JPH01148325A - Gas separating membrane cell - Google Patents

Gas separating membrane cell

Info

Publication number
JPH01148325A
JPH01148325A JP30541287A JP30541287A JPH01148325A JP H01148325 A JPH01148325 A JP H01148325A JP 30541287 A JP30541287 A JP 30541287A JP 30541287 A JP30541287 A JP 30541287A JP H01148325 A JPH01148325 A JP H01148325A
Authority
JP
Japan
Prior art keywords
membrane
gas
gas separation
separation membrane
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30541287A
Other languages
Japanese (ja)
Inventor
Jiro Nagarego
流郷 治朗
Kazuaki Ohira
和明 大平
Yoshiro Nakada
中田 義郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP30541287A priority Critical patent/JPH01148325A/en
Publication of JPH01148325A publication Critical patent/JPH01148325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To reduce the size of the title module by entirely distributing an adhesive layer between each gas separating membrane and a gas permeable support supporting the membrane and by fitting an outlet for recovering gas separated by the membrane. CONSTITUTION:The outlet 5 of a gas separating membrane cell is evacuated by a vacuum pump or the like and gas passing selectively through each gas separating membrane 1 is recovered from the outlet 5 through each gas permeable support 3 and a ventilation groove in each frame member 4. At this time, an adhesive layer 2 is entirely distributed between the membrane 1 and the support 3 to prevent the swelling of the membrane 1 during the cessation of separation operation and to reduce the size of the module.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気体分離膜セルに関するつ 〔従来の技術〕 従来、気体分離膜を通気性を有する支持体の上に重ねて
、周囲を気密に接着シールした構造の気体分離膜セルは
知られている(例えば、特開昭56−91802号公報
)。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to gas separation membrane cells. [Prior Art] Conventionally, a gas separation membrane is stacked on a support having air permeability to make the surrounding area airtight. Gas separation membrane cells having an adhesive-sealed structure are known (for example, Japanese Patent Laid-Open No. 56-91802).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、気体分離膜の周囲のみを支持体と接着す
るセル構造においては、セル内部が減圧になっていない
ときには気体分離膜の中央部が凸状にふ(らむため、厚
み方向にセルを複数枚積層してモジュールに組み上げた
とき、相対する気体透過膜間′士が接触し、膜が破損す
る恐れがあった。
However, in a cell structure in which only the periphery of the gas separation membrane is bonded to the support, the central part of the gas separation membrane swells in a convex shape when the inside of the cell is not under reduced pressure, so multiple cells are formed in the thickness direction. When stacked and assembled into a module, there was a risk that opposing gas permeable membranes would come into contact and damage the membranes.

したがってセル間隔を膜同士が接触しないよう充分広く
取る必要があり、モジュールを小型化できないという問
題点を有していた。
Therefore, it is necessary to make the cell interval sufficiently wide so that the membranes do not come into contact with each other, resulting in the problem that the module cannot be miniaturized.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、モジュールを小型化できる気体分離膜セ
ルを得るべく鋭意検討した結果、本発明に到達した。
The present inventors have arrived at the present invention as a result of intensive studies aimed at obtaining a gas separation membrane cell that can make the module smaller.

すなわち、本発明は混合気体を選択的に分離する気体骨
l!iI膜(1)と、この膜を支持する通気性の支持材
(2)と、(1)と(2)の間に介在する全面にわたり
分布した接着剤層と、(1)により分離された気体を取
り出す取り出し口とを有する気体分離膜セルである。
That is, the present invention provides a gas system that selectively separates a gas mixture! iI membrane (1), an air-permeable support material (2) that supports this membrane, an adhesive layer distributed over the entire surface interposed between (1) and (2), and separated by (1). This is a gas separation membrane cell having an outlet for taking out gas.

以下本発明の一実施例について、図面を参照しながら説
明する。第1図は、本発明の一実施例における気体分離
膜セルの斜視図を示すものであり、第2図は第1図のセ
ルを2枚積層したときの横断面図を示す。ここで、(1
)は混合気体を選択的に分離する気体分離膜、(2)は
膜を支持すると共に、膜を透過した気体の流路となる通
気性支持体、(3)は(1)と(2)の間に全面にわた
り分布した接着剤層、(4)は透過気体を集め取り出し
口(5)に導くと同時にセルを積層するとき、セル間に
混合気体を流すための空隙を形成するスペーサーの投口
を果たす枠部材、(6)は混合気体が膜を透過せず直接
セル内部に漏れて来るのを防ぐためのシール材であり、
枠部材を嵌め込んでいない他の2辺および取り出し口と
枠部材の接合部も同様にシールしている。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a perspective view of a gas separation membrane cell according to an embodiment of the present invention, and FIG. 2 shows a cross-sectional view when two cells of FIG. 1 are stacked. Here, (1
) is a gas separation membrane that selectively separates mixed gases, (2) is a gas permeable support that supports the membrane and serves as a flow path for the gas that has passed through the membrane, and (3) is a gas separation membrane that selectively separates mixed gases. An adhesive layer (4) distributed over the entire surface between the cells collects the permeated gas and guides it to the outlet (5). At the same time, when the cells are stacked, a spacer is formed to form a gap for the mixed gas to flow between the cells. The frame member (6) serving as the opening is a sealing material to prevent the mixed gas from directly leaking into the cell without passing through the membrane.
The other two sides where the frame member is not fitted and the joint between the outlet and the frame member are similarly sealed.

気体分離膜(1)の形態としては薄膜、非対称膜、複合
膜のいずれでも使用できるが、微多孔性の補強膜(例え
ば、ボ・リエチレン、ポリプロピレン、ポリカーボネー
ト、テトラフロロエチレンなどの微多孔性高分子フィル
ム、ポリスルフォン、ポリエーテルスルフォン、ポリフ
ッ化ビニリデン、セルロースアセテートなどの高分子化
合物をフィルム状に湿式成型して得られる非対称微多孔
膜)の上に気体分離性を有する薄膜(例えばボIJ )
 ’Jメチルシリルプロピン、ポリフェニルクロロアセ
チレンなどの2置換アセチレンポリマー、ポリ−4−メ
チルペンテン−1などのポリα−オレフィン、オルガノ
ポリシロキサン、ポリオルガノシロキサン/ポリカーボ
ネート共重合体などの薄膜)を積層した構造の複合膜が
好ましく用いられる。
The gas separation membrane (1) can be in the form of a thin membrane, an asymmetric membrane, or a composite membrane; A thin film with gas separation properties (e.g. BoIJ) on a molecular film, an asymmetric microporous membrane obtained by wet-molding a polymer compound such as polysulfone, polyethersulfone, polyvinylidene fluoride, or cellulose acetate into a film shape.
'J methylsilylpropyne, di-substituted acetylene polymers such as polyphenylchloroacetylene, poly-alpha-olefins such as poly-4-methylpentene-1, organopolysiloxanes, thin films such as polyorganosiloxane/polycarbonate copolymers). A composite membrane having a laminated structure is preferably used.

通気性支持体(2)としては、連通孔を有する板や、補
強板の表面にネット等の通気性シートを積層あるいは接
着したもの、またはプラスチック板や金属板の表面に溝
や凹凸をつけたもの等を用いることができるが、アルミ
板の両面にプラスチックネット(例えば大日本プラスチ
ック社のポリプロピレン製ネットND−12)を接着し
たものがより好適に用いられる。
The breathable support (2) can be a plate with communicating holes, a reinforcing plate with a breathable sheet such as a net laminated or glued on the surface, or a plastic plate or metal plate with grooves or irregularities on the surface. Although a plastic net (eg, polypropylene net ND-12 manufactured by Dainippon Plastics Co., Ltd.) bonded to both sides of an aluminum plate is more preferably used.

接着剤層(3)を気体分離膜(1)と通気性支持材(2
)の間に全面にわたり分布させるとは、(1)と(2)
の間に全面あるいは広面積にわたる連続接着面を形成さ
せることなく、比較的狭い面積での接M(例えば、点接
着、線接着、巾の狭い面接着)を、(1)と(2)の間
全体にできるだけ均一に分布するように行わせることを
意味する。点接着の場合はその直径は通常5閣以下、好
ましくは1II111以下、線接着、巾の狭い面接着の
場合はその巾は通常5mm以下、好ましくは1mm以下
である。
The adhesive layer (3) is attached to the gas separation membrane (1) and the breathable support material (2).
) means to distribute it over the entire surface between (1) and (2).
(1) and (2) allow contact M in a relatively narrow area (for example, point adhesion, line adhesion, narrow area adhesion) without forming a continuous adhesion surface over the entire surface or a wide area between them. This means distributing it as evenly as possible throughout the area. In the case of point bonding, the diameter is usually 5mm or less, preferably 1II111 or less, and in the case of line bonding or narrow surface bonding, the width is usually 5mm or less, preferably 1mm or less.

接着剤としては特に限定されることなく、通常の熱硬化
性樹脂系(エポキシ樹脂系、フェノール樹脂系等)、熱
可塑性樹脂系(ポリ酢酸ビニル系、ポリアミド系等)、
ゴム系(シリコーンゴム系、ポリウレタンゴム系等)、
複合系(ゴム/フェノール系、エポキシ/ナイロン系等
)等が使用できる。形態としては溶剤溶液系、水溶液系
、エマルジョン系、−液硬化系、二液硬化系、ホットメ
ルト系等があるが、膜や通気性支持体の材質、接着剤の
塗布方法等に合わせて適宜選定すればよい。
Adhesives are not particularly limited, and include ordinary thermosetting resins (epoxy resins, phenol resins, etc.), thermoplastic resins (polyvinyl acetate, polyamides, etc.),
Rubber type (silicone rubber type, polyurethane rubber type, etc.),
Composite systems (rubber/phenol, epoxy/nylon, etc.) can be used. Forms include solvent solution systems, aqueous solution systems, emulsion systems, -liquid curing systems, two-part curing systems, hot melt systems, etc., but depending on the material of the membrane or breathable support, the adhesive application method, etc. Just choose.

このような接着剤を気体分離膜(1)と通気性支持体(
2)の間に分布させる方法としては、コーティング法あ
るいはスプレー法が通常用いられる。コーティング法を
用いれば接着剤を糸状、ダッシュ状、ドツト状、ネット
状等に形成させることができ、スプレー法を用いればラ
ンダム状に接着剤のドツトを形成させることができる。
Such an adhesive is applied to the gas separation membrane (1) and the breathable support (
As a method for distributing between 2), a coating method or a spray method is usually used. If a coating method is used, the adhesive can be formed into a thread-like, dash-like, dot-like, or net-like shape, and if a spray method is used, adhesive dots can be formed randomly.

接着剤は気体分離膜の裏面に付着させても、通気性支持
体の表面に付着させても、あるいは両方の面に付着させ
てもよい。両方の面に接着剤を付着させる場合はそれぞ
れ同じ種類であっても異なっていてもよい。
The adhesive may be applied to the back side of the gas separation membrane, to the surface of the breathable support, or to both sides. When adhesives are applied to both surfaces, they may be of the same type or different types.

支持体表面に接着剤を付着させる場合は、ローラー等を
用いて支持体の凸部にのみ接着剤が付着するようにして
もよい。
When adhering the adhesive to the surface of the support, a roller or the like may be used so that the adhesive adheres only to the convex portions of the support.

接着剤の付着量は、気体分離膜(1)が通気性支持体(
2)から浮き上がらないようにするに足る必要最少量で
あることが望ましい。多すぎると気体の透過性が損なわ
れたり、溶剤タイプの接着剤を用いる場合などでは溶剤
によって気体分離膜が破損する恐れがあり、少なすぎる
と膜が支持体から浮き上がりやすくなる。接着剤をスプ
レー状に塗布することは、少量の接着剤を均一に分散さ
せやすく、したがって溶剤タイプの接着剤を用いても速
やかに溶剤が蒸発するので膜に悪影響を及ぼさない等か
ら望ましい。缶入りスプレーのり(例えばゴム系の樹脂
を易揮発性の溶剤に溶かしたスリーエム社製スプレーの
り77等)は、このような目的に合うものとして簡便に
用いられる。 枠部材(4)はアルミ等の金属あるいは
硬質塩ビ等のプラスチックが使用できるが、加工し易く
軽いことからプラスチックが好ましく、引き抜き成型、
押し出し成型、型成型等により成形される。 枠部材は
通気性支持体と気体分離膜を挿入するためのスリットと
通気性支持体を通って集められた透過気体を取り出し口
(5)まで導くための集気溝を有している。
The amount of adhesive adhered to the gas separation membrane (1) is determined by
2) It is desirable that the amount is the minimum amount necessary to prevent it from floating up. If the amount is too large, the gas permeability may be impaired, or if a solvent-based adhesive is used, the gas separation membrane may be damaged by the solvent, while if it is too small, the membrane may easily lift off from the support. Applying the adhesive in the form of a spray is desirable because it makes it easier to uniformly disperse a small amount of adhesive, and even if a solvent-based adhesive is used, the solvent evaporates quickly and does not adversely affect the film. A can of spray glue (for example, 3M Spray Glue 77, which is made by dissolving a rubber-based resin in an easily volatile solvent) is conveniently used for this purpose. The frame member (4) can be made of metal such as aluminum or plastic such as hard PVC, but plastic is preferable because it is easy to process and lightweight.
Molded by extrusion molding, die molding, etc. The frame member has a gas permeable support, a slit for inserting the gas separation membrane, and an air collection groove for guiding the permeate gas collected through the gas permeable support to the outlet (5).

取り出し口(5)は通常アルミ、プラスチック等のパイ
プであり、圧力損失が太き(ならないよう透過気体量に
応じて適切な内径のものを選べばよい。
The outlet (5) is usually a pipe made of aluminum, plastic, etc., and should be selected to have an appropriate inner diameter depending on the amount of permeated gas to avoid large pressure loss.

シール材(6)としては、ウレタン、シリコーン等のゴ
ム状シーラント、ホットメルト接着剤などが気体分離膜
に悪影響を及ぼさないことから、好適に用いられる。
As the sealing material (6), rubber sealants such as urethane and silicone, hot melt adhesives, and the like are preferably used because they do not have a negative effect on the gas separation membrane.

以上のように構成された気体分離膜セルについて、その
動作を説明するつ混合気体を分離するときには、まず積
層した気体分離膜セルの取り出し口(5)を連結して真
空ポンプ等の減圧手段と接続し、気体分離膜セル内部を
減圧にする。同時に送風ファン等を用いて分離しようと
する混合気体をセル間に供給すると、気体分i!I膜(
1)の表裏に生じた圧力差によって気体が膜中を選択透
過し、分離される。透過した気体は通気性支持体(3)
、枠部材(4)中の通気溝、取り出し口(5)を通って
減圧手段側へ取り出される。このとき気体分離膜は圧力
差によって内側に押し付けられている。一方、分離操作
の停止中すなわち真空ポンプを動かしていないときには
気体分離膜(1)にかかる力はなくなっている。
To explain the operation of the gas separation membrane cell configured as above, when separating a mixed gas, first connect the outlet (5) of the stacked gas separation membrane cells to a pressure reducing means such as a vacuum pump. Connect and reduce the pressure inside the gas separation membrane cell. At the same time, when the mixed gas to be separated is supplied between the cells using a blower fan, etc., the gas fraction i! I membrane (
1) Due to the pressure difference between the front and back surfaces, gas selectively permeates through the membrane and is separated. The permeated gas passes through the breathable support (3)
, through the ventilation groove in the frame member (4) and the outlet (5) to be taken out to the pressure reducing means side. At this time, the gas separation membrane is pressed inward by the pressure difference. On the other hand, when the separation operation is stopped, that is, when the vacuum pump is not operating, no force is applied to the gas separation membrane (1).

気体分離膜と通気性支持体を全面にわたり接着した本実
施例で示される気体分離膜セルでは、前記の運転・停止
操作においても気体分離膜の膜に垂直方向の動きは殆ど
なく長時間安定な性能を示した。一方、気体分離膜と通
気性支持体を周辺でのみ接着した従来の気体分離膜セル
では膜にわずかな伸びが生じても分離操作の停止時に膜
が支持体から離れて浮き上がり、隣接する気体分離膜セ
ルの相対する膜の表面と接触破損するため、本実施例に
比べ数分の−の運転時間で分離性不良となった。また、
本実施例並に安定な性能を得ようとすれば気体分離膜セ
ルの間隔を本実施例の約2倍広く取る必要があった。
In the gas separation membrane cell shown in this example in which the gas separation membrane and the permeable support are bonded over the entire surface, there is almost no movement in the vertical direction in the gas separation membrane even during the above-mentioned operation and shutdown operations, and the membrane is stable for a long time. demonstrated performance. On the other hand, in a conventional gas separation membrane cell in which the gas separation membrane and the permeable support are bonded only at the periphery, even if the membrane stretches slightly, the membrane will float away from the support when the separation operation is stopped, and the adjacent gas separation Since the membrane cells were damaged by contact with the surfaces of the membranes facing each other, the separation performance became poor after only a few minutes of operation time compared to the present example. Also,
In order to obtain stable performance as in this example, it was necessary to make the interval between the gas separation membrane cells approximately twice as wide as in this example.

第3図は本発明の第2の実施例における気体分離膜セル
の斜視図を示すものであり、第4図は第3図のセルを3
枚積層したときの横断面図を示す。
FIG. 3 shows a perspective view of a gas separation membrane cell in a second embodiment of the present invention, and FIG. 4 shows a three-dimensional view of the cell in FIG.
A cross-sectional view when the sheets are laminated is shown.

ここで、(7)は気体分離膜であり、前記実施例と同様
の方法で通気性支持体(8)と全面にわたって分布した
接着剤層(16)で接着されている。(9)はセルの周
端部を気密に覆っているシール材、(10)は透過気体
を取り出すためにセル表面に垂直に貫通するように開け
られた開口部、(11)はセルを積層するとき開口部同
士を気密に連結すると同時にセル間に混合気体を流すた
めの空隙を形成するリング状のスペーサー、(12)は
モジュールケースの底板、(13)はモジュールケース
の上板、(14)は各セルとスペーサーの開口部に挿入
された支柱でありその一端は底板に固定され、他端のネ
ジ部(14b)にナラl−(15)を嵌め込んで底板と
上板を締め付け、セル積層体の開口部同士を気密に連結
している。
Here, (7) is a gas separation membrane, which is adhered to the breathable support (8) by an adhesive layer (16) distributed over the entire surface in the same manner as in the previous example. (9) is a sealing material that airtightly covers the peripheral edge of the cell, (10) is an opening that penetrates perpendicularly to the cell surface to take out the permeated gas, and (11) is a stack of cells. (12) is the bottom plate of the module case, (13) is the top plate of the module case, (14) ) is a column inserted into the opening of each cell and spacer, one end of which is fixed to the bottom plate, and the screw part (14b) at the other end is fitted with a latch (15) to tighten the bottom plate and the top plate. The openings of the cell stack are airtightly connected to each other.

(14a)は支柱に開けられたスリットであり、開口部
まで出てきた透過気体を支柱内部に取り入れ、(14c
)の透過気体取り出し口まで導く役目を果たす。
(14a) is a slit made in the support, and the permeated gas that has come out to the opening is taken into the inside of the support.
) plays the role of guiding the permeated gas to the outlet.

気体分離膜(7)、通気性支持体(8)、接着剤(16
)シール材(9)は第一実施例と同じ構成のものを使用
テきる。(11)のスペーサーは金属、樹脂、ゴムなど
から任意に選定できるが、膜に悪影Wを与えないために
は可塑剤等の低分子用物質はできるだけ含まれず、かつ
シール性を保つためにはある程度柔軟性をもつものが好
ましく、この目的に合うものとしてシリコーンゴム製の
スベーサーカ好適に用いられる。気密性を上げるために
スペーサーは膜面に接着してもよいが、ゴム状スペーサ
ーとセルを交互に積層後、上下から底板と上板をボルト
等で締め付けることによって簡単に気密を保つことがで
きる。(12)、(13)の板はアルミ等の金属板や樹
脂板を単に平板状だけでなくモジュールの使用方法に合
わせて任意の形状に折り曲げ加工すればよく、プラスチ
ックの射出成型によってより使いやすい形状にすること
もできる。本実施例は、各セルからの透過気体の取り出
し部形状と各セルの連結方法が前記実施例と異なるだけ
で、基本的には同じ動作であり、気体分離膜を通気性支
持体とを全面にわたり分布した接着剤層により接着した
ことにより、前記実施例と同等の効果が得られた。
Gas separation membrane (7), breathable support (8), adhesive (16)
) The sealing material (9) can be of the same construction as in the first embodiment. The spacer (11) can be arbitrarily selected from metal, resin, rubber, etc., but in order not to give a bad impression W on the membrane, it is necessary to contain as little low-molecular substances as plasticizers, etc., and to maintain sealing properties. It is preferable that the material has some degree of flexibility, and a silicone rubber base circa is preferably used as a material suitable for this purpose. Spacers may be glued to the membrane surface to improve airtightness, but airtightness can be easily maintained by alternately stacking rubber spacers and cells and then tightening the bottom plate and top plate from above and below with bolts, etc. . The plates (12) and (13) can be made by bending a metal plate such as aluminum or a resin plate into any shape that suits the usage of the module, rather than just a flat plate, and it is easier to use by plastic injection molding. It can also be shaped. This example differs from the previous example only in the shape of the part for extracting permeated gas from each cell and the method of connecting each cell, but basically operates in the same manner as in the previous example. By adhering with an adhesive layer distributed over the entire area, the same effect as in the previous example was obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明の気体分離膜セルによれば、気体分
離膜と通気性支持体とを実質的に全面にわたり接着した
ことにより、分離操作停止中の気体分離膜のふ(らみが
無くなることから気体分離膜セルの積層間隔を小さくで
き、モジュールの大きさを従来品の約2分の1に小型化
できると共に性能を長期間安定に保持することができる
As described above, according to the gas separation membrane cell of the present invention, since the gas separation membrane and the air permeable support are bonded over substantially the entire surface, the sagging of the gas separation membrane while the separation operation is stopped is eliminated. Therefore, the stacking interval of the gas separation membrane cells can be reduced, the size of the module can be reduced to about half that of conventional products, and the performance can be maintained stably for a long period of time.

さらに、気体分離膜と通気性支持体をあらかじめ全面接
着しておくことにより、周辺シール等のセル組み立て工
程時に気体分離膜がずれたりすることもなく、組み立て
がやりやすくなるなどその実用的効果は大なるものがあ
る。
Furthermore, by fully adhering the gas separation membrane and the breathable support in advance, the gas separation membrane will not shift during the cell assembly process such as peripheral sealing, making assembly easier. There is something big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による気体分離膜セルの斜視
図、第2図は同セルを2枚積層したときの横断面図、第
3図は本発明の他の実施例による気体分離膜セルの斜視
図、第4図は同セル3枚を積層しモジュールに組み立て
たときの横断面図である。 l・・・気体分離膜、2・・・接着剤、3・・・通気性
支持口  品 第1図 第2図
FIG. 1 is a perspective view of a gas separation membrane cell according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of two membrane cells stacked together, and FIG. 3 is a gas separation membrane cell according to another embodiment of the present invention. A perspective view of the membrane cell, and FIG. 4 is a cross-sectional view when three membrane cells are stacked and assembled into a module. l...Gas separation membrane, 2...Adhesive, 3...Breathable support opening Items Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、混合気体を選択的に分離する気体分離膜(1)と、
この膜を支持する通気性の支持材(2)と、(1)と(
2)の間に介在する全面にわたり分布した接着剤層と、
(1)により分離された気体を取り出す取り出し口とを
有する気体分離膜セル。
1. A gas separation membrane (1) that selectively separates a mixed gas;
A breathable support material (2) supporting this membrane, (1) and (
2) an adhesive layer distributed over the entire surface interposed between;
A gas separation membrane cell having an outlet for taking out the gas separated by (1).
JP30541287A 1987-12-01 1987-12-01 Gas separating membrane cell Pending JPH01148325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30541287A JPH01148325A (en) 1987-12-01 1987-12-01 Gas separating membrane cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30541287A JPH01148325A (en) 1987-12-01 1987-12-01 Gas separating membrane cell

Publications (1)

Publication Number Publication Date
JPH01148325A true JPH01148325A (en) 1989-06-09

Family

ID=17944821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30541287A Pending JPH01148325A (en) 1987-12-01 1987-12-01 Gas separating membrane cell

Country Status (1)

Country Link
JP (1) JPH01148325A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645626A (en) * 1990-08-10 1997-07-08 Bend Research, Inc. Composite hydrogen separation element and module
JP2010201549A (en) * 2009-03-03 2010-09-16 Fuji Xerox Co Ltd Microchannel device, separation method, and separator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216713A (en) * 1985-03-20 1986-09-26 Matsushita Electric Ind Co Ltd Gas permeable membrane module
JPS62102814A (en) * 1985-10-30 1987-05-13 Matsushita Electric Ind Co Ltd Gas permeable membrane cell
JPS62136224A (en) * 1985-12-10 1987-06-19 Matsushita Electric Ind Co Ltd Composite membrane for separating gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216713A (en) * 1985-03-20 1986-09-26 Matsushita Electric Ind Co Ltd Gas permeable membrane module
JPS62102814A (en) * 1985-10-30 1987-05-13 Matsushita Electric Ind Co Ltd Gas permeable membrane cell
JPS62136224A (en) * 1985-12-10 1987-06-19 Matsushita Electric Ind Co Ltd Composite membrane for separating gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645626A (en) * 1990-08-10 1997-07-08 Bend Research, Inc. Composite hydrogen separation element and module
JP2010201549A (en) * 2009-03-03 2010-09-16 Fuji Xerox Co Ltd Microchannel device, separation method, and separator

Similar Documents

Publication Publication Date Title
EP1922137B1 (en) Laminated cassette device
US5104532A (en) Flat stack permeator
JP4368914B2 (en) Manifold adapter plate for filtration equipment
US3943057A (en) Membrane support-plates and fluid separating apparatus in which they are present
JP2008238167A (en) Cassette type filtration apparatus
US5624556A (en) Fluid fractionating stacked permeable membrane assembly
CA2479687A1 (en) Cross-flow filtration cassettes and methods for fabrication of same
US4761229A (en) Multi-leaf membrane module
JPH01148325A (en) Gas separating membrane cell
AU2019390413B2 (en) Single use aseptic tangential flow filtration systems and methods
JP4485410B2 (en) Spiral type separation membrane element and manufacturing method thereof
JPS5962326A (en) Gas separation module
JPS6260923B2 (en)
JPH01304027A (en) Gas separation membrane module
JPS63205118A (en) Gas separating membrane cell
JPH0217920A (en) Gas separation membrane module
JPH047252B2 (en)
JPH0372328B2 (en)
JPH04156916A (en) Gas separating membrane module
JP4642974B2 (en) Hollow fiber membrane module
JPH0217919A (en) Gas separation membrane module and gas separation apparatus
JPS6242736Y2 (en)
JPH0747243A (en) Separation membrane module and separation apparatus
JPS6142305A (en) Support for separation membrane
JPH0620517B2 (en) Filter element for flat membrane separation device