load occurs. (In Figure 6, a load is applied to the rod 27.) The above-mentioned low-pressure oil delivery is stopped, and C, B,
The oil pressure in the A liquid chamber increases. At the same time, the oil pressure in the D liquid chamber also increases.

このときの圧力は、ピストン13の断面積が、増圧ピス
トン8の断面積より小であり、且D液室は密封されてい
るので、パスカルの原理に依りB,C液室より高い圧力
が発生する。そして差圧がP1以上になれば、弁体11
はH方向に移動して液通路10を閉とし、第2図の如く
なる。そしてA,B液室のオイルのC液室への流入は停
止するので、B流室のオイル圧は更に上昇する、そして
D液室とC液室の差圧がP2になれば、弁体17はH方
向に移動して、第3図の如くなり、通路12は開となり
D液室のオイルは通路12を通りC液室に流入して、ピ
ストン13は嵌装部25を通過する。そして第4図の如
くなり、ラム9のG方向への移動に依り、C,D液室の
オイルは液出入口5を通り他の装置の液室に流入して加
圧する。このときC,D液室と他の装置の液室を含め密
封されているので、パスカルの原理に依り、隔壁ブロッ
ク4に嵌装するラム9の受圧断面積と増圧ピストン8の
断面積比に比例する高圧力が発生する。
The pressure at this time is higher than the pressure in the B and C liquid chambers due to Pascal's principle because the cross-sectional area of the piston 13 is smaller than the cross-sectional area of the pressure booster piston 8 and the D liquid chamber is sealed. Occur. If the differential pressure becomes P1 or more, the valve body 11
moves in the H direction to close the liquid passage 10, as shown in FIG. Then, the oil in the A and B liquid chambers stops flowing into the C liquid chamber, so the oil pressure in the B flow chamber further increases.When the differential pressure between the D and C liquid chambers reaches P2, the valve body 17 moves in the H direction to become as shown in FIG. 3, the passage 12 is opened, the oil in the D liquid chamber flows into the C liquid chamber through the passage 12, and the piston 13 passes through the fitting part 25. As shown in FIG. 4, as the ram 9 moves in the G direction, the oil in the C and D liquid chambers flows into the liquid chambers of other devices through the liquid inlet/outlet 5 and is pressurized. At this time, since the C and D liquid chambers and the liquid chambers of other devices are sealed, the ratio of the pressure-receiving cross-sectional area of the ram 9 fitted into the partition block 4 to the cross-sectional area of the pressure booster piston 8 is calculated based on Pascal's principle. A high pressure proportional to is generated.

そして他装置の液室を加圧する。(第6図では)液室を
加圧しピストン26とロッド27に大きな力を与へる)
。次に復帰について説明する。液出入口5よりC液室へ
のオイルの供給 と、切替弁24を切替へて管路23よりエヤーを供給す
る、管路22は大気開放となる。F室は加圧され、増圧
ピストン8はH方向に移動する、ラム9も移動しD液室
の圧力が低下する。そしてDとB液室の差圧がP1以下
になれば、弁体11はばね16に依りG方向に移動し、
液通路10は開となりB,C,D液室は連通する。供給
オイルはC,B液室を通りA液室に入る。E室は大気圧
になっているので、遊動ピストン7は加圧されG方向に
移動する。又増圧ピストン8は更にH方向に移動し、ピ
ストン13が嵌装部25に嵌装する。
Then, the liquid chambers of other devices are pressurized. (In Fig. 6) Pressurizes the liquid chamber and applies a large force to the piston 26 and rod 27)
. Next, the return will be explained. Oil is supplied from the liquid inlet/outlet 5 to the C liquid chamber, and air is supplied from the conduit 23 by switching the switching valve 24, and the conduit 22 is opened to the atmosphere. The F chamber is pressurized, the pressure boosting piston 8 moves in the H direction, the ram 9 also moves, and the pressure in the D liquid chamber decreases. Then, when the differential pressure between the D and B liquid chambers becomes less than P1, the valve body 11 is moved in the G direction by the spring 16,
The liquid passage 10 is opened and the B, C, and D liquid chambers communicate with each other. The supplied oil passes through the C and B liquid chambers and enters the A liquid chamber. Since the E chamber is at atmospheric pressure, the floating piston 7 is pressurized and moves in the G direction. Further, the pressure increasing piston 8 moves further in the H direction, and the piston 13 is fitted into the fitting part 25.

このときD液室はマイナス圧となる。そして弁体15は
開となり第5図の如くで、C液室のオイルは液通路14
を通りD液室に流入し、ピストン13は嵌装部25を通
過し第1図の如く復帰する。
At this time, the pressure in the D liquid chamber becomes negative. Then, the valve body 15 is opened, as shown in FIG.
The piston 13 passes through the fitting portion 25 and returns as shown in FIG. 1.

特許請求の範囲2項は、第1図に於いて弁体15を無く
したものであり、作動については、ピストン13が嵌装
部25を通過するとき、液通路14を通るオイルの流れ
抵抗に依り生じた差圧、P1とP2に依り弁体11,1
7を作動させるものである。
Claim 2 is a version in which the valve body 15 is removed from FIG. Due to the differential pressure generated, P1 and P2, the valve bodies 11 and 1
7.

オイルの流れ抵抗に依る差圧は、嵌装部25の直径を4
0mm、液通路14の直径を4mm、とすれば、面積比
は100倍となり、容易に差圧を得ることが出来る。尚
低電圧力液送り出し中に、液通路14に依り、D液室の
オイルがC液室に移り、ピストン13は徐々にG方向に
移動するが、嵌装部25の嵌装長さを長くすることに依
り、低圧力液の送出しの必要時間に合せることが出来る
The differential pressure due to the oil flow resistance increases the diameter of the fitting part 25 by 4
If the diameter of the liquid passage 14 is 0 mm and the diameter of the liquid passage 14 is 4 mm, the area ratio will be 100 times, and a differential pressure can be easily obtained. During low-voltage liquid delivery, the oil in the D liquid chamber moves to the C liquid chamber through the liquid passage 14, and the piston 13 gradually moves in the G direction. By doing so, it is possible to match the required time for delivering low-pressure liquid.

次に、前記の説明では、SとC液室を連通する通路に液
通路14としたが、例へばピストン13と嵌装部25が
嵌装した状態で、適当な隙間を設けCとD液室を連通さ
せ、これを液通路14に替る通路として用いることが出
来る。この発明の機構は、小型で、低圧力液の供給時間
が少く、高速で高圧力液の供給を必要とする装置に適す
る。
Next, in the above explanation, the liquid passage 14 was used as the passage that communicates the S and C liquid chambers, but for example, when the piston 13 and the fitting part 25 are fitted, an appropriate gap is provided between the C and D liquid chambers. This can be used as a passage instead of the liquid passage 14. The mechanism of the present invention is small in size, takes little time to supply low-pressure liquid, and is suitable for devices that require high-pressure liquid to be supplied at high speed.

特許請求の範囲3項は、第1図の弁体17及びばね18
の無い場合であり、作動については、ピストン13が嵌
装部25を通過するとき、通路12を通るオイルの流れ
抵抗に依り、差圧P1を作り弁体11を作動させるもの
である。又前記で説明した様に、ピストン13と嵌装部
25の間に適当な隙間を設けることに依り、通路12に
替る通路として用いることが出来る。又嵌装部25の嵌
装長さを長くすることに依り、高圧力の液を除々に時間
をかけて供給することが出来る。この発明の機械は、低
圧力の液の供給時間が少く、低速で高圧力液の供給を必
要とする装置に適する。
Claim 3 is directed to the valve body 17 and spring 18 in FIG.
In this case, when the piston 13 passes through the fitting part 25, the pressure difference P1 is created by the flow resistance of the oil passing through the passage 12, and the valve body 11 is operated. Further, as explained above, by providing an appropriate gap between the piston 13 and the fitting portion 25, it can be used as a passage instead of the passage 12. Furthermore, by increasing the fitting length of the fitting part 25, high-pressure liquid can be gradually supplied over time. The machine of the present invention takes only a short time to supply low-pressure liquid and is suitable for devices that require high-pressure liquid to be supplied at low speed.

特許請求の範囲4項は、第1図の弁体15,17とばね
18の無い場合である。作動については、ピストン13
が嵌装部25を通過するとき、液通路14を通るオイル
の流れ抵抗に依り、差圧P1を作り弁体11を作動させ
るものである。又前記で説明したと同様に、ピストン1
3と嵌装部25の間に適当な隙間を設けることに依り、
液通路14に変る通路とすることが出来る。又嵌装部2
5の嵌装長さを長くすることに依り、高圧力の液を除々
に時間をかけて供給することが出来る。この発明の機構
は、小型で、低圧力液の供給時間が少く、低速で高圧力
液の供給を必要とする装置に適する。
Claim 4 is a case where the valve bodies 15, 17 and the spring 18 shown in FIG. 1 are not provided. Regarding operation, piston 13
When the oil passes through the fitting part 25, a pressure difference P1 is created due to the flow resistance of the oil passing through the liquid passage 14, and the valve body 11 is actuated. Also, as explained above, the piston 1
By providing an appropriate gap between 3 and the fitting part 25,
It can be a passage that replaces the liquid passage 14. Also, fitting part 2
By increasing the fitting length of 5, high-pressure liquid can be gradually supplied over time. The mechanism of the present invention is small in size, takes a short time to supply low-pressure liquid, and is suitable for devices that require high-pressure liquid to be supplied at low speed.

特許請求の範囲5項は、第1図に於いて、液通路14と
弁体15が無い場合である。戻り作動のとき、ピストン
13が嵌装部25を通過するとき、DとC液室を連通す
る通路が無いので、D液室は一時眞空状態となる。しか
し眞空に依る圧力は最大1kg/cm2であり、作動用
のエヤー圧は、一般に1kg/cm2以上であり、増圧
ピストン8の断面積はピストン13の断面積より大であ
るので、ピストン13は嵌装部25を通過する。小型で
、高速で、高圧力の液を必要とする装置に適する。
Claim 5 corresponds to the case where the liquid passage 14 and the valve body 15 are not provided in FIG. 1. During the return operation, when the piston 13 passes through the fitting part 25, the D liquid chamber is temporarily in an empty state because there is no passage that communicates the D and C liquid chambers. However, the pressure due to the sky is 1 kg/cm2 at maximum, the air pressure for operation is generally 1 kg/cm2 or more, and the cross-sectional area of the pressure boosting piston 8 is larger than the cross-sectional area of the piston 13, so the piston 13 It passes through the fitting part 25. Suitable for devices that require small size, high speed, and high pressure liquids.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例の縦断面図、第2,3,4,5図は第
1図の部分断面図、第6,7図は本発明の機構を組込ん
だ例を示した縦断面図、第8図は第7図の装置の使用例
を示す。 1,2…第1、2シリンダー,3…流室、4…隔壁ブロ
ック、5…流出入口、6,29…カバーブロック、7…
遊動ピストン、8…増圧ピストン、9…ラム、10,1
4,19…液通路、11,15,17…弁体、12…通
路、13…ピストン、16,18…ばね、20,21…
通路、22,23…管路、24…切替弁、25…嵌装部
、26…ピストン、27…ロッド、28…シリンダー、
30…通路、31…他装置の液室。
Fig. 1 is a longitudinal cross-sectional view of an embodiment, Figs. 2, 3, 4, and 5 are partial cross-sectional views of Fig. 1, and Fig. 6 and 7 are longitudinal cross-sections showing an example incorporating the mechanism of the present invention. 8 shows an example of the use of the device of FIG. 7. 1, 2...First and second cylinders, 3...Flow chamber, 4...Partition wall block, 5...Outlet/outlet, 6, 29...Cover block, 7...
Idle piston, 8... Pressure increase piston, 9... Ram, 10, 1
4,19...liquid passage, 11,15,17...valve body, 12...passage, 13...piston, 16,18...spring, 20,21...
Passage, 22, 23...Pipe line, 24...Switching valve, 25...Fitting part, 26...Piston, 27...Rod, 28...Cylinder,
30...Passway, 31...Liquid chamber of other device.

Claims (5)

【特許請求の範囲】[Claims] (1)第1,2シリンダーに嵌装し供給流体室及びA液
室を形成するそして供給流体に依り作動し供給液に依り
戻り作動する遊動ピストンと、第2シリンダーに嵌装し
供給流体室及びB液室を形成するそして下記の弁機構の
作動に依り作動し供給流体に依り戻り作動する増圧ピス
トンと、隔壁ブロックと一体化しC,D液室を持ちそし
て下記のラムのピストンの嵌装部を持った液室と、C液
室に設けられた液出入口と、増圧ピストンと一体化し隔
壁ブロックを嵌装貫通しC,D液室に突出するそして増
圧ピストンより小径で液室嵌装部に嵌装するピストンと
下記の弁機構を持ったラムと、A,B,C,Dの各液室
とそれらを連通する液通路に満たされた液体と、上記ピ
ストンの嵌装部通過に伴うD液室とB,C液室の差圧と
、上記差圧のP_1に依り液通路10を閉としばねに依
り戻り作動するそして液通路14と上記の差圧に依り液
通路14を閉とする弁を持った弁体と、上記の差圧P_
1より大きいP_2に依り通路12を開としばねに依り
戻り作動する弁体を持ったことを特徴とする、シリンダ
ーに依る低圧力及び高圧力液供給機構。
(1) A floating piston that is fitted in the first and second cylinders to form a supply fluid chamber and a liquid chamber A, and that operates depending on the supply fluid and returns to operation depending on the supply fluid, and a floating piston that is fitted in the second cylinder and forms the supply fluid chamber and the A liquid chamber. and B, which form liquid chambers, and are operated by the operation of the valve mechanism described below, and return operated by the supplied fluid, and are integrated with the bulkhead block and have liquid chambers C and D, into which the piston of the ram described below is fitted. A liquid chamber with a mounting part, a liquid inlet/outlet provided in liquid chamber C, a liquid chamber that is integrated with the pressure booster piston, fits through the partition block and projects into liquid chambers C and D, and a liquid chamber with a smaller diameter than the pressure booster piston. A piston to be fitted into the fitting part, a ram having the following valve mechanism, liquid filled in each of the liquid chambers A, B, C, and D and a liquid passage connecting them, and the fitting part of the piston. Due to the differential pressure between the D liquid chamber and the B and C liquid chambers as they pass through, and the above differential pressure P_1, the liquid passage 10 is closed and returned to operation by the spring, and the liquid passage 14 is operated due to the above differential pressure. A valve body with a valve that closes and the above differential pressure P_
A cylinder-based low-pressure and high-pressure liquid supply mechanism, characterized in that it has a valve body that opens the passage 12 due to P_2, which is greater than 1, and is operated back by a spring.
(2)第1,2シリンダーに嵌装し供給流体室及びA液
室を形成するそして供給流体に依り作動し供給液に依り
戻り作動する遊動ピストンと、第2シリンダーに嵌装し
供給流体室及びB液室を形成するそして下記の弁機構の
作動に依り作動し供給流体に依り戻り作動する増圧ピス
トンと、隔壁ブロックと一体化しC,D液室を持ちそし
て下記のラムのピストンの嵌装部を持った液室と、C液
室に設けられた液出入口と、増圧ピストンと一体化し隔
壁ブロックを嵌装貫通しC,D液室に突出するそして増
圧ピストンより小径で液室嵌装部に嵌装するピストンと
下記の弁機構を持ったラムと、A,B,C,Dの各液室
とそれらを連通する液通路に満たされた液体と、上記ピ
ストンの嵌装部通路に伴うD液室とB,C液室の差圧と
、上記ピストンが嵌装部に嵌装している状態でCとD液
室を連通する通路と、上記差圧のP_1に依り液通路1
0を閉としばねに依り戻り作動する弁体と、上記の差圧
P_1より大きいP_2に依り通路12を開としばねに
依り戻り作動する弁体を持ったことを特徴とする、シリ
ンダーに依る低圧力及び高圧力液供給機構。
(2) A floating piston that is fitted in the first and second cylinders to form a supply fluid chamber and a liquid chamber A, and that operates depending on the supply fluid and returns to operation depending on the supply fluid, and a floating piston that is fitted in the second cylinder and forms the supply fluid chamber and the A liquid chamber. and B, which form liquid chambers, and are operated by the operation of the valve mechanism described below, and return operated by the supplied fluid, and are integrated with the bulkhead block and have liquid chambers C and D, into which the piston of the ram described below is fitted. A liquid chamber with a mounting part, a liquid inlet/outlet provided in liquid chamber C, a liquid chamber that is integrated with the pressure booster piston, fits through the partition block and projects into liquid chambers C and D, and a liquid chamber with a smaller diameter than the pressure booster piston. A piston to be fitted into the fitting part, a ram having the following valve mechanism, liquid filled in each of the liquid chambers A, B, C, and D and a liquid passage connecting them, and the fitting part of the piston. Due to the differential pressure between the D liquid chamber and the B and C liquid chambers due to the passage, the passage that communicates the C and D liquid chambers with the piston fitted in the fitting part, and the differential pressure P_1, the liquid Passage 1
0 is closed and the valve body is operated back by a spring, and the valve body is operated by a spring to open the passage 12 due to the pressure difference P_2 which is greater than the above-mentioned differential pressure P_1. Pressure and high pressure liquid supply mechanism.
(3)第1、2シリンダーに嵌装し供給液体室及びA液
室を形成するそして供給液体に依り作動し供給液に依り
戻り作動する遊動ピストンと、第2シリンダーに嵌装し
供給液体室及びB液室を形成するそして下記の弁機構の
作動に依り作動し供給流体に依り戻り作動する増圧ピス
トンと、隔壁ブロツクと一体化しC,D液室を持ちそし
て下記のラムのピストンの嵌装部を持った液室と、C液
室に設けられた液出入口と、増圧ピストンと一体化し隔
壁ブロックを嵌装貫通しC,D液室に突出するそして増
圧ピストンより小径で液室嵌装部に嵌装するピストンと
下記の弁機構を持ったラムと、A,B,C,Dの各液室
とそれらを連通する液通路に満たされた液体と、上記ピ
ストンの嵌装部通過に伴うD液室とB,C液室の差圧と
、上記ピストンが嵌装部に嵌装している状態でCとD液
室を連通する通路と、上記差圧に依り液通路10を閉と
しばねに依り戻り作動するそして液通路14と上記の差
圧に依り液通路14を閉とする弁を持った弁体を有する
ことを特徴とする、シリンダーに依る低圧力及び高圧力
液供給機構。
(3) A floating piston that is fitted in the first and second cylinders to form a supply liquid chamber and a liquid chamber A, and that operates depending on the supply liquid and returns to operation depending on the supply liquid, and a floating piston that is fitted in the second cylinder and forms the supply liquid chamber and the A liquid chamber. and B, which form liquid chambers, and are operated by the operation of the valve mechanism described below, and return operated by the supplied fluid, and are integrated with the bulkhead block, and have liquid chambers C and D, into which the piston of the ram described below is fitted. A liquid chamber with a mounting part, a liquid inlet/outlet provided in liquid chamber C, a liquid chamber that is integrated with the pressure booster piston, fits through the partition block and projects into liquid chambers C and D, and a liquid chamber with a smaller diameter than the pressure booster piston. A piston to be fitted into the fitting part, a ram having the following valve mechanism, liquid filled in each of the liquid chambers A, B, C, and D and a liquid passage connecting them, and the fitting part of the piston. Due to the differential pressure between the D liquid chamber and the B and C liquid chambers as they pass through, the passage that communicates the C and D liquid chambers with the piston fitted in the fitting part, and the liquid passage 10 due to the differential pressure. A low-pressure and high-pressure liquid using a cylinder, characterized in that it has a valve body having a valve that closes the liquid passage 14 and closes the liquid passage 14 according to the above-mentioned differential pressure. supply mechanism.
(4)第1,2シリンダーに嵌装し供給液体室及びA液
室を形成するそして供給液体に依り作動し供給液に依り
戻り作動する遊動ピストンと、第2シリンダーに嵌装し
供給液体室及びB液室を形成するそして下記の弁機構の
作動に依り作動し供給流体に依り戻り作動する増圧ピス
トンと、隔壁ブロックと一体化しC,D液室を持ちそし
て下記のラムのピストンの嵌装部を持った液室と、C液
室に設けられた液出入口と、増圧ピストンと一体化し隔
壁ブロックを嵌装貫通しC,D液室に突出するそして増
圧ピストンより小径で液室嵌装部に嵌装するピストンと
下記の弁機構を持ったラムと、A,B,C,Dの各液室
とそれらを連通する液通路に満たされた液体と、上記ピ
ストンの嵌装部通過に伴うD液室とB,C液室の差圧と
、上記ピストンが嵌装部に嵌装している状態でCとD液
室を連通する通路と、上記差圧に依り液通路10を閉と
しばねに依り戻り作動する弁体を有することを特徴とす
る、シリンダーに依る低圧力及び高圧力液供給機構。
(4) A floating piston that is fitted in the first and second cylinders to form a supply liquid chamber and a liquid chamber A, and that operates depending on the supply liquid and returns to operation depending on the supply liquid, and a floating piston that is fitted in the second cylinder and forms the supply liquid chamber and the A liquid chamber. and B, which form liquid chambers, and are operated by the operation of the valve mechanism described below, and return operated by the supplied fluid, and are integrated with the bulkhead block and have liquid chambers C and D, into which the piston of the ram described below is fitted. A liquid chamber with a mounting part, a liquid inlet/outlet provided in liquid chamber C, a liquid chamber that is integrated with the pressure booster piston, fits through the partition block and projects into liquid chambers C and D, and a liquid chamber with a smaller diameter than the pressure booster piston. A piston to be fitted into the fitting part, a ram having the following valve mechanism, liquid filled in each of the liquid chambers A, B, C, and D and a liquid passage connecting them, and the fitting part of the piston. Due to the differential pressure between the D liquid chamber and the B and C liquid chambers as they pass through, the passage that communicates the C and D liquid chambers with the piston fitted in the fitting part, and the liquid passage 10 due to the differential pressure. A cylinder-based low-pressure and high-pressure liquid supply mechanism, characterized in that it has a valve body that is operated by a spring to close and return.
(5)第1,2シリンダーに嵌装し供給流体室及びA液
室を形成するそして供給流体に依り作動し供給液に依り
戻り作動する遊動ピストンと、第2シリンダーに嵌装し
供給液体室及びB液室を形成するそして下記の弁機構の
作動に依り作動し供給流体に依り戻り作動する増圧ピス
トンと、隔壁ブロツクと一体化しC,D液室を持ちそし
て下記のラムのピストンの嵌装部を持った液室と、C液
室に設けられた液出入口と、増圧ピストンと一体化し隔
壁ブロックを嵌装貫通しC,D液室に突出するそして増
圧ピストンより小径で液室嵌装部に嵌装するピストンと
下記の弁機構を持ったラムと、A,B,C,Dの各液室
とそれらを連通する液通路に満たされた液体と、上記ピ
ストンの嵌装部通過に伴うD液室とB,C液室の差圧と
、上記差圧のP_1に依り液通路10を閉としばねに依
り戻り作動する弁体と、上記の差圧P_1より大きいP
_2に依り通路12を開としばねに依り戻り作動する弁
体を持ったことを特徴とする、シリンダーに依る低圧力
及び高圧力液供給機構。
(5) A floating piston that is fitted in the first and second cylinders to form a supply fluid chamber and a liquid chamber A, and that operates depending on the supply fluid and returns to operation depending on the supply fluid, and a floating piston that is fitted in the second cylinder and forms the supply fluid chamber and the A liquid chamber. and B, which form liquid chambers, and are operated by the operation of the valve mechanism described below, and return operated by the supplied fluid, and are integrated with the bulkhead block, and have liquid chambers C and D, into which the piston of the ram described below is fitted. A liquid chamber with a mounting part, a liquid inlet/outlet provided in liquid chamber C, a liquid chamber that is integrated with the pressure booster piston, fits through the partition block and projects into liquid chambers C and D, and a liquid chamber with a smaller diameter than the pressure booster piston. A piston to be fitted into the fitting part, a ram having the following valve mechanism, liquid filled in each of the liquid chambers A, B, C, and D and a liquid passage connecting them, and the fitting part of the piston. Due to the differential pressure between the D liquid chamber and the B and C liquid chambers as they pass, and the above differential pressure P_1, the valve body closes the liquid passage 10 and returns due to the spring, and the pressure P greater than the above differential pressure P_1
A cylinder-based low-pressure and high-pressure liquid supply mechanism, characterized in that it has a valve body that opens the passage 12 according to _2 and is operated back by a spring.
JP62308979A 1987-12-06 1987-12-06 Low/high pressure liquid supply mechanism by cylinder Pending JPH01150003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62308979A JPH01150003A (en) 1987-12-06 1987-12-06 Low/high pressure liquid supply mechanism by cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62308979A JPH01150003A (en) 1987-12-06 1987-12-06 Low/high pressure liquid supply mechanism by cylinder

Publications (1)

Publication Number Publication Date
JPH01150003A true JPH01150003A (en) 1989-06-13

Family

ID=17987506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62308979A Pending JPH01150003A (en) 1987-12-06 1987-12-06 Low/high pressure liquid supply mechanism by cylinder

Country Status (1)

Country Link
JP (1) JPH01150003A (en)

Similar Documents

Publication Publication Date Title
US4065094A (en) Hydraulic actuator
US4362339A (en) Hydraulic brake system with an antiskid control apparatus
EP0833239A3 (en) Pneumatic pressure relay
KR930011754B1 (en) Brake booster with quick take-up and reduced stroke
US4437309A (en) Pneumatic-hydraulic system for hydraulic actuator
KR960013889A (en) Brake hydraulic controller
JPS62155167A (en) Hydraulic booster for tandem type brake master cylinder device
US2009515A (en) Valve system
JPH01150003A (en) Low/high pressure liquid supply mechanism by cylinder
JPS60203560A (en) Anti-skid controller
JPS6127749A (en) Hydraulic controller for vehicular brake
JPH04131566U (en) hydraulic brake system
JPH09229014A (en) Cylinder device automatically outputting low power at small external force and high power at large external force
JPS60260708A (en) Cylinder device
JPS59103008A (en) Cylinder device
JPS5825131Y2 (en) Fluid sequential operation circuit device
JPH01126403A (en) Cylinder device
JPS57179404A (en) Cylinder device
US3839866A (en) Fill and pressurizing system
JPH01112003A (en) Low/high pressure liquid supplying mechanism by means of cylinder
US6789389B2 (en) Piston-cylinder mechanisms and pressure control units utilizing such piston-cylinder mechanisms
JPS60208601A (en) Pressure increasing cylinder
JPH01126404A (en) Cylinder device
JPS6224005A (en) Cylinder device
JPS60256608A (en) Cylinder device