JPH01148547A - Symmetric hybrid laminated material - Google Patents

Symmetric hybrid laminated material

Info

Publication number
JPH01148547A
JPH01148547A JP62305593A JP30559387A JPH01148547A JP H01148547 A JPH01148547 A JP H01148547A JP 62305593 A JP62305593 A JP 62305593A JP 30559387 A JP30559387 A JP 30559387A JP H01148547 A JPH01148547 A JP H01148547A
Authority
JP
Japan
Prior art keywords
prepreg
carbon fiber
lamination
inorganic
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62305593A
Other languages
Japanese (ja)
Inventor
Shinji Yamamoto
新治 山本
Hideho Tanaka
秀穂 田中
Tadashi Miura
正 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62305593A priority Critical patent/JPH01148547A/en
Priority to KR1019880016114A priority patent/KR930009294B1/en
Priority to EP88311494A priority patent/EP0319346A3/en
Publication of JPH01148547A publication Critical patent/JPH01148547A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate a warp while keeping a merit of an interlaminar hybrid laminated material, by a method wherein prepreg obtained by infiltrating thermosetting resin into respective inorganic fibers constituted of a carbon fiber and each element of Si, Ti or Zr, C and O are laminated so that laminating constitution becomes plane symmetry with respect to the central plane of lamination. CONSTITUTION:A carbon fiber is impregnated with epoxy resin, wound round a drum winder unidirectionally, heated and a carbon fiber prepreg, which is in a semi-cured state and arranged unidirectionally, is prepared. Inorganic fiber prepreg which is in the semi-cured state and arranged unidirectionally is prepared similarly by making use of an inorganic fiber comprised of Si, Ti or Zr, C and O. A difference in shrinking stress and warp in a laminated material are eliminated by a method wherein the carbon fiber prepreg and inorganic fiber prepreg are superposed upon each other at plane symmetry with respect to the central plane of lamination and press lamination is performed at 10-250 deg.C, in the lamination of the prepreg.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭素繊維及び特定の無機繊維のそれぞれに熱
硬化性樹脂を含浸させたプリプレグを積層して製造され
る、反りのない対称ハイブリッド積層材に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a non-warping symmetrical hybrid manufactured by laminating prepregs in which carbon fibers and specific inorganic fibers are each impregnated with a thermosetting resin. Regarding laminated materials.

(従来技術及びその問題点) 炭素繊維強化プラスチツク複合体は、比強度、比弾性率
が高いために、スポーツ・レジャー用品などに使用され
ている。しかし、この材料は、圧縮強度あるいは曲げ強
度が低(、さらに伸びが小さく脆いという技術的問題点
を有している。
(Prior art and its problems) Carbon fiber-reinforced plastic composites have high specific strength and specific modulus, and are therefore used in sports and leisure goods. However, this material has technical problems such as low compressive strength or bending strength (and low elongation and brittleness).

このため、炭素繊維層と他の繊維層とを組み合わせたい
わゆるハイブリッド積層材によって、上記問題点の解消
を図る試みがされている。炭素繊維と組み合わせる繊維
としては、従来、ガラス繊維及びアラミド繊維が好んで
使用されてきた。しかし、ガラス繊維は強度及び弾性率
が低く、そのうえ重いという問題を有しており、また、
アラミド繊維は、伸びは大きいが圧縮強度が小さく吸湿
しやすいという問題を有している。従って、これら繊維
と炭素繊維とを併用して得られるプラスチックス複合材
も実用上必ずしも満足のできる材料とは言いがたい。
Therefore, attempts have been made to solve the above-mentioned problems by using a so-called hybrid laminate material that combines a carbon fiber layer and other fiber layers. Conventionally, glass fibers and aramid fibers have been preferably used as fibers to be combined with carbon fibers. However, glass fiber has the problem of low strength and elastic modulus, and is also heavy.
Aramid fibers have a problem of high elongation but low compressive strength and easy moisture absorption. Therefore, it is difficult to say that a plastics composite material obtained by using a combination of these fibers and carbon fibers is a material that is practically satisfactory.

特開昭62−7737号公報には、Si、Ti又はZr
、C及びOの各元素から構成される無機繊維及び炭素繊
維のそれぞれにプラスチックスが含浸されたプリプレグ
を積層し、この積層物を加圧加熱して得られる複合材、
いわゆる層間ハイブリッド複合材が開示されている。こ
の複合材は、上記無機繊維の優れた特長、即ち、マ)l
ルンクス樹脂との良好な接着性及び繊維自体の可撓性が
生かされることによって、炭素繊維強化プラスチツク複
合材に比較して、引張強度、眉間剪断強度及びシャルピ
ー衝撃強度において優れている。
JP-A-62-7737 discloses that Si, Ti or Zr
, a composite material obtained by laminating prepregs impregnated with plastics on inorganic fibers and carbon fibers each composed of the elements C and O, and pressurizing and heating this laminate,
So-called interlayer hybrid composites have been disclosed. This composite material has the excellent features of the above-mentioned inorganic fibers, namely,
By taking advantage of the good adhesion with Runx resin and the flexibility of the fiber itself, it is superior in tensile strength, glabellar shear strength, and Charpy impact strength compared to carbon fiber reinforced plastic composites.

上記の層間ハイブリッド積層材は、用いられる炭素繊維
と無機繊維とで弾性率あるいは熱膨張係数が異なるため
に反りが発生し、高い寸法精度が要求される構造材料と
して使用しがたいという問題点を有している。
The above-mentioned interlayer hybrid laminate material has the problem that warping occurs due to the difference in elastic modulus or thermal expansion coefficient between the carbon fiber and inorganic fiber used, making it difficult to use as a structural material that requires high dimensional accuracy. have.

(発明の目的) 本発明の目的は、特開昭62−7737号公報に記載さ
れた眉間ハイブリッド積層材の長所を維持しつつ、その
問題点である反りを光消した積層材を提供することにあ
る。
(Object of the Invention) The object of the present invention is to provide a laminate material that eliminates the problem of warping while maintaining the advantages of the glabella hybrid laminate material described in JP-A No. 62-7737. It is in.

(問題点を解決するための技術的手段)本発明の上記目
的は、炭素繊維及び実質的にSi、Ti又はZr、C及
び0の各元素から構成される無機繊維のそれぞれに熱硬
化性樹脂を含浸させたプリプレグを積層して製造される
対称ノλイブリッド積層材において、積層構成が積層中
央面に対して面対称であることを特徴とする対称ノーイ
ブリッド積層材によって達成される。
(Technical Means for Solving the Problems) The above object of the present invention is to apply a thermosetting resin to each of the carbon fibers and the inorganic fibers substantially composed of the elements Si, Ti or Zr, C and 0. This is achieved by a symmetrical no-brid laminated material manufactured by laminating prepregs impregnated with λ, in which the laminated structure is plane symmetrical with respect to the center plane of the lamination.

本発明における炭素繊維は、その前駆体としてポリアク
リロニトリル、石油ビ・ンチ及び石炭ピンチのいずれを
使用したものであってもよい。また、焼成温度に依存し
て呼称される炭素質繊維、黒鉛質繊維のいずれであって
もよい。
The carbon fiber in the present invention may be made of polyacrylonitrile, petroleum vinyl, or coal pinch as a precursor thereof. Further, it may be either carbonaceous fiber or graphite fiber, which are called depending on the firing temperature.

本発明における無機繊維はアメリカ特許第434271
2号明細書及び同第4515742号明細書に記載の方
法に従って調製することができ、これら明細書の記載は
本明細書の一部として援用される。
The inorganic fiber in the present invention is US Patent No. 434271.
It can be prepared according to the method described in Specification No. 2 and Specification No. 4515742, the descriptions of which are incorporated herein by reference.

調製法の一例を以下に示す。An example of the preparation method is shown below.

式    R +Si CHz→− ■ (但し、式中のRは水素原子、低級アルキル基又はフェ
ニル基を示す)で表される主鎖骨格を有する数平均分子
量的200〜10000のポリカルボシラン、及び 式M X a (但し、式中のMはTi又はZrを示し、Xは炭素数1
〜20個のアルコキシ基、フェノキシ基又はアセチルア
セトキシ基を示す)で表される有機金属化合物を、上記
ポリカルボシランのASi−CH2弁の構造単位の全数
対上記有機金属化合物の4ト0井の構造単位の全数の比
率が2:1ないし200:1の範囲内となる量比に添加
し、反応に対して不活性な雰囲気中において加熱反応し
て、前記ポリカルボシランの珪素原子の少なくとも一部
を、前記有機金属化合物の金属原子と酸素原子を介して
結合させて、数平均分子量的700〜100000の有
機金属共重合体を生成させる第1工程、上記共重合体の
紡糸原液を調製し紡糸する第2工程、紡糸繊維を不融化
する第3工程、及び不融化した紡糸繊維を真空中あるい
は不活性ガス雰囲気中で800〜1500℃の温度範囲
で焼成する第4工程からなる製造方法によって、本発明
における無機繊維を得ることができる。
A polycarbosilane with a number average molecular weight of 200 to 10,000 having a main chain skeleton represented by the formula R +Si CHz→- (wherein R in the formula represents a hydrogen atom, a lower alkyl group, or a phenyl group), and the formula M X a (However, M in the formula represents Ti or Zr, and X has 1 carbon number
~20 alkoxy groups, phenoxy groups or acetylacetoxy groups) is added to the total number of structural units of the ASi-CH2 valve of the above polycarbosilane to 4 to 0 wells of the above organometallic compound. At least one of the silicon atoms of the polycarbosilane is added to the polycarbosilane in an amount such that the ratio of the total number of structural units is within the range of 2:1 to 200:1, and is heated and reacted in an atmosphere inert to the reaction. a first step in which a spinning stock solution of the above-mentioned copolymer is prepared; By a manufacturing method consisting of a second step of spinning, a third step of making the spun fibers infusible, and a fourth step of firing the infusible spun fibers in a vacuum or in an inert gas atmosphere at a temperature range of 800 to 1500 ° C. , the inorganic fiber according to the present invention can be obtained.

無機繊維中の各構成元素の割合は、 Si:30〜60重量%、 Ti又はZr:0.5〜35重量%、好ましくは1〜1
0重景%、 C:25〜40重量%、 0 : 0.01〜30重量% である。
The proportions of each constituent element in the inorganic fiber are: Si: 30-60% by weight, Ti or Zr: 0.5-35% by weight, preferably 1-1
0 weight%, C: 25-40% by weight, 0: 0.01-30% by weight.

無機繊維と炭素繊維との合計に対する無機繊維の割合は
1〜80体積%、特に3〜70体積%であることが好ま
しい。上記割合が1体積%未満では積層材の曲げ特性の
改善効果が小さく、80体積%より大きいと、相対的に
炭素繊維の割合が低下し、積層材に炭素繊維の高引張強
度及び軽量性を付与しがたくなる。
The ratio of inorganic fibers to the total of inorganic fibers and carbon fibers is preferably 1 to 80% by volume, particularly 3 to 70% by volume. If the above proportion is less than 1% by volume, the effect of improving the bending properties of the laminated material is small, and if it is greater than 80% by volume, the proportion of carbon fiber decreases relatively, and the high tensile strength and lightweight properties of carbon fiber are added to the laminated material. It becomes difficult to grant.

積層材に対する炭素繊維と無機繊維との合計割合は、通
常30〜80体積%、好ましくは45〜65体積%であ
る。
The total proportion of carbon fibers and inorganic fibers in the laminate is usually 30 to 80% by volume, preferably 45 to 65% by volume.

炭素繊維及び無機繊維は一方向に引き揃えた形態として
使用することが好ましいが、それぞれの繊維を織って形
成された織布(織物)の形態で使用することもできる。
Although carbon fibers and inorganic fibers are preferably used in the form of unidirectionally aligned fibers, they can also be used in the form of a woven fabric (fabric) formed by weaving the respective fibers.

また、両繊維は公知の表面処理、サイジング処理が施さ
れていてもよい。
Further, both fibers may be subjected to known surface treatment and sizing treatment.

本発明における熱硬化性樹脂については特に制限はなく
、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエス
テル樹脂、フェノール樹脂、ヒスマレイミド樹脂、ポリ
イミド樹脂などが挙げられる。これらの樹脂の中でもエ
ポキシ樹脂が好んで使用される。上記エポキシ樹脂は、
ポリエポキシド、硬化剤、硬化触媒などからなる樹脂組
成物である。
The thermosetting resin in the present invention is not particularly limited, and examples include epoxy resins, unsaturated polyester resins, vinyl ester resins, phenol resins, hismaleimide resins, and polyimide resins. Among these resins, epoxy resins are preferably used. The above epoxy resin is
It is a resin composition consisting of polyepoxide, a curing agent, a curing catalyst, etc.

ポリエポキシドとしては、例えば、ビスフェノールA、
F及びSのグリシジル化合物、タレゾールノボラック又
はフェノールノボラックのグリシジル化合物及び脂環族
ポリエポキシドなどが挙げられる。
Examples of polyepoxide include bisphenol A,
Examples include glycidyl compounds of F and S, glycidyl compounds of talesol novolak or phenol novolak, and alicyclic polyepoxides.

ポリエポキシドの別の例としては、多価フェノール、多
価アルコール又は芳香族アミンのグリシジル化合物が挙
げられる。
Other examples of polyepoxides include glycidyl compounds of polyhydric phenols, polyhydric alcohols or aromatic amines.

これらのポリエポキシドの内、ビスフェノールAのグリ
シジルエーテル、タレゾールノボラック又はフェノール
ノボラックのグリシジル化合物、ジアミノジフェニルメ
タンのグリシジル化合物、アミノフェノールのグリシジ
ル化合物が一般に使用される。また、本発明の積層材を
航空機の一次構造材料のような高機能を要求される部材
として使用する場合は、上記ポリエポキシドの中でも、
ジアミノジフェニルメタンなどの多官能アミンのグリシ
ジル化合物を使用することが好ましい。
Among these polyepoxides, the glycidyl ether of bisphenol A, the glycidyl compound of talesol novolak or phenol novolak, the glycidyl compound of diaminodiphenylmethane, and the glycidyl compound of aminophenol are generally used. In addition, when the laminate material of the present invention is used as a member requiring high functionality such as a primary structural material of an aircraft, among the above polyepoxides,
Preference is given to using glycidyl compounds of polyfunctional amines such as diaminodiphenylmethane.

本発明の積層材は、炭素繊維及び無機繊維のそれぞれに
熱硬化性樹脂を含浸したプリプレグを積層し、ついで熱
硬化性樹脂を硬化させることによって製造される。
The laminate of the present invention is manufactured by laminating prepregs in which carbon fibers and inorganic fibers are each impregnated with a thermosetting resin, and then curing the thermosetting resin.

プリプレグの調製法としては、多数本の前記繊維かなる
フィラメント糸を一方向に引き揃えて熱硬化性樹脂に挟
み込んでプリプレグとする方法、熱硬化性樹脂を含浸し
たフィラメント糸束をドラムに巻き掛けてプリプレグと
する方法、多数本のフィラメント糸を引き揃えた後に熱
硬化性樹脂のフィルム状物を溶融含浸させてプリプレグ
とする方法、織布又は不織布を熱硬化性樹脂溜まりに導
き、含浸、乾燥してプリプレグとする方法、熱硬化性樹
脂製のシート状物を織布又は不織布に溶融含浸させてプ
リプレグとする方法などの、それ自体公知の方法を適宜
採用することができる。
Methods for preparing prepreg include a method in which a large number of filament threads made of the above-mentioned fibers are aligned in one direction and sandwiched between thermosetting resins to make a prepreg, and a bundle of filament threads impregnated with thermosetting resin is wound around a drum. A method of preparing prepreg by pulling a large number of filament threads together and then melting and impregnating them with a thermosetting resin film. A method of introducing a woven or nonwoven fabric into a thermosetting resin reservoir, impregnating it, and drying it. Methods known per se can be appropriately employed, such as a method of preparing a prepreg by melting and impregnating a sheet-like material made of a thermosetting resin into a woven or nonwoven fabric.

本発明においては、上記プリプレグを積層するに際じて
、炭素繊維プリプレグと無機繊維プリプレグとを、積層
中央面に対して面対称に積層することが必要である。プ
リプレグを積層中央面に対して非対称に構成すると、炭
素繊維と無機繊維とでは弾性率あるいは熱膨張係数が異
なるため、積層中央面に関して上側部分と下側部分とで
硬化による収縮応力が相違し、反りが発生する。炭素繊
維プリプレグと無機繊維プリプレグとを、積層中央面に
対して面対称に積層することによって、上記の収縮応力
の相違をなくすことができる。
In the present invention, when laminating the above-mentioned prepregs, it is necessary to laminate the carbon fiber prepreg and the inorganic fiber prepreg in plane symmetry with respect to the center plane of the lamination. If the prepreg is configured asymmetrically with respect to the center plane of the stack, the elastic modulus or coefficient of thermal expansion will be different between carbon fibers and inorganic fibers, so the shrinkage stress due to curing will be different between the upper and lower parts with respect to the center plane of the stack. Warpage occurs. By laminating the carbon fiber prepreg and the inorganic fiber prepreg in plane symmetry with respect to the center plane of the lamination, the difference in shrinkage stress described above can be eliminated.

プリプレグを積層する方法については特に制限はなく、
ハンドレイアップ法、自動レイアップなどの公知の方法
をすべて採用することができる。
There are no particular restrictions on the method of laminating prepreg.
All known methods such as hand layup method and automatic layup method can be employed.

プリプレグの積層形態、構成、順序、繰り返し厚みに関
しては、前記した積層中央面に対して面対称構成にする
こと以外は特別の制限はない。なお、積層角度について
は反りの面から対称積層にすることが必要である。
There are no particular restrictions on the stacking form, configuration, order, and repeating thickness of the prepregs, other than that they should be symmetrical with respect to the center plane of the stack. In addition, regarding the lamination angle, it is necessary to make the lamination symmetrical in terms of warpage.

プリプレグの積層物から積層材を形成する方法はなんら
制限されるものではなく、減圧バック/オートクレーブ
硬化法、ホットプレス成形法、シートワインディング法
、シートラッピング法、テープワインディング法、テー
プラッピング法などの公知の方法を適宜採用することが
できる。
The method of forming a laminate from a prepreg laminate is not limited in any way, and may include known methods such as vacuum bag/autoclave curing method, hot press molding method, sheet winding method, sheet wrapping method, tape winding method, tape wrapping method, etc. The following methods can be adopted as appropriate.

硬化温度、硬化圧力、硬化時間などの硬化条件は、使用
される熱硬化性樹脂によって決定される。
Curing conditions such as curing temperature, curing pressure, and curing time are determined by the thermosetting resin used.

例えば、熱硬化性樹脂としてエポキシ樹脂を使用する場
合の一般的硬化温度は100〜250°C1好ましくは
120〜200°Cである。また、プレキュア−あるい
はポストキュアーも適宜行うことができる。
For example, when an epoxy resin is used as the thermosetting resin, the general curing temperature is 100 to 250°C, preferably 120 to 200°C. Moreover, pre-cure or post-cure can be performed as appropriate.

本発明の対称ハイブリッド積層材は、板、パイプなどの
単純形状の製品の他に、曲面あるいは凹凸を有する種々
の大きさの三次元形状の製品を再現性よ(容易に与える
ことができる。
The symmetrical hybrid laminate material of the present invention can be reproducibly produced (easily produced) in addition to products with simple shapes such as plates and pipes, as well as products with three-dimensional shapes of various sizes having curved surfaces or irregularities.

(実施例) 以下に実施例及び比較例を示す。各側における対称ハイ
ブリッド積層材の引張強度及び圧縮強度は、以下の試験
片について、オリエンチック■製のテンシロンUTM5
Tを用い、温度23℃、相対湿度50%の条件下に繊維
の長さ方向に各10回測定した。
(Example) Examples and comparative examples are shown below. The tensile and compressive strengths of the symmetrical hybrid laminates on each side were determined for the following specimens by Tensilon UTM5 manufactured by Orientic ■.
Using T, measurements were made 10 times each in the longitudinal direction of the fiber under conditions of a temperature of 23° C. and a relative humidity of 50%.

■張試験  12.7 200  1.5 2  mm
/m/前圧縮試験10   60  2  0.5mm
/分積層材の反りは250mmX 250mmX 2m
mの成形品を平盤の上に配置し、最大反り高さ及び最小
接地部分の長さを計測し、以下の式によって求めた値(
%)である。
■Tension test 12.7 200 1.5 2 mm
/m/Pre-compression test 10 60 2 0.5mm
/min Warp of laminated material is 250mm x 250mm x 2m
m molded product was placed on a flat plate, the maximum warp height and the minimum length of the ground contact part were measured, and the value obtained by the following formula (
%).

積層材の繊維体積含有率(V f )はASTMD31
71に従って測定した。その単位は体積%である。
The fiber volume content (V f ) of the laminate is in accordance with ASTM D31.
Measured according to 71. Its unit is volume %.

以下において部はすべて重量部である。In the following, all parts are by weight.

実施例1 ビスフェノールA型エポキシ樹脂(チバガイギー社製、
XB2879A)100部及びジシアンジアミド硬化剤
(チバガイギー社製、X B 28.79B)20部を
均一に混合した後に、混合物を重量比で1=1のメチル
セロソルブとアセトンとの混合溶媒に溶解して、上記混
合物の28重量%溶液を調製した。
Example 1 Bisphenol A epoxy resin (manufactured by Ciba Geigy,
After uniformly mixing 100 parts of XB2879A) and 20 parts of a dicyandiamide curing agent (manufactured by Ciba Geigy, XB28.79B), the mixture was dissolved in a mixed solvent of methyl cellosolve and acetone in a weight ratio of 1=1, A 28% by weight solution of the above mixture was prepared.

炭素繊維(東邦レーヨン■製、ベスファイ)HTA60
00:引張弾性率24t/胴2、比重1゜77)に上記
溶液を含浸した後に、ドラムワイングーを用いて一方向
に巻き取り、熱風循環オーブン中100°Cで14分間
加熱することによって、半硬化状態の一方向引揃え炭素
繊維プリプレグを調製した。このプリプレグの樹脂含有
量は38重量%、厚みは0.2 mmであった。
Carbon fiber (manufactured by Toho Rayon, Besphi) HTA60
00: Tensile elastic modulus 24t/shell 2, specific gravity 1°77) After impregnating with the above solution, winding it in one direction using a drum wine goo and heating it at 100 ° C for 14 minutes in a hot air circulation oven. A semi-cured unidirectionally aligned carbon fiber prepreg was prepared. This prepreg had a resin content of 38% by weight and a thickness of 0.2 mm.

Si、Ti、C及び0からなる無機繊維(宇部興産■製
、チラノ繊維:引張弾性率21 t 7mm2、比重2
.35 )を用いて上記と同様にして、半硬化状態の一
方向引揃えチラノ繊維プリプレグを調製した。このプリ
プレグの樹脂含有量は30重景%、厚みは0.2胴であ
った。
Inorganic fiber consisting of Si, Ti, C and 0 (manufactured by Ube Industries, Tyranno fiber: tensile modulus 21t 7mm2, specific gravity 2
.. A unidirectionally aligned tyranno fiber prepreg in a semi-cured state was prepared using 35) in the same manner as above. The resin content of this prepreg was 30%, and the thickness was 0.2 mm.

上記2種類のプリプレグを用いて、第1表に示す構成で
一方向に重ね合わせ、130°c、iib/ crAで
90分間プレス成形することによって、250mmX2
50mmの大きさの一方向層間ハイブリッド積層材を製
造した。この積層材から各種試験片をダイアモンド鋸を
用いて切り出し試験に供した。結果を第2表に示す。
Using the above two types of prepregs, stack them in one direction with the configuration shown in Table 1 and press-form them at 130°C and IIB/CRA for 90 minutes to form a 250mm x 2
A unidirectional interlayer hybrid laminate with a size of 50 mm was produced. Various test pieces were cut out from this laminated material using a diamond saw and subjected to tests. The results are shown in Table 2.

実施例2 積層構成を第1表に記載のように変えた以外は実施例1
と同様の方法を繰り返した。結果を第2表に示す。
Example 2 Example 1 except that the laminated structure was changed as shown in Table 1.
The same method was repeated. The results are shown in Table 2.

実施例3 チラノ繊維プリプレグの厚みを0.15mmに変えた以
外は実施例2と同様の方法を繰り返した。結果を第2表
に示す。
Example 3 The same method as Example 2 was repeated except that the thickness of the tyranno fiber prepreg was changed to 0.15 mm. The results are shown in Table 2.

実施例4 チラノ繊維プリプレグの厚みを0.1 mmに変えた以
外は実施例2と同様の方法を繰り返した。結果を第2表
に示す。
Example 4 The same method as Example 2 was repeated except that the thickness of the tyranno fiber prepreg was changed to 0.1 mm. The results are shown in Table 2.

実施例5 炭素繊維として、引張弾性率42 t /lrm2、比
重1.83の炭素繊維(東邦レーヨン■製、ベスファイ
)HM40)を使用した以外は実施例1と同様の方法を
繰り返した。結果を第2表に示す。
Example 5 The same method as in Example 1 was repeated, except that carbon fiber (manufactured by Toho Rayon ■, Besphi) HM40) having a tensile modulus of elasticity of 42 t/lrm2 and a specific gravity of 1.83 was used as the carbon fiber. The results are shown in Table 2.

実施例6 炭素繊維として、実施例5で使用した炭素繊維を使用し
た以外は実施例2と同様の方法を繰り返した。結果を第
2表に示す。
Example 6 The same method as in Example 2 was repeated except that the carbon fiber used in Example 5 was used as the carbon fiber. The results are shown in Table 2.

比較例1〜3 積層構成を第1表に記載のように変えた以外は実施例1
と同様の方法を繰り返した。結果を第2表に示す。
Comparative Examples 1 to 3 Example 1 except that the laminated structure was changed as shown in Table 1.
The same method was repeated. The results are shown in Table 2.

比較例4〜6 積層構成を第1表に記載のように変えた以外は実施例5
と同様の方法を繰り返した。結果を第2表に示す。
Comparative Examples 4 to 6 Example 5 except that the laminated structure was changed as shown in Table 1
The same method was repeated. The results are shown in Table 2.

第1表 1割合   構  成 −C札積受O− 実施例1    31    TCTCC,CCTCT
〃2    13    TCCCCCCCCT〃3 
   10    TCCCCCCCCT〃4    
 6    TCCCCCCCCT//  5    
31    TCTCCCCTCT〃6    13 
   TCCCCCCCCT比較例1    31  
  TTTTCCCCCC//  2    13  
  TTCCCCCCCCN  3     6   
 TCCCCCCCC(://  4    31  
  TTTTCCCCCC//  5    13  
  TTCCCCCCCC〃6     6    T
CCCCCCCCC第1表の構成の欄において、Tはチ
ラノ繊維層を示し、Cは炭素繊維層を示す。
Table 1 1 Ratio Composition - C tag loading O - Example 1 31 TCTCC, CCTCT
〃2 13 TCCCCCCCCCT〃3
10 TCCCCCCCCCT〃4
6 TCCCCCCCCCT // 5
31 TCTCCCCT〃6 13
TCCCCCCCCCT Comparative Example 1 31
TTTTCCCCCC// 2 13
TTCCCCCCCCN 3 6
TCCCCCCCC (:// 4 31
TTTTCCCCCC// 5 13
TTCCCCCCC〃6 6 T
CCCCCCCCCC In the structure column of Table 1, T indicates a tyranno fiber layer, and C indicates a carbon fiber layer.

第2表 Vf  引張強度 圧縮強度 反 り 生盪/’  M kZ!L −X−Table 2 Vf Tensile strength Compressive strength Warpage Raw soup/’  M kZ! L -X-

Claims (1)

【特許請求の範囲】[Claims] 炭素繊維及び実質的にSi、Ti又はZr、C及びOの
各元素から構成される無機繊維のそれぞれに熱硬化性樹
脂を含浸させたプリプレグを積層して製造される対称ハ
イブリッド積層材において、積層構成が積層中央面に対
して面対称であることを特徴とする対称ハイブリッド積
層材。
In a symmetrical hybrid laminate manufactured by laminating prepregs in which carbon fibers and inorganic fibers substantially composed of Si, Ti, or each element of Zr, C, and O are impregnated with a thermosetting resin, A symmetrical hybrid laminate material characterized by a structure having plane symmetry with respect to the center plane of the laminate.
JP62305593A 1987-12-04 1987-12-04 Symmetric hybrid laminated material Pending JPH01148547A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62305593A JPH01148547A (en) 1987-12-04 1987-12-04 Symmetric hybrid laminated material
KR1019880016114A KR930009294B1 (en) 1987-12-04 1988-12-03 Interply-hybridized laminated material
EP88311494A EP0319346A3 (en) 1987-12-04 1988-12-05 Interply-hybridized laminated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62305593A JPH01148547A (en) 1987-12-04 1987-12-04 Symmetric hybrid laminated material

Publications (1)

Publication Number Publication Date
JPH01148547A true JPH01148547A (en) 1989-06-09

Family

ID=17947009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62305593A Pending JPH01148547A (en) 1987-12-04 1987-12-04 Symmetric hybrid laminated material

Country Status (1)

Country Link
JP (1) JPH01148547A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658852A (en) * 1979-10-18 1981-05-22 Mitsubishi Heavy Ind Ltd Tabular molding blank for structure
JPS6146891A (en) * 1984-08-14 1986-03-07 バブコツク日立株式会社 Clinker cooling shifter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658852A (en) * 1979-10-18 1981-05-22 Mitsubishi Heavy Ind Ltd Tabular molding blank for structure
JPS6146891A (en) * 1984-08-14 1986-03-07 バブコツク日立株式会社 Clinker cooling shifter

Similar Documents

Publication Publication Date Title
JP5158778B2 (en) Epoxy resin impregnated yarn and its use for producing preforms
US11028244B2 (en) Prepreg, laminate body, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material
EP2935421B1 (en) Fast cure epoxy resin systems
JPS627737A (en) Hybrid fiber-reinforced plastic composite material
CA2776210C (en) Method for producing fibre-reinforced composite material, and heat-resistant mold material and heat-resistant structural material using the fiber-reinforced composite material
EP3197933B1 (en) Fast curing compositions
JP2009235182A (en) Base material for preform and method for manufacturing the same
EP0326409B1 (en) Hybrid yarn, unidirectional hybrid prepreg and laminated material thereof
US5300176A (en) Process of producing substantially void-free polyimide composites
JP6637503B2 (en) Epoxy resin composition for composite materials
US4820567A (en) Microcrack resistant fiber reinforced resin matrix composite laminates
EP0487868A2 (en) Composite tooling
JPH01148547A (en) Symmetric hybrid laminated material
JPH01148545A (en) Interlaminar hybrid laminated material
KR930009294B1 (en) Interply-hybridized laminated material
KR101884606B1 (en) Epoxy resin composition for fiber reinforced composite with high impact resistance and high strength
JP2006274110A (en) Prepreg and fiber-reinforced composite material
JPH01148546A (en) Fiber-reinforced resin laminated material
JPH01193326A (en) Unidirectional hybrid prepreg and laminated material
JP3864751B2 (en) Resin composition for carbon fiber reinforced composite material, prepreg, and carbon fiber reinforced composite material
JPH01192841A (en) Hybrid yarn
JPH01171852A (en) Composite of prepreg for fiber reinforced composite material
JPH078923B2 (en) Inorganic fiber reinforced bismaleimide resin prepreg manufacturing method and laminated body manufacturing method
JPH04292913A (en) Manufacture of prepreg
JPS63115746A (en) Fiber-reinforced composite material molded form