JPH01148696A - Holding device for fixed point of ship - Google Patents

Holding device for fixed point of ship

Info

Publication number
JPH01148696A
JPH01148696A JP62306573A JP30657387A JPH01148696A JP H01148696 A JPH01148696 A JP H01148696A JP 62306573 A JP62306573 A JP 62306573A JP 30657387 A JP30657387 A JP 30657387A JP H01148696 A JPH01148696 A JP H01148696A
Authority
JP
Japan
Prior art keywords
ship
bow
control
wind
fixed point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62306573A
Other languages
Japanese (ja)
Inventor
Toshiro Saeki
敏朗 佐伯
Yoshitada Shimura
志村 佳忠
Yoshitoshi Shimamoto
島本 芳寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP62306573A priority Critical patent/JPH01148696A/en
Publication of JPH01148696A publication Critical patent/JPH01148696A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To obtain a simple and low-cost structure by providing a direction detecting means and a position measuring means, a calculating means, a PID controller, an addition processing means, and a control means. CONSTITUTION:The deviations between each of set direction and set position for holding fixed point which are set in a setting portion 1 and each of the present direction and position of a ship detected by a direction detecting means 2 and a position measuring means 3 are calculated by means of a calculating means 5, and a controlling force applied in a bow direction, a controlling force applied in a lateral direction, and a moment applied to a bow are introduced out by a PID controller 6 so as to make these deviations zero. Also, each of wind pressure components is estimated from the wind velocity and wind direction which are detected by an anemoscope 7 by means of a feed-forward compensation means 8, and each of the estimated wind pressure components is addingly processed to the introduced-out control force and moment by means of an addition processing means 9 to carry out a feed-forward compensation. The controlling operation quantity of each of a bow thruster, a variable pitch propeller, and a rudder is calculated and controlled from the output of the addition processing means 9 by means of a control means 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、各種の海洋作業船などの船舶を所定の設定
方位および設定位置に保持する船舶の定点保持装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a fixed point holding device for a ship that holds a ship such as various marine work vessels in a predetermined set direction and position.

〔従来の技術〕[Conventional technology]

近年、各種の海洋作業船において、船体を所定の設定方
位および設定位置に保持する定点保持機能の需要が高ま
っているが、船舶を機械的に定点保持できない場合、風
浪および潮流の外乱がある洋上で船舶を定点保持するに
は、操船者に対して非常に複雑な操作が要求されること
になシ、しかも特開昭54−144699号公報(Be
aH25104)  に記載のように、全方向に推力を
発生することの可能な2組の翼車プロベラや、船尾の横
方向の推力を発生させるスタンスラスタ、アクティブラ
ダーなどの特別な装置を装備しなければならない。
In recent years, there has been an increasing demand for a fixed point holding function for holding the ship in a predetermined direction and position for various types of offshore work vessels. In order to keep the ship in a fixed position, the operator is required to perform extremely complicated operations, and moreover,
aH25104), special equipment such as two sets of bladed propellers that can generate thrust in all directions, a stance thruster that generates lateral thrust at the stern, and an active rudder must be installed. Must be.

また、特開昭55−47995号公報(B68H251
04)に記載のように、フオイトーシュナイダー型のサ
イクロイド推進装置などの、デカルト座標に従って制御
可能な特殊な推進装置を用いることも考えられている。
Also, Japanese Patent Application Laid-open No. 55-47995 (B68H251
As described in 04), it is also considered to use a special propulsion device that can be controlled according to Cartesian coordinates, such as a Feutschneider type cycloid propulsion device.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、前記した特開昭54−144699号公報に
記載の如く翼車プロペラを用いる場合、翼車プロペラの
構造が複雑で、制御系も極めて複雑になシ、しかも推進
効率が悪いという問題点があり、スタンスラスタやアク
ティブラダーを装備する場合、これらを装備するための
大きなスペースが船尾部分に必要となシ、スタンスラス
ク、アクティブラダーだけでは船舶の定点保持が不可能
なために、船首の横方向の推力を発生させるバウスラス
タなどの他の推力発生機を必要とするという問題点があ
る。
However, when using a bladed propeller as described in Japanese Patent Application Laid-Open No. 54-144699, the structure of the bladed propeller is complicated, the control system is also extremely complicated, and there are problems in that the propulsion efficiency is poor. If a stance thruster or active rudder is installed, a large space is required in the stern area to install them. There is a problem in that it requires another thrust generator such as a bow thruster to generate directional thrust.

また、特開昭55−47995号公報に記載の装置の場
合、目標位置に対する船舶の現在位置が一定の関係にな
るように、前記した推進装置をフィード、パック制御す
ることが記載されているが、単なるフィードバック制御
であるため、船舶の定点保持制御に遅れが生己、目標位
置に対し、船舶の位置をある範囲内に制御できても、制
御し得る範囲が大きくなシ、制御精度が悪いという問題
点がある。
Furthermore, in the case of the device described in Japanese Patent Application Laid-Open No. 55-47995, it is described that the above-mentioned propulsion device is fed and pack-controlled so that the current position of the ship has a constant relationship with the target position. , Since it is a simple feedback control, there is a delay in the ship's fixed point holding control, and even if the ship's position can be controlled within a certain range with respect to the target position, the controllable range is large and the control accuracy is poor. There is a problem.

そこで、この発明では、簡単かつ安価な構成により、船
舶を精度よく設定方位、設定位置に定点保持できるよう
にすることを技術的課題とする。
Therefore, the technical object of the present invention is to enable a ship to be held at a fixed point in a set direction and position with high precision using a simple and inexpensive configuration.

〔問題点を解決するための手段〕[Means for solving problems]

そして、前記した従来技術の問題点を解決するための手
段を、実施例に対応する第1図を用いて説明する。
Means for solving the problems of the prior art described above will be explained using FIG. 1 corresponding to an embodiment.

すなわち、船首に補助推進手段としてバウスラスタを備
え、主推進手段として可変ピッチプロペラを有する2台
の推進機を備えた船舶に設けられ、該船舶を所定の設定
方位および設定位置に保持する船舶の定点保持装置にお
いて、この発明では、前記船舶の方位および位置をそれ
ぞれ検出する方位検出手段(2)および位置測位手段(
3)と、前記方位検出手段(21および位置測位手段(
31によりそれぞれ検出された前記方位および位置と、
前記設定方位および設定位置との偏差を算出する算出手
段+51と、 前記算出手段により算出された前記偏差がゼロになるよ
う前記船舶の船首方向に加える制御力。
That is, a fixed point on a ship that is equipped with a bow thruster at the bow as an auxiliary propulsion means and two propulsion machines each having a variable pitch propeller as a main propulsion means to maintain the ship in a predetermined set direction and position. In the holding device, the present invention includes an azimuth detection means (2) and a position positioning means (2) for detecting the azimuth and position of the vessel, respectively.
3), the direction detecting means (21) and the positioning means (
31, and the direction and position respectively detected by
a calculation means +51 for calculating a deviation from the set orientation and the set position; and a control force applied in the bow direction of the ship so that the deviation calculated by the calculation means becomes zero.

横方向に加える制御力、船首に加えるモーメントを導出
する導出手段としてのPID制御器(6)と、前記PI
D制御器(6)により導出された前記両制御力およびモ
ーメントに、風信儀(7)により検出された風向、風速
からフィードフォワード補償手段+81により推定した
風圧力成分をそれぞれ加算処理する加算処理手段(9)
と、 前記加算処理手段(9)の出力から前記バウスラスタ、
可変ピッチプロペラおよび舵それぞれの制御操作量を算
出して前記バウスラスタ、可変ピッチプロペラおよび舵
を制御する分配器顛および操作量演算器011からなる
制御手段囮とを設けている。
a PID controller (6) as a deriving means for deriving a control force applied in the lateral direction and a moment applied to the bow;
Addition processing means for adding a wind pressure component estimated by the feedforward compensation means +81 from the wind direction and wind speed detected by the wind guide (7) to both the control force and moment derived by the D controller (6). (9)
and the bow thruster from the output of the addition processing means (9);
A control means decoy consisting of a distributor frame and a manipulated variable computing unit 011 is provided, which calculates the control manipulated variables of the variable pitch propeller and the rudder to control the bow thruster, the variable pitch propeller, and the rudder.

〔作用〕[Effect]

したがって、この発明によると、設定部(1)に設定さ
れた定点保持すべき設定方位および設定位置各々と、方
位検出手段C2)1位置側位手段+31により検出され
た船舶の現在方位および現在位置各々との偏差が、算出
手段(5)により算出され、PID制御器(6)により
前記偏差がゼロになるよう、船舶の船首方向に加える制
御力、横方向に加える制御力。
Therefore, according to the present invention, the set azimuth and set position to be held at a fixed point set in the setting unit (1), and the current azimuth and current position of the ship detected by the azimuth detecting means C2) 1 position side means +31. The deviation from each is calculated by the calculation means (5), and the PID controller (6) applies a control force in the bow direction and a control force in the lateral direction of the ship so that the deviation becomes zero.

船首に加えるモーメントが導出されるとともに、風信儀
(7)により検出された風速および風向から、フィード
フォワード補償手段(8)により各風圧力成分が推定さ
れ、導出された制御力およびモーメントに、推定された
各風圧力成分が加算処理されてフィードフォワード補償
がなされる。
The moment applied to the bow is derived, and each wind pressure component is estimated by the feedforward compensator (8) from the wind speed and wind direction detected by the wind instrument (7), and the estimated control force and moment are added to the derived control force and moment. The calculated wind pressure components are added together to perform feedforward compensation.

さらに、風圧力成分が加算された前記制御力およびモー
メントにそれぞれ釣合うバウスラスタ。
Furthermore, a bow thruster that balances the control force and moment to which a wind pressure component is added.

可変ピッチプロペラ、舵の所要推力が制御手段(2)の
分配器noにより算出され、算出された各推力を発生す
るのに要するバウスラスタ、可変ピッチプロペラおよび
舵の各操作量が、制御手段@の操作量演算器0υにより
求められ、補助推進手段であるバウスラスタのピッチ角
または弁開度、主推進手段である両推進機の可変ピッチ
プロペラのピッチ角および回転数1両舷の舵角が、操作
量演算器Qllにより求められた値になるように制御さ
れ、船舶の定点保持制御が行なわれる。
The required thrust of the variable pitch propeller and rudder is calculated by the distributor no of the control means (2), and each operation amount of the bow thruster, variable pitch propeller and rudder required to generate each calculated thrust is calculated by the control means @. The pitch angle or valve opening of the bow thruster, which is the auxiliary propulsion means, and the pitch angle and rudder angle of both sides of the variable pitch propeller of both propulsion units, which are the main propulsion means, are determined by the manipulated variable calculator 0υ. The value calculated by the quantity calculator Qll is controlled to maintain the fixed point of the ship.

〔実施例〕〔Example〕

つぎに、この発明を、そのl実施例を示した図面ととも
に詳細に説明する。なお、定点保持の対象となる船舶は
、船首に補助推進手段としてバウスラスタを備え、主推
進手段として可変ピッチプロペラを有する2台の推進機
を備えている。
Next, the present invention will be explained in detail with reference to drawings showing embodiments thereof. Note that the ship to be fixed-point-maintained is equipped with a bow thruster at the bow as an auxiliary propulsion means, and two propulsion machines each having a variable pitch propeller as a main propulsion means.

構成を示す第1図において、(11は図外の船舶を定点
保持すべき方位および位置が設定される設定部、(2)
は船舶の現在の方位を検出するジャイロコンパス等の方
位検出手段、(31は船舶の現在の位置を検出するレー
ダ等の位置測位手段、(4)はローパスフィルタ(以下
LPFという)であシ、方位検出手段(2)および位置
測位手段(3)の出力信号を、それぞれフィルタリング
する。
In FIG. 1 showing the configuration, (11 is a setting part (not shown) in which the direction and position of a ship to be held at a fixed point is set; (2)
(31 is a positioning means such as a radar that detects the current position of the ship; (4) is a low-pass filter (hereinafter referred to as LPF); The output signals of the direction detection means (2) and the positioning means (3) are each filtered.

(51は設定部11)に設定された設定方位および設定
位置それぞれと、方位検出手段(2)9位置側位手段(
31により検出された検出方位および検出位置それぞれ
との偏差を算出する算出手段、(6)は導出手段として
のPID制御器であシ、算出手段r51により算出され
た前記偏差がゼロになるよう、船舶の前後揺れに対し船
首方向に加える制御力、左右揺れに対し横方向に加える
制御力、船首揺れに対し船首に加えるモーメントをそれ
ぞれ導出する。
(51 indicates the setting direction and setting position set in the setting unit 11) and the direction detection means (2) and the 9 position side means (
(6) is a PID controller as a derivation means, so that the deviation calculated by the calculation means r51 becomes zero; The control force to be applied in the bow direction when the ship is rocking back and forth, the control force to be applied in the lateral direction when the ship is rolling from side to side, and the moment to be applied to the bow when the ship is rocking are derived.

(7)は風速および風向を検出する風信儀、18)は風
信儀(7)により検出された風速および風向から船舶に
前後揺れ、左右揺れ、船首揺れを及ぼす風圧力された前
記両制御力およびモーメントに、補償手段(8)により
算出された各風圧力成分をそれぞれ加算処理する。
(7) is a wind instrument that detects the wind speed and wind direction; 18) is the wind force that exerts the wind speed and wind direction detected by the wind instrument (7) on the ship, causing back and forth swaying, side to side swaying, and bow swaying; Each wind pressure component calculated by the compensation means (8) is added to the moment.

C1Oは前記風圧力成分がそれぞれ加算された前記両制
御力およびモーメントに釣合う前記バウスラスタ、両可
変ピッチプロペラおよび両舷それぞれの所要推力を算出
する分配器、011は操作量演算器であり、分配器no
により算出されたバウスラスタ。
C1O is a distributor that calculates the required thrust of the bow thruster, both variable pitch propellers, and both sides that balance the control forces and moments to which the wind pressure components are added, and 011 is a manipulated variable calculator; Vessel no.
Bow thruster calculated by.

両可変ピッチプロペラおよび両舷の各所要推力を発生す
るのに要するバウスラスタ、両可変ピッチプロペラおよ
び両舷それぞれの制御操作量を算出するようになってお
り、分配器α1および操作量演算器OBにより、制御手
段@が構成され、推進手段(至)の前記バウスラスタの
ピッチ角または弁開度が制御され、前記両推進機の可変
ピッチプロペラのピッチ角および回転数1両舷の舵角が
制御される。
The control operation amount for the bow thruster, both variable pitch propellers, and both sides required to generate the required thrust for both variable pitch propellers and both sides is calculated by the distributor α1 and the operation amount calculator OB. , a control means @ is configured to control the pitch angle or valve opening of the bow thruster of the propulsion means (to), and control the pitch angle and rudder angle of the variable pitch propeller of the both propulsion units and the rudder angle of both sides. Ru.

そして、設定部(1)に設定された定点保持すべき設定
方位および設定位置各々と、方位検出手段(2)。
The set orientation and set position to be held as a fixed point set in the setting unit (1), and the orientation detection means (2).

位置測位手段(3夛により検出された船舶の現在方位お
よび現在位置各々との偏差が、算出手段(5)により算
出され、PID制御器(6)により前記偏差がゼロにな
るよう、船舶の船首方向に加える制御力。
The calculation means (5) calculates the deviation between the current direction and the current position of the ship detected by the positioning means (3 units), and the PID controller (6) adjusts the bow of the ship so that the deviation becomes zero. A control force applied in a direction.

横方向に加える制御力、船首に加えるモーメントが導出
される。
The control force applied in the lateral direction and the moment applied to the bow are derived.

このとき、第2図に示すように、x−o−y絶対座標系
において、船舶を定点保持すべき設定方位が1211 
、設定位置のX、Y座標がそれぞれXi、Ytであシ、
船舶の現在の方位が03.現在位置のX。
At this time, as shown in Figure 2, in the x-o-y absolute coordinate system, the set direction in which the ship should be held at a fixed point is 1211.
, the X and Y coordinates of the setting position are Xi and Yt, respectively,
The current heading of the ship is 03. X of current position.

Y座標がそれぞれXs 、 Ysであるときに、船舶の
とのx−o−y座S系におけるPID制御器(6)のそ
れぞれKl’x 、 KPy 、 KPM)とし、同様
にPID制偏差のX、Y軸方向成分ex + e”lお
よび現在方tと設定方位の偏差eψは、 ex = (Xt −Xs )omits −1−(Y
t −Ys ) sin 121sey = −(Xt
 −Xs ) sfn 1lls++(Yt −Ys 
) am12)seψ= at−りS        
   ・・・■と表わされる。
When the Y coordinates are Xs and Ys, respectively, Kl'x, KPy, KPM) of the PID controller (6) in the x-o-y S system of the ship, and similarly the X of the PID deviation , the Y-axis direction component ex + e”l and the deviation eψ between the current direction t and the set direction are ex = (Xt −Xs)omits −1−(Y
t −Ys ) sin 121sey = −(Xt
-Xs) sfn 1lls++(Yt -Ys
) am12)seψ=at-riS
...It is expressed as ■.

さらに、PID制御器(6)により、前記0式で表わさ
れる偏差をゼロにするために船舶の横方向。
Furthermore, the PID controller (6) is used in the lateral direction of the ship in order to make the deviation expressed by the above equation 0 zero.

船首方向すなわちx’ 、 y’軸方向に加える制御力
Fx。
Control force Fx applied in the bow direction, that is, the x' and y' axis directions.

Fy、および船首に加えるモーメン)Mψは、一般的に と表わされ、前記0式に従ってPID制御器(6)によ
り船舶に加えるべき制御力T?x 、 Fyおよびモー
メン)Mψが導出される。
Fy and the moment applied to the bow) Mψ is generally expressed as, and the control force T? to be applied to the ship by the PID controller (6) according to the above equation 0. x, Fy and moments) Mψ are derived.

つぎに、風信儀(7)により検出された風速および風向
、および予め対象船舶の風洞実験により求めておいた風
圧力係数(船舶に働く風圧力の各成分を風速の2乗で無
次元化した係数)から、船舶の現在位置でのx−o、−
y座標系における風圧力のX’、Y軸方向成分、方位成
分が補償手段(81により算出され、        
   PID制御器(6)により前記■式に従って導出
された制御力FX。
Next, the wind speed and direction detected by Fushingi (7), and the wind pressure coefficient (each component of the wind pressure acting on the ship is made dimensionless by the square of the wind speed) determined in advance by wind tunnel experiments on the target ship. coefficient), x-o at the ship's current position, -
The X′, Y-axis direction components, and azimuth components of the wind force in the y-coordinate system are calculated by the compensation means (81,
Control force FX derived by the PID controller (6) according to the above formula (2).

Fyおよびモーメント陶に、補償手段(8)による各風
圧力成分それぞれが加算処理手段(91により加算処理
されてフィードフォワード補償がなされる。
Each wind force component produced by the compensation means (8) is added to Fy and the moment force by the addition processing means (91) to perform feedforward compensation.

さらに、前記0式より表わされる制御力Fx、Fyおよ
びモーメン)M9+に、前記した風圧力成分それぞれを
加算した後の制御力をF’X 、 Fy 、モーメント
を陶とすると、分配器(10により、これらの制御メタ
9両可変ピッチプロペラおよび両舷の所要推力が、次式
の演算により算出される。
Furthermore, if the control force F'X, Fy is the control force after adding each of the wind force components described above to the control force Fx, Fy and moment (moment) expressed by the above equation 0, and the moment is F, then the distributor (10) , the required thrust of these control meta-9 variable pitch propellers and both sides are calculated by the following equation.

FX−ΣTpx i Fy −Tby+ΣTryi (i−1,2)はそれぞれバウスラスタ、可変ピッチデ
ロベフ、舵の所要推力を表わし、Lbx、Lrxiはそ
れぞれ船体の重心からバウスラスタ、両舷の中心までの
符号つきの距離であり、Lpyiは船体の中心線から両
可変ピッチプロペラのプロペラ軸までの距離であシ、添
字の1(=1,2)は、1のとき右舷側、2のとき左舷
側を意味する。
FX-ΣTpx i Fy -Tby+ΣTryi (i-1, 2) represent the required thrust of the bow thruster, variable pitch derobef, and rudder, respectively, and Lbx and Lrxi are the signed distances from the center of gravity of the hull to the bow thruster and the center of both sides, respectively. , Lpyi is the distance from the center line of the hull to the propeller axes of both variable pitch propellers, and the subscript 1 (=1, 2) means that 1 means the starboard side and 2 means the port side.

ところが、前記した0式では、未知数が5個(舵が同じ
方向に同じ角度だけ連動する場合は4個)に対して方程
式が8個であるため、最適解を得るために、 J = ’rb)r2+ΣTpxi2+ΣTryi2・
・・■で表わされる評価関数Jを定め、この評価関数J
が最小となるよう、前記0式の方程式の演算を行なうよ
うにする。
However, in the above equation 0, there are 5 unknowns (4 when the rudders move in the same direction and at the same angle) and 8 equations, so in order to obtain the optimal solution, J = 'rb )r2+ΣTpxi2+ΣTryi2・
...Determine the evaluation function J expressed by ■, and use this evaluation function J
The above equation 0 is calculated so that .

そして、実際の前記0式の演算の際には、簡単のために で表わされるように、両舷の推力Tryi (i=1@
 2 )が、舵の前方のプロペラの順転時にのみ作用し
Then, when actually calculating the above equation 0, for simplicity, the thrust on both sides Tryi (i=1@
2) only acts when the propeller in front of the rudder rotates forward.

かつそのときのプロベフ推力Tpxiと舵角δに比例す
ると仮定し、しかも舵角δの条件として、1δ1乙85
°かつ連動         ・・・■を与え、次のよ
うな演算アルゴリズムに従って演算を行なうようにする
Assuming that it is proportional to the Probef thrust Tpxi and the rudder angle δ at that time, and as a condition for the rudder angle δ, 1δ1 Otsu85
° and interlock...■ are given, and the calculation is performed according to the following calculation algorithm.

まず、第1ステツプにおいて、前記0式の条件を考慮せ
ずに、 ゛ Tryi m −KTpxi J として評価関数Jを特徴とする請求め、得られた解が前
記0式を満足すれば最適解とし、前記0式を満足しない
場合は、第2ステツプにおいて、1#l −85°、 
TPXI ) O* TP”< 0と仮定して、評価関
数Jを特徴とする請求め、得られた解のうち、前記した
仮定に矛肩しないものがあれば、そのときの評価関数J
をJ+とする。
First, in the first step, without considering the condition of the above equation 0, the evaluation function J is characterized as ゛Tryim -KTpxi J, and if the obtained solution satisfies the above equation 0, it is considered as the optimal solution. , if the above equation 0 is not satisfied, in the second step, 1#l -85°,
TPXI) Assuming that O* TP''< 0, if there is a claim characterized by the evaluation function J among the obtained solutions that does not contradict the above assumption, then the evaluation function J
Let be J+.

つぎに、第8ステツプにおいて、1δ1=85°、Tp
t+< O、TPX2> 0と仮定して、評価関数Jを
特徴とする請求め、得られた解のうち、前記した仮定に
矛盾しないものが°あれば、そのときの評価関数Jf:
Jgとし、第4ステツプにおいて、前記した第2、第8
ステツプにおいて得られた評価開数Jl。
Next, in the eighth step, 1δ1=85°, Tp
Assuming that t+< O, TPX2> 0, if there is a solution that does not contradict the above assumption among the obtained solutions, then the evaluation function Jf is:
Jg, and in the fourth step, the above-mentioned second and eighth
Evaluation numerical aperture Jl obtained in step.

J2のうち、小さい方が得られるときの前記0式の各推
力Tby 、 Tpxi 、 Tryi (i=l 、
 2 )を最適解とする。
When the smaller one of J2 is obtained, each thrust force Tby, Tpxi, Tryi (i=l,
2) is the optimal solution.

さらに、このようにして得られた各推力を発生するのに
要するバウスラスタ、両可変ピッチプロベラおよび両舷
の各操作量が、水槽実験により予め求めた推力と操作量
との関係にもとづき、操作量演算器Qllにより算出さ
れ、補助推進手段であるバウスラスタのピッチ角または
弁開度、主推進手段である両推進機の可変ピッチプロペ
ラのピッチ角および回転数9両舷の舵角が、演算器an
により求められた値になるように制御される。
Furthermore, the amount of operation required for the bow thruster, both variable pitch probers, and both sides required to generate each thrust obtained in this way is determined based on the relationship between the thrust and the amount of operation determined in advance through a water tank experiment. The pitch angle or valve opening of the bow thruster, which is the auxiliary propulsion means, the pitch angle of the variable pitch propeller of both propulsion units, which are the main propulsion means, and the rudder angle of both sides with rotation speed 9 are calculated by the calculator Qll.
is controlled to the value determined by

ところで、前記した定点保持装置を用いて、水槽実験を
行なったところ、第8図ないし第8図に示すような結果
が得られた。
By the way, when a water tank experiment was conducted using the fixed point holding device described above, the results shown in FIGS. 8 and 8 were obtained.

ここで、第8図、第5図、第7図において、各図(a)
はX−0,−Y座標系における船舶のX軸、Y軸方向へ
の偏位およびヨー角の時間変化を示し、各図(b) 、
 (e) 、 (d)はそれぞれバウスラスタ9両可変
ピツチデロベフ、舵の制御量の時間変化を示し、各図(
b) 、 (C3)ではバウスラスタおよび可変ピッチ
プロペラの制御能力の制限値を1ooLNとしており、
各図(b)中のP、8は左舷、右舷側のプロペラを示し
ている。
Here, in Fig. 8, Fig. 5, and Fig. 7, each figure (a)
shows the time changes of the ship's deviation in the X-axis and Y-axis directions and the yaw angle in the X-0, -Y coordinate system, and each figure (b),
(e) and (d) respectively show the time changes in the control amount of the nine bow thrusters and the rudder.
b) In (C3), the limit value of the control ability of the bow thruster and variable pitch propeller is set to 1ooLN,
P and 8 in each figure (b) indicate the port and starboard side propellers.

また、第4図、第6図、第8図は、それぞれ定点保持制
御開始からの船舶の位置軌跡であシ、流速((!URR
ENT:] 、風速および風量(WIND) 、波高(
WAVE)は設定条件を示し、矢印は船舶に作用する風
浪の方向を示す。
In addition, Figures 4, 6, and 8 show the vessel's position locus and flow velocity ((!URR) from the start of fixed point holding control, respectively.
ENT: ], wind speed and volume (WIND), wave height (
WAVE) indicates the setting conditions, and the arrow indicates the direction of wind and waves acting on the vessel.

そして、第1の設定条件として、流速2kt相当の潮流
を右舷前方25°方向から船舶に作用させた場合、船舶
の偏位、ヨー角およびバウスラスタ等の各アクチュエー
タの制御量の時間変化はそれぞれ第8図(a)〜(d)
に示すようになシ、船舶の位置軌跡はjJr14図に示
すようになシ、この場合、制御開始当初、潮流により船
舶は約1゜5m流されるが、約8分後に原位置であるx
−o−y座標系の原点0に復帰しておシ、潮流に対して
良好な定点保持制御が行なわれていることがわかる。
As the first setting condition, when a tidal current with a current velocity of 2 kt is applied to the ship from 25 degrees forward on the starboard side, the time changes in the control variables of each actuator such as the ship's deflection, yaw angle, and bow thruster are Figure 8 (a) to (d)
The position trajectory of the ship is as shown in Figure 14. In this case, at the beginning of the control, the ship is swept about 1°5m by the current, but after about 8 minutes it returns to its original position.
It can be seen that after returning to the origin 0 of the -o-y coordinate system, good fixed point holding control is performed against the tidal current.

つぎに、第2の設定条件として、平水中で静止している
状態の船舶に、実船換算で有義波高1.8mの不規則波
外乱を、船舶の斜め前方60°から作用させた場合、船
舶の偏位、ヨー角および各アクチュエータの制御量の時
間変化はそれぞれ第5図(a)〜(d)に示すようにな
シ、船舶の位置軌跡は第6図に示すようになシ、この場
合、船舶の位置変動の軌跡が原位置を中心とする半径1
mの円内に収まっており、不規則波外乱に対しても良好
な定点保゛  持制御が行なわれていることがわかる。
Next, as a second setting condition, when an irregular wave disturbance with a significant wave height of 1.8 m in terms of an actual ship is applied to a stationary ship in calm water from 60 degrees diagonally in front of the ship. , the ship's deflection, yaw angle, and the time changes of the control variables of each actuator are shown in Figures 5(a) to (d), respectively, and the ship's position trajectory is shown in Figure 6. , in this case, the trajectory of the ship's position change is a radius of 1 centered on the original position.
It can be seen that good fixed point maintenance control is performed even in the case of irregular wave disturbances.

さらに、第3の設定条件として、流速2kt相当船舶の
真横方向から作用させた場合、船舶の偏位。
Furthermore, as a third setting condition, when the action is applied from the side of the ship corresponding to a flow velocity of 2 kt, the deviation of the ship.

ヨー角および各アクチュエータの制御量の時間変化はそ
れぞれ第7図(a)〜(d)に示すようになシ、船舶の
位置軌跡は第8図に示すようになり、この場合、制御開
始直後は、船舶が外乱に流されて位置偏位が4m程度と
なるが、その後徐々に偏位が小さくなっている。
The yaw angle and the control amount of each actuator change over time as shown in Figures 7 (a) to (d), and the ship's position trajectory is as shown in Figure 8. In this case, immediately after the start of control. In this case, the ship was swept away by the disturbance and the positional deviation was about 4 m, but the deviation gradually became smaller after that.

したがって、前記実施例によると、船舶を定点保持する
ために従来のように操船者が複雑な操船を行なう必要が
なく、自動的に船舶を定点保持することができ、操船者
の負担を大幅に軽減することができる。
Therefore, according to the above embodiment, the ship operator does not have to perform complicated maneuvers to hold the ship at a fixed point as in the past, and the ship can be automatically held at a fixed point, greatly reducing the burden on the ship operator. It can be reduced.

さらに、従来のような翼車プロペラやスタンスラスク、
アクティブラダーなどの特殊な推進設備を設ける必要が
なく、船舶に設けられる通常のバウスラスタを利用して
、簡単かつ安価な構成により定点保持を行なうことがで
きる。
In addition, conventional bladed propellers and stance rusks,
There is no need to provide special propulsion equipment such as an active rudder, and a fixed point can be maintained with a simple and inexpensive configuration using a normal bow thruster installed on a ship.

また、風外乱に対するフィードフォワード補償を行なう
ため、船舶を応答性よくしかも高精度に定点保持するこ
とが可能となる。
Furthermore, since feedforward compensation is performed for wind disturbances, it becomes possible to hold the ship at a fixed point with good responsiveness and high accuracy.

なお、この発明は、前記実施例に限らないのは、言うま
でもない。
It goes without saying that the present invention is not limited to the above embodiments.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の船舶の定点保持装置定点保持
することができ、各種の海洋作業船に極めて有効であり
、とくにバウスラスタを装備した2機2軸船に対して、
容易に定点保持機能を付加することが可能となる。
As described above, the fixed point holding device for a ship according to the present invention is capable of holding a fixed point and is extremely effective for various marine work vessels, especially for two-engine, two-shaft vessels equipped with a bow thruster.
It becomes possible to easily add a fixed point holding function.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明の船舶の定点保持装置の1実施例を示
し、第1図はブロック図、第2図は船舶の設定方位およ
び設定位置と現在方位および現在位置との偏差の説明図
、第8図ないし第8図は動作説明図であシ、第3図、第
5図および第7図において、各図(a)は船舶の原位置
からの偏位およびヨー角の時間変化を示し、各図(b)
 、 (C) 、 (d)はそれぞれバウスラスタ、可
変ピンチプロペラ、舵の制御量の時間変化を示し、第4
図、第6図および第8図はそれぞれ船舶の位置軌跡を示
す図である。 (2)・・・方位検出手段、(3し・位置測位手段、C
5)・・・算出手段、(6)・・・PID制御器、(7
)・・・風信儀、(9)・・・加算処理手段、(2)・
・・制御手段、(至)・・・推進手緩。
The drawings show one embodiment of the fixed point holding device for a ship according to the present invention, and FIG. 1 is a block diagram, FIG. 8 to 8 are operation explanatory diagrams, and in FIGS. 3, 5, and 7, each figure (a) shows the time change of the deviation of the ship from its original position and the yaw angle, Each figure (b)
, (C), and (d) show the time changes of the control amount of the bow thruster, variable pinch propeller, and rudder, respectively.
FIG. 6, and FIG. 8 are diagrams each showing the position locus of the ship. (2)... Orientation detection means, (3) Positioning means, C
5)...Calculation means, (6)...PID controller, (7
)...fushingi, (9)...addition processing means, (2)...
...control means, (to)...propulsion is slow.

Claims (1)

【特許請求の範囲】[Claims] (1)船首に補助推進手段としてバウスラスタを備え、
主推進手段として可変ピッチプロペラを有する2台の推
進機を備えた船舶に設けられ、該船舶を所定の設定方位
および設定位置に保持する船舶の定点保持装置において
、 前記船舶の方位および位置をそれぞれ検出する方位検出
手段および位置測位手段と、 前記方位検出手段および位置測位手段によりそれぞれ検
出された前記方位および位置と、前記設定方位および設
定位置との偏差を算出する算出手段と、 前記算出手段により算出された前記偏差がゼロになるよ
う前記船舶の船首方向に加える制御力、横方向に加える
制御力、船首に加えるモーメントを導出する導出手段と
、 前記導出手段により導出された前記両制御力およびモー
メントに、風信儀により検出された風向、風速から推定
した風圧力成分をそれぞれ加算処理する加算処理手段と
、 前記加算処理手段の出力から前記バウスラスタ、可変ピ
ッチプロペラおよび舵それぞれの制御操作量を算出して
前記バウスラスタ、可変ピツチプロペラおよび舵を制御
する制御手段と を備えたことを特徴とする船舶の定点保持装置。
(1) Equipped with a bow thruster at the bow as an auxiliary propulsion means,
A fixed point holding device for a ship equipped with two propulsion machines each having a variable pitch propeller as a main propulsion means to hold the ship at a predetermined set orientation and position, wherein An azimuth detection means and a position positioning means for detecting; a calculation means for calculating a deviation between the azimuth and position respectively detected by the azimuth detection means and the position positioning means and the set azimuth and position; derivation means for deriving a control force to be applied in the bow direction, a control force to be applied in the lateral direction, and a moment to be applied to the bow of the ship so that the calculated deviation becomes zero; both the control forces derived by the derivation means; and addition processing means for adding wind pressure components estimated from the wind direction and wind speed detected by the wind signal to the moment; and calculating control operation amounts for each of the bow thruster, variable pitch propeller, and rudder from the output of the addition processing means. A fixed point holding device for a ship, comprising control means for controlling the bow thruster, the variable pitch propeller, and the rudder.
JP62306573A 1987-12-03 1987-12-03 Holding device for fixed point of ship Pending JPH01148696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62306573A JPH01148696A (en) 1987-12-03 1987-12-03 Holding device for fixed point of ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62306573A JPH01148696A (en) 1987-12-03 1987-12-03 Holding device for fixed point of ship

Publications (1)

Publication Number Publication Date
JPH01148696A true JPH01148696A (en) 1989-06-12

Family

ID=17958683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62306573A Pending JPH01148696A (en) 1987-12-03 1987-12-03 Holding device for fixed point of ship

Country Status (1)

Country Link
JP (1) JPH01148696A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035761A1 (en) * 1996-03-22 1997-10-02 Honshu-Shikoku Bridge Authority Automatic fixed point holding system for marine vessels
JP2002173086A (en) * 2000-12-08 2002-06-18 Mitsubishi Heavy Ind Ltd Control method for ocean platform
JP2002173079A (en) * 2000-12-08 2002-06-18 Mitsubishi Heavy Ind Ltd Method for estimating capacity of propulsion actuator for ocean platform
US6450112B1 (en) * 1999-04-02 2002-09-17 Nautronix, Inc. Vessel control force allocation optimization
WO2006112416A1 (en) * 2005-04-15 2006-10-26 Mitsui Engineering & Shipbuilding Co., Ltd. Automatic vessel position holding control method and controller
US10782692B2 (en) 2015-12-11 2020-09-22 Yanmar Co., Ltd. Ship handling device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120198A (en) * 1978-03-09 1979-09-18 Mitsubishi Heavy Ind Ltd Apparatus for processing positional and directional signal of floating vessel
JPS5861097A (en) * 1981-10-05 1983-04-11 Mitsui Eng & Shipbuild Co Ltd Steering method and device for marine float structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120198A (en) * 1978-03-09 1979-09-18 Mitsubishi Heavy Ind Ltd Apparatus for processing positional and directional signal of floating vessel
JPS5861097A (en) * 1981-10-05 1983-04-11 Mitsui Eng & Shipbuild Co Ltd Steering method and device for marine float structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035761A1 (en) * 1996-03-22 1997-10-02 Honshu-Shikoku Bridge Authority Automatic fixed point holding system for marine vessels
US6450112B1 (en) * 1999-04-02 2002-09-17 Nautronix, Inc. Vessel control force allocation optimization
JP2002173086A (en) * 2000-12-08 2002-06-18 Mitsubishi Heavy Ind Ltd Control method for ocean platform
JP2002173079A (en) * 2000-12-08 2002-06-18 Mitsubishi Heavy Ind Ltd Method for estimating capacity of propulsion actuator for ocean platform
WO2006112416A1 (en) * 2005-04-15 2006-10-26 Mitsui Engineering & Shipbuilding Co., Ltd. Automatic vessel position holding control method and controller
GB2440088A (en) * 2005-04-15 2008-01-16 Mitsui Shipbuilding Eng Automatic vessel position holding control method and controller
GB2440088B (en) * 2005-04-15 2009-12-30 Mitsui Shipbuilding Eng Automatic vessel position holding control method and controller
US10782692B2 (en) 2015-12-11 2020-09-22 Yanmar Co., Ltd. Ship handling device

Similar Documents

Publication Publication Date Title
JP4339016B2 (en) Thrust distribution method and thrust distribution apparatus
JP3038209B1 (en) Automatic bearing setting method and device
JP7249657B2 (en) Vessel control method
US4089287A (en) Method and apparatus for the automatic positioning of a ship to minimize the influence of external disturbance forces
US11027804B2 (en) Underwater sailing body and method of controlling posture of underwater sailing body
JP4706032B2 (en) Automatic ship position holding control method and automatic ship position holding control apparatus
JPH10109693A (en) Specific azimuth linear movement control equipment for ship
JP2002173091A (en) Device for keeping relative position of two floating bodies
JPH01148696A (en) Holding device for fixed point of ship
JPH0858696A (en) Automatic ship position holding system for twin-screw ship
KR101205352B1 (en) Method and system for controlling position of rudder equipped ship
JP5173745B2 (en) Fixed point holding control device, method and program thereof
JP6487365B2 (en) Ship automatic steering system
Shi et al. Optimizing adaptive thrust allocation based on group biasing method for ship dynamic positioning
JP2749833B2 (en) Control thrust distribution device
Reid et al. A steering control system to minimize propulsion losses of high-speed containerships—Part I: System dynamics
JPH0330557B2 (en)
JP2948237B2 (en) Ship route control system
Rosario et al. Experimental variable structure trajectory tracking control of a surface vessel with a motion capture system
JP3662122B2 (en) Ship heading control equipment
JP2024067882A (en) Automatic Steering System for Ships
JPH0325094A (en) Alongside-pier method of marine vessel
JP2622270B2 (en) Marine automatic rotation control device
RU2403169C1 (en) Device for ship automatic approach to berth
JPH0124089B2 (en)