JPH01145352A - Production of optical fiber core covered with metal and dice therein - Google Patents

Production of optical fiber core covered with metal and dice therein

Info

Publication number
JPH01145352A
JPH01145352A JP62301535A JP30153587A JPH01145352A JP H01145352 A JPH01145352 A JP H01145352A JP 62301535 A JP62301535 A JP 62301535A JP 30153587 A JP30153587 A JP 30153587A JP H01145352 A JPH01145352 A JP H01145352A
Authority
JP
Japan
Prior art keywords
metal
optical fiber
die
core
dice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62301535A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshizawa
信幸 吉澤
Kazutaka Domoto
堂本 和孝
Yukiyasu Negishi
根岸 幸康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62301535A priority Critical patent/JPH01145352A/en
Publication of JPH01145352A publication Critical patent/JPH01145352A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form the uniform and thin metal coat densely without damages to the cushioning layer and the optical fiber itself by passing the optical core fiber having the cushioning layer formed through the dice provided with the tapered part for feeding the melted metal. CONSTITUTION:A melted metal 18, for example, composed of Bi-Sn-Pb, is fed into the dice 23 restricting the outer diameter of the optical fiber core 27. At the same time, the core material 15 having the cushioning layer 35 of an ultraviolet-curable resin formed thereon is introduced into the through hole 42 in the dice 23. The core material is passed through the hole 42 provided with a tapered part 41 whose diameter becomes larger, as the material runs forward, and the larger diameter zone is kept at lower temperature than the melting point of the metal 18. Thus, the resultant metal-coated optical fiber core line can be made fine in its outer diameter, and prevent contaminants such as hydrogen or moisture affecting adverse effect on the fiber properties from permeating into the fibers.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、金属を二次被覆として用いた光ファイバ心線
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method of manufacturing an optical fiber core using metal as a secondary coating.

〈従来の技術〉 光ファイバ心線に対する水や水素の浸透を阻止すると共
にこの光ファイバ心線の強度を高め、伝送特性の劣化等
を防ぐ目的で金属を二次被覆として用いることが考えら
れている。
<Prior art> It has been considered to use metal as a secondary coating for the purpose of preventing water and hydrogen from penetrating into the optical fiber core, increasing the strength of the optical fiber, and preventing deterioration of transmission characteristics. There is.

この場合、光ファイバ素線と金属との熱膨張率の相違に
基づいて光ファイバ素線にマイクロベンディングが発生
するため、この光ファイバ緊線と金属被覆との間に緩衝
層を設け、光ファイバ素線に金属被覆の伸縮に伴う応力
が負荷しないようにする必要がある。
In this case, microbending occurs in the optical fiber due to the difference in thermal expansion coefficient between the optical fiber and the metal, so a buffer layer is provided between the optical fiber and the metal coating, and the optical fiber is It is necessary to prevent stress caused by expansion and contraction of the metal coating from being applied to the wire.

従来、提案されている金属被覆光ファイバ心線としては
、その断面構造の一例を表す第6図に示すように外径が
15リメートルで内径が0.7i:IJメートル程度の
金属パイプ1内に例えば紫外線硬化樹脂を緩衝層として
形成した外径が0.4i:IJメートル程度の心線素材
2を挿入したもの゛や、製造方法の一例を表す第7図に
示すように金属テープ3をロール成形によってパイプ1
′化し、これで心線素材2を囲繞したり、或いは他の製
造方法の一例を表す第8図に示すような電カケープルの
製造等に用いる被鉛機によるもの等がある。この第8図
に示したものは融点未満に加熱された鉛やアルミニウム
等の加熱金属4をプランジャ5によってダイス6とニー
ドル7とを有するクロスヘツド8内に押出し、ニードル
7に通された心線素材2の外周をこの加熱金属4で被覆
するようにしている。
As shown in FIG. 6, which shows an example of the cross-sectional structure of the metal-coated optical fiber core that has been proposed, the metal-coated optical fiber is placed inside a metal pipe 1 with an outer diameter of 15 mm and an inner diameter of about 0.7I:IJ meters. For example, a wire core material 2 with an outer diameter of about 0.4I:IJ meters formed of ultraviolet curable resin as a buffer layer is inserted, or a metal tape 3 is rolled as shown in FIG. 7, which shows an example of the manufacturing method. Pipe 1 by molding
1 and surrounding the core wire material 2, or by using a lead-covered machine for manufacturing power cables as shown in FIG. 8, which shows an example of another manufacturing method. What is shown in FIG. 8 is a heated metal 4 such as lead or aluminum heated below its melting point, which is extruded by a plunger 5 into a crosshead 8 having a die 6 and a needle 7. The outer periphery of 2 is covered with this heating metal 4.

〈発明が解決しようとする問題点〉 第6図に示した構造のものでは、可撓性の高い心線素材
2を金属パイプ1中に押し込んで行く必要があるため、
これらに発生する摩擦力の影響で長尺なものを製造する
ことができない。
<Problems to be solved by the invention> In the structure shown in FIG. 6, it is necessary to push the highly flexible core material 2 into the metal pipe 1.
Due to the frictional force generated in these, it is not possible to manufacture long products.

又、第7図に示したものでは金属テープの突き合せ部9
から水や水素が内部に浸入する虞があるため、この突き
合わせ部9をシール溶接しておくことが普通である。し
かし、突き合わせ部9をシール溶接する場合には、溶接
熱による悪影響が心線素材2に及ぶのを防止するため、
心線素材2の周囲に空隙を形成する必要があり、内部結
露の防止や中水ケーブルとして使用した場合の破損に伴
う水走りを防止することが根本的に不可能となる。そこ
で、この空隙に樹脂を充填することも考えられるが、突
き合わせ部9の溶接時に乙の充tiI樹脂が膨張するた
め、ピンホール等の溶接欠陥が突き合わせ部に形成され
て気密性を損なう虞がある上、心線素材に充填樹脂の膨
張に伴うマイクロベンディングが発生する不具合が起こ
る。しかも、ロール成形ではパイプ1′の外径寸法を1
ミリメートル程度息下にすることが極めて困難であり、
パイプ1′の外径が太くなってしまう欠点があった。
Moreover, in the one shown in FIG. 7, the abutting portion 9 of the metal tape
Since there is a risk that water or hydrogen may infiltrate into the interior, this butt portion 9 is usually sealed and welded. However, when seal welding the butt portion 9, in order to prevent the adverse effects of welding heat from reaching the core wire material 2,
It is necessary to form a void around the core wire material 2, and it is fundamentally impossible to prevent internal dew condensation or water running due to breakage when used as a gray water cable. Therefore, it is possible to fill this gap with resin, but since the filled resin expands when welding the butt part 9, there is a risk that welding defects such as pinholes may be formed in the butt part and impair the airtightness. In addition, a problem occurs in which microbending occurs in the core wire material due to the expansion of the filled resin. Moreover, in roll forming, the outer diameter of pipe 1' is reduced to 1
It is extremely difficult to hold the breath down by a millimeter,
There was a drawback that the outer diameter of the pipe 1' became thick.

更に、第8図に示したものでは固相の加熱金属4をクロ
スヘツド8に押出すため、クロスヘツド8内での加熱金
属4の流動性が悪く、金属被覆の肉厚を0.6E’)メ
ートル以下にできないことが経験的に判明している。加
えて、外径10ミリメートルの心線素材lに2ミリメー
トルの肉厚で鉛を被覆する場合、プランジャ5の押圧力
が千トン以上にもなり、巨大な製造設備が必要となる。
Furthermore, in the case shown in FIG. 8, since the heating metal 4 in solid phase is extruded into the crosshead 8, the fluidity of the heating metal 4 within the crosshead 8 is poor, and the thickness of the metal coating is reduced to 0.6E') meters. Experience has shown that the following cannot be done. In addition, in the case where a core wire material l having an outer diameter of 10 mm is coated with lead to a thickness of 2 mm, the pressing force of the plunger 5 becomes more than 1,000 tons, which requires huge manufacturing equipment.

く問題点を解決するための手段〉 第一番目の本発明による金属被覆光ファイバ心線の製造
方法は、光ファイバ心線の外径寸法を拘束するダイス内
に溶融状態の金属を供給すると共に緩衝層が形成された
心線素材を前記ダイス内を通過させ、前記ダイスの内壁
に前記心線素材の通過方向側ほど大径となるテーパ部を
形成すると共にこのテーパ部の大径側を前記金属の融点
よりも低温に保持し、前記金属を前記テーパ部の途中で
凝固させて前記心線素材の外周に前記金属を被覆するよ
うにしたことを特徴とするものである。
Means for Solving the Problems> The first method of manufacturing a metal-coated optical fiber according to the present invention includes supplying molten metal into a die that restricts the outer diameter of the optical fiber, and The core wire material on which the buffer layer has been formed is passed through the die, and a tapered portion is formed on the inner wall of the die, the diameter of which increases toward the direction in which the core wire material passes. It is characterized in that the temperature is maintained at a temperature lower than the melting point of the metal, and the metal is solidified in the middle of the tapered portion, so that the outer periphery of the core wire material is coated with the metal.

又、第二番目の本発明による金属被覆光ファイバ心線製
造用ダイスは、溶融状態の金属が供給されろと共に緩衝
層を形成した心線素材が通過する貫通孔を具え、この貫
通孔に前記心線素材の通過方向側ほど大径とな9且つ途
中で前記金属を凝固させるテーパ部を形成したことを特
徴とするものである。
The die for manufacturing a metal-coated optical fiber core according to the second aspect of the present invention is provided with a through hole through which the molten metal is supplied and through which the core material forming the buffer layer passes. The present invention is characterized in that the diameter becomes larger toward the side in which the core material passes, and a tapered portion is formed in the middle to solidify the metal.

く作   用〉 本発明による被覆金属光ファイバ心線の製造方法の原理
を表す第5図に示すように、金属溶融炉101内の溶融
金属102は心線素材103と共にダイス104に供給
される。
Function> As shown in FIG. 5, which shows the principle of the method for manufacturing a coated metal optical fiber core according to the present invention, molten metal 102 in a metal melting furnace 101 is supplied to a die 104 together with a core material 103.

ダイス104に形成されたテーパ部105は、その内壁
温度がテーパ部105の途中で溶融金属102の融点と
ほぼ等しく設定され、これよりも上流側は融点以上に加
熱されていると共に下流側は融点よりも低温に保持され
ている。乙の溶融金属102の粘度は、その材質如何に
かかわらずほぼ5 cps以下であるため、水と類似の
挙動を示して自重によりダイス104内に流入する。テ
ーパ部105の内壁1度は下端側ほど低く制御されてい
るため、溶融金属102はダイス104の内壁温度がこ
の溶融金属102の融点とほぼ等しくなっている箇所か
ら漸次固化し始める。この状態で心線素材103を下方
へ繰り出せば、溶融金属102の凝固開始位置から被覆
金@ 106が形成されるが、この被覆金属106の表
面は固化状態にあるため、ダイス104内に被覆金属1
06が充満することはない。この凝固開始位置より下方
では、ダイス104の内壁と固化した被覆金属106の
表面との間に空隙が形成されるため、ダイス104の内
壁と被覆金属106との間に摩擦力を生じることはない
。従って、ダイス104内に固化した被覆金属106が
停留することなく、光ファイバ心線107の製造が連続
的になされろ。
The inner wall temperature of the tapered part 105 formed in the die 104 is set to be approximately equal to the melting point of the molten metal 102 in the middle of the tapered part 105, and the upstream side of this is heated above the melting point and the downstream side is heated to the melting point. is kept at a lower temperature than Since the viscosity of the molten metal 102 is approximately 5 cps or less regardless of its material, it behaves similar to water and flows into the die 104 under its own weight. Since the inner wall 1 degree of the tapered portion 105 is controlled to be lower toward the lower end, the molten metal 102 gradually begins to solidify at a point where the inner wall temperature of the die 104 is approximately equal to the melting point of the molten metal 102. If the core wire material 103 is fed downward in this state, a coated metal @ 106 is formed from the solidification start position of the molten metal 102, but since the surface of the coated metal 106 is in a solidified state, the coated metal is not deposited inside the die 104. 1
06 will never be full. Below this solidification start position, a gap is formed between the inner wall of the die 104 and the surface of the solidified coating metal 106, so no frictional force is generated between the inner wall of the die 104 and the coating metal 106. . Therefore, the coated optical fiber 107 can be manufactured continuously without the solidified coating metal 106 remaining in the die 104.

く実 施 例〉 本発明による金属被覆光ファイバ心線の製造方法を実現
し得る装置の概念を表す第1図に示すように、素線送出
8111から繰り出される光ファイバ素線12は、本実
施例では外径が125マイクロメートルのシングルモー
ド伝送用光ファイバを紫外線硬化樹脂で形成された緩衝
層で外径を0゜4ミリメートルに成形したものであり、
途中で撚線機13によりその緩衝層の外周に本実施例で
は195デニールのアラミド繊維を抗張力繊維14とし
て六本螺旋状に巻き付け、この心線素材15が金属溶融
炉16に送り込まれる。この金属溶融炉16にはヒータ
17によって融点辺上に加熱された溶融金属18が貯留
されている。
Embodiment Example As shown in FIG. 1, which shows the concept of an apparatus capable of realizing the method for manufacturing a metal-coated optical fiber according to the present invention, the optical fiber strand 12 fed out from the strand delivery 8111 is as shown in FIG. In this example, a single mode transmission optical fiber with an outer diameter of 125 micrometers is molded to an outer diameter of 0°4 mm with a buffer layer made of ultraviolet curing resin.
On the way, six aramid fibers of 195 denier in this embodiment are spirally wound as tensile strength fibers 14 around the outer periphery of the buffer layer by a twisting machine 13, and this core wire material 15 is fed into a metal melting furnace 16. In this metal melting furnace 16, molten metal 18 heated to above its melting point by a heater 17 is stored.

この溶融金属として本実施例ではビスマス−錫−鉛から
なる融点が95℃の低融点合金を用いており、金属溶融
炉16は素材貫通孔19を形成した蓋20により内部が
密閉状態となっている。そして、この金属溶融炉16内
は空気圧縮機21によって例えば4気圧程度の加圧状態
に保持きれ、金属溶融炉16の下端にダイスホルダ22
と共に設けられたダイス23の内壁と溶融金属18との
1@擦力を、圧縮空気の圧力分だけ減少させ、これによ
って溶融金属18の被覆を円滑化させると共に製造速度
を高速化させている。前記ダイスホルダ22にもヒータ
24が組付けられ、ダイス23内に圧送されて来る例え
ば110℃程′度の温度の溶融金属18の溶融状態を゛
保持するようになっているが、ダイス23の下端部には
冷却液恒温循環装置25に接続する冷却チャンバ26が
設けられ、心線素材15の出口を含むダイス23の下端
部を溶融金属18の溶点よりも低温(例えば50℃)に
保持するようになっている。本実施例では、入口の内径
が1ミリメートルで出口の内径が1.2ミリメートル、
長さが150ミリメートルに設定された工具鋼製のダイ
ス23とこのダイス23を通過して形成される光ファイ
バ心線27の心線巻取機28との間に更に第二の冷却液
恒温循環装置29に接続する冷却チャンバ30を設けて
おり、ダイス23を通過直後の内部余熱を持った光ファ
イバ心線27の被覆金属31の結晶安定化を図り、その
強度を速やかに発現させるようにしている。
In this embodiment, a low melting point alloy consisting of bismuth-tin-lead having a melting point of 95° C. is used as this molten metal, and the inside of the metal melting furnace 16 is sealed by a lid 20 in which a material through hole 19 is formed. There is. The inside of this metal melting furnace 16 is maintained at a pressurized state of, for example, about 4 atmospheres by an air compressor 21, and a die holder 22 is placed at the lower end of the metal melting furnace 16.
The frictional force between the inner wall of the die 23 and the molten metal 18 provided therewith is reduced by the pressure of the compressed air, thereby smoothing the coating of the molten metal 18 and increasing the production speed. A heater 24 is also attached to the die holder 22 to maintain the molten state of the molten metal 18, which is at a temperature of, for example, about 110° C., which is force-fed into the die 23. A cooling chamber 26 connected to a coolant constant temperature circulation device 25 is provided in the section to maintain the lower end of the die 23 including the outlet of the core wire material 15 at a temperature lower than the melting point of the molten metal 18 (for example, 50° C.). It looks like this. In this example, the inner diameter of the inlet is 1 mm, the inner diameter of the outlet is 1.2 mm,
A second coolant constant temperature circulation is further provided between a die 23 made of tool steel whose length is set to 150 mm and a wire winder 28 for the optical fiber core 27 formed by passing through the die 23. A cooling chamber 30 connected to the device 29 is provided to stabilize the crystals of the coated metal 31 of the optical fiber core 27, which has internal residual heat immediately after passing through the die 23, and to quickly develop its strength. There is.

ところで、ダイス23の内壁をステンレス鋼や銅等の金
属で形成すると、これがダイス23内に供給される溶融
金属18との間に強い金属結合を生じるため、ダイス2
3の内壁を溶融金属18との結合力や摩擦力の小さい材
料、例えばPTFE (ポリ四弗化エチレン)やポリ三
弗化エチレン、PFA (ベルフルオロアルフキシ弗素
樹脂)、FEP (四弗化エチレン六弗化プロピレン共
重合体)等の弗素ス23の内壁に対する溶融金属18の
剥離性を向上させろことも有効である。
By the way, when the inner wall of the die 23 is made of metal such as stainless steel or copper, a strong metal bond is formed between the inner wall of the die 23 and the molten metal 18 supplied into the die 23.
The inner wall of 3 is made of a material with low bonding force or frictional force with the molten metal 18, such as PTFE (polytetrafluoroethylene), polytrifluoroethylene, PFA (perfluoroalpoxy fluororesin), or FEP (tetrafluoroethylene). It is also effective to improve the releasability of the molten metal 18 from the inner wall of the fluorine gas 23 such as propylene hexafluoride copolymer.

又、本実施例のようにll衝層の外周に抗張方縁維14
を添設した心線素材15を用いた場合、これら抗張力繊
維14の微細なフィラメントに溶融金属18が回り込み
、心線素材15と溶融金属18との接触面積が大きくな
ってこれらの密着性が良くなると共に高温下で劣化し易
い緩衝層に対してこれら抗張力繊維14が断熱層として
作用するため、より一層良好な金属被覆を行うことがで
きろ。
In addition, as in this embodiment, tensile fibers 14 are provided on the outer periphery of the ll stress layer.
When using the core wire material 15 with attached fibers, the molten metal 18 wraps around the fine filaments of these tensile strength fibers 14, and the contact area between the core wire material 15 and the molten metal 18 increases, improving their adhesion. At the same time, since these tensile strength fibers 14 act as a heat insulating layer for the buffer layer, which tends to deteriorate at high temperatures, even better metal coating can be achieved.

前記金属溶融炉16及びダイスホルダ22及び冷却チャ
ンバ26及びダイス23の下端部には、それぞれヒータ
17,24の温度及び冷却液恒温循環装置129からの
冷却液の流量を制御するための制御装置32に接続する
サーミスタ等の温度検出センサ33が組付けられ、光フ
ァイバ心線27が連続して円滑に製造されるように配慮
している。
At the lower ends of the metal melting furnace 16, the die holder 22, the cooling chamber 26, and the die 23, a control device 32 is provided to control the temperature of the heaters 17, 24 and the flow rate of the coolant from the coolant constant temperature circulation device 129, respectively. A temperature detection sensor 33 such as a thermistor to be connected is assembled so that the optical fiber core 27 can be manufactured continuously and smoothly.

この第1図に示す製造装置を用いて第2図に示す如き断
面構造の光ファイバ心線27を連続的に51センチメー
トル製造した。この光ファイバ心線27の外径は1ミリ
メートルであり、図中の符号で34は光ファイバ、35
は緩衝層である。この光ファイバ心線27では1.3マ
イクロメートルの波長の光(赤外線)に対して伝送損失
が0.49 dB/km t、かなく、金属被覆前の心
線素材15の伝送損失とほぼ同じであった。又、800
気圧の高水圧下においても損失増が認められず、1気圧
の水素雰囲気での損失増加も認められないことから、気
密性が高い上に強度特性や水素遮断特性が良好である。
Using the manufacturing apparatus shown in FIG. 1, 51 cm of optical fiber core wire 27 having a cross-sectional structure as shown in FIG. 2 was continuously manufactured. The outer diameter of this optical fiber core wire 27 is 1 mm, and in the figure, 34 is an optical fiber, and 35 is an optical fiber.
is a buffer layer. This optical fiber core 27 has a transmission loss of 0.49 dB/km t for light with a wavelength of 1.3 micrometers (infrared rays), which is almost the same as the transmission loss of the core fiber 15 before metal coating. Met. Also, 800
Since no increase in loss is observed even under high water pressure, and no increase in loss is observed in a hydrogen atmosphere of 1 atm, it has high airtightness and good strength and hydrogen barrier properties.

なお、内径が1ミリメートルで一定なダイスを用いた場
合には、空気圧縮+1121にて6気圧の圧力を金属溶
融炉16内に加えても、被覆金属31はダイス内で固着
してしまい、光ファイバ心線27を得ることはできなか
った。そこで、このダイスの出口温度を被覆金属31の
融点近傍まで上昇させると、溶融金属18がダイスの出
口から噴き出し、やはり光ファイバ心線27を得ηこと
はできなかった。
Note that if a die with a constant inner diameter of 1 mm is used, even if a pressure of 6 atmospheres is applied to the metal melting furnace 16 with air compression +1121, the coated metal 31 will stick inside the die and the light will not be visible. It was not possible to obtain the fiber core 27. Therefore, when the exit temperature of this die was raised to near the melting point of the coating metal 31, the molten metal 18 spouted out from the exit of the die, and the optical fiber core 27 could not be obtained.

上述した実施例では、抗張方縁$@ 14を撚った心線
素材15としたが、必ずしも緩衝層35の外周に抗張力
繊維14を添設する必要はない。又、溶融金属炉16と
してはクロスヘツド型のものを採用することも可能であ
り、溶融金属18の加圧手段として本実施例の圧縮空気
以外に流体ポンプ等を使っても良い。
In the above-described embodiment, the tensile strength fibers 14 are not necessarily attached to the outer periphery of the buffer layer 35, although the tensile strength fibers 14 are used as twisted core wire materials 15. Further, it is also possible to employ a crosshead type furnace as the molten metal furnace 16, and as a means for pressurizing the molten metal 18, a fluid pump or the like may be used in addition to the compressed air of this embodiment.

このような本発明の製造方法を実現し得る装置の他の一
実施例の概略構造を表す第3図に示すように、外周に緩
衝層を形成した心線素材36が供給されろクロスヘツド
型の金属溶融炉37には、プランジャポンプやギヤポン
プ等の流体ポンプ38を介して溶融金属貯槽39が連結
されており、この流体ポンプ38の作動によって溶融金
属貯槽39の溶融金属。
As shown in FIG. 3, which shows the schematic structure of another embodiment of the apparatus capable of realizing the manufacturing method of the present invention, a core material 36 having a buffer layer formed on the outer periphery is supplied. A molten metal storage tank 39 is connected to the metal melting furnace 37 via a fluid pump 38 such as a plunger pump or a gear pump, and when the fluid pump 38 operates, the molten metal in the molten metal storage tank 39 is removed.

18が金属溶融炉38からダイス23側に圧送され、光
ファイバ心線27の製造速度を第1図に示したものより
高めることができる。
18 is fed under pressure from the metal melting furnace 38 to the die 23 side, and the manufacturing speed of the optical fiber core 27 can be increased compared to that shown in FIG.

又、本実施例では一台の冷却液恒温循環装置40にて二
つの冷却チャンバ26.30内に順に冷却液を循環させ
るようにしている。なお、図中で第1図に示した部材と
同一機能の部材には、これと同一の符号を記しである。
Further, in this embodiment, a single coolant constant temperature circulation device 40 is used to sequentially circulate the coolant within the two cooling chambers 26 and 30. In the drawings, members having the same functions as those shown in FIG. 1 are designated by the same reference numerals.

ダイス23の構造として、これら二つの実施例では第5
図に示したものとほぼ同じものを採用したが、本発明に
よるダイスの断面構造の一例をそれぞれ表す第4図(a
l 、 (b) 、 (C)に示すように、テーパ部4
1をダイス23の中央部に形成された貫通孔42全体に
形成したり、或いは貫通孔42の一部に形成することも
可能であり、テーパ部41を円錐面以外の曲面で形成す
るようにしても良い。
In these two embodiments, the structure of the die 23 is
Although almost the same die as shown in the figure was adopted, FIG.
As shown in 1, (b), and (C), the taper portion 4
1 can be formed in the entire through hole 42 formed in the center of the die 23, or can be formed in a part of the through hole 42, and the tapered part 41 can be formed with a curved surface other than a conical surface. It's okay.

上述した二つの実施例では−0の心線素材15.36を
金属溶融炉16.37側へ供給するようにしたが、多心
の心線素材にも本発明を応用することができる。又、製
造速度が多少遅くはなるが溶融金属18を加圧せずにダ
イス23側へ自重により供給しても何ら問題はない。更
に、これらの実施例を適宜組合せて別な構造のものを採
用することも当然可能である。
In the two embodiments described above, the -0 core wire material 15.36 is supplied to the metal melting furnace 16.37 side, but the present invention can also be applied to a multi-core wire material. Furthermore, there is no problem in supplying the molten metal 18 to the die 23 by its own weight without applying pressure, although the production speed is somewhat slower. Furthermore, it is naturally possible to adopt a different structure by appropriately combining these embodiments.

〈発明の効果〉 本発明の金属被覆光ファイバ心線の製造方法によると、
緩衝層が形成された心線素材を溶融金属が供給されるテ
ーパ部を具えたダイスの貫通孔に通し、均一な薄肉の金
属被覆を緩衝層や光ファイバ素線等に損傷を与えろこと
なく密に成形するようにしたので、光ファイバ心線の外
径を細径化することが可能であり、強度特性に優れ且つ
伝送特性に影響を与えるような水素や水分等の不純分子
の透過を防止できる低損失な金属被覆光ファイバ心線を
容易に実現でき、光ファイバケーブル構造の簡易化及び
ケーブル価格の低廉化に大きく貢献できると共に広範囲
な環境下での使用が可能となる。又、連続作業性にも優
れていることから長大な長さを有する光ファイバ心線の
製造にも適している。更に、ダイスの温度を制御するこ
とによりダイス内における溶融金属の固化状態をwl整
し、被覆金属の結晶状態が最適となるように被覆するこ
とが可能となり、高品質の金属被覆光ファイバ心線を製
造することが可能である。
<Effects of the Invention> According to the method for manufacturing a metal coated optical fiber core wire of the present invention,
The core material on which the buffer layer has been formed is passed through the through hole of the die, which has a tapered part into which molten metal is supplied, and the uniform thin metal coating is tightly sealed without damaging the buffer layer or the optical fiber strands. This makes it possible to reduce the outer diameter of the optical fiber, which has excellent strength characteristics and prevents impurity molecules such as hydrogen and moisture from permeating, which would affect transmission characteristics. It is possible to easily realize a low-loss metal-coated optical fiber core, which can greatly contribute to simplifying the optical fiber cable structure and lowering the cable price, and can be used in a wide range of environments. Furthermore, since it has excellent continuous workability, it is also suitable for manufacturing optical fiber cores having a long length. Furthermore, by controlling the temperature of the die, it is possible to adjust the solidification state of the molten metal within the die and coat the coated metal so that the crystalline state is optimal, resulting in high-quality metal-coated optical fiber cores. It is possible to manufacture

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第3図は本発明による金属被覆光ファイバ心
線の製造方法をそれぞれ実現し得ろ被覆装置の概略構造
を表す製造概念図、第2図は第1図に示した装置によっ
て製造された光ファイバ心線の断面図、第4図(al〜
(C)は本発明によるダイスの一実施例の構造をそれぞ
れ表す断面図、第5図は本発明の製造原理を表す断面図
、第6図〜第8図は従来方法による金属被覆光ファイバ
心線のそれぞれ製造手順を表す製造概念図である。 又、図中の符号で14は抗張力m維、15゜36は心線
素材、16.37は金属溶融炉、17゜24.39はヒ
ータ、18は溶融金属、23゜104はダイス、25,
29.40は冷却液恒温循環装置、26,3Qは冷却チ
ャンバ、27は光ファイバ心線、31は被覆金属、32
は制御装置、33は温度検出センサ、35は緩衝層、4
1.105はテーパ部、42は貫通孔である。
1 and 3 are manufacturing conceptual diagrams showing the schematic structure of a coating device that can realize the manufacturing method of a metal-coated optical fiber according to the present invention, respectively, and FIG. A cross-sectional view of a coated optical fiber, FIG.
(C) is a cross-sectional view showing the structure of an embodiment of the die according to the present invention, FIG. 5 is a cross-sectional view showing the manufacturing principle of the present invention, and FIGS. 6 to 8 are metal-coated optical fiber cores manufactured by the conventional method. It is a manufacturing conceptual diagram showing the manufacturing procedure of each line. Also, in the figure, 14 is a tensile strength fiber, 15°36 is a core wire material, 16.37 is a metal melting furnace, 17°24.39 is a heater, 18 is a molten metal, 23°104 is a die, 25,
29.40 is a coolant constant temperature circulation device, 26, 3Q is a cooling chamber, 27 is an optical fiber core, 31 is a coated metal, 32
is a control device, 33 is a temperature detection sensor, 35 is a buffer layer, 4
1.105 is a tapered portion, and 42 is a through hole.

Claims (2)

【特許請求の範囲】[Claims] (1)光ファイバ心線の外径寸法を拘束するダイス内に
溶融状態の金属を供給すると共に緩衝層が形成された心
線素材を前記ダイス内を通過させ、前記ダイスの内壁に
前記心線素材の通過方向側ほど大径となるテーパ部を形
成すると共にこのテーパ部の大径側を前記金属の融点よ
りも低温に保持し、前記金属を前記テーパ部の途中で凝
固させて前記心線素材の外周に前記金属を被覆するよう
にしたことを特徴とする金属被覆光ファイバ心線の製造
方法。
(1) Supplying molten metal into a die that restricts the outer diameter dimension of the optical fiber core, and passing the core material on which the buffer layer has been formed through the die, and applying the core wire to the inner wall of the die. A tapered portion is formed whose diameter becomes larger toward the side in the direction in which the material passes, and the larger diameter side of the tapered portion is held at a temperature lower than the melting point of the metal, and the metal is solidified in the middle of the tapered portion to form the core wire. 1. A method of manufacturing a metal-coated optical fiber, characterized in that the outer periphery of the material is coated with the metal.
(2)溶融状態の金属が供給されると共に緩衝層を形成
した心線素材が通過する貫通孔を具え、この貫通孔に前
記心線素材の通過方向側ほど大径となり且つ途中で前記
金属を凝固させるテーパ部を形成したことを特徴とする
金属被覆光ファイバ心線製造用ダイス。
(2) A through-hole is provided through which the molten metal is supplied and the core wire material forming the buffer layer passes through, and the diameter of the through-hole increases toward the direction in which the core wire material passes, and the metal is inserted into the through-hole along the way. A die for manufacturing a metal-coated optical fiber core, characterized by forming a tapered part for solidification.
JP62301535A 1987-12-01 1987-12-01 Production of optical fiber core covered with metal and dice therein Pending JPH01145352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62301535A JPH01145352A (en) 1987-12-01 1987-12-01 Production of optical fiber core covered with metal and dice therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62301535A JPH01145352A (en) 1987-12-01 1987-12-01 Production of optical fiber core covered with metal and dice therein

Publications (1)

Publication Number Publication Date
JPH01145352A true JPH01145352A (en) 1989-06-07

Family

ID=17898103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62301535A Pending JPH01145352A (en) 1987-12-01 1987-12-01 Production of optical fiber core covered with metal and dice therein

Country Status (1)

Country Link
JP (1) JPH01145352A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143028A1 (en) * 2000-04-04 2001-10-10 Yazaki Corporation Apparatus for continuous pressure infiltration of metal fiberbundles
GB2367562A (en) * 2000-08-29 2002-04-10 Yazaki Corp Pressure infiltration apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143028A1 (en) * 2000-04-04 2001-10-10 Yazaki Corporation Apparatus for continuous pressure infiltration of metal fiberbundles
US6629557B2 (en) 2000-04-04 2003-10-07 Northeastern University Method and apparatus for manufacturing composite materials
US6779589B2 (en) 2000-04-04 2004-08-24 Yazaki Corporation Method for the production of inorganic fiber-reinforced metal matrix composite wires
GB2367562A (en) * 2000-08-29 2002-04-10 Yazaki Corp Pressure infiltration apparatus
GB2367562B (en) * 2000-08-29 2002-11-13 Yazaki Corp Pressure infiltrating apparatus for infiltrating fiber bundle with metal
US6660088B2 (en) 2000-08-29 2003-12-09 Yazaki Corporation Pressure infiltrating apparatus for infiltrating fiber bundle with metal

Similar Documents

Publication Publication Date Title
US5468327A (en) Method and device for continuous formation of braid reinforced thermoplastic structural and flexible members
US6188822B1 (en) Self-supporting fiber optic cable and an apparatus and methods for making the same
JPS61258062A (en) Method and apparatus for coating fiber
FR2489536A1 (en) OPTICAL FIBER CABLE AND METHOD FOR PRODUCING THE SAME
US5857255A (en) Apparatus and method for producing a metallic tube for light waveguides
GB2262996A (en) Optical waveguide cable having reinforced covering formed by coextrusion
FR2522342A1 (en) PROCESS FOR FORMING A METAL COATING ON A FIBER AND CORRESPONDING FIBER
JPS626962A (en) Fiber covering apparatus
US5197319A (en) Extrusion apparatus for sheathing a temperature sensitive core material
JPS63162551A (en) Method and equipment for coating optical fiber with metal protection sheath
JPH01145352A (en) Production of optical fiber core covered with metal and dice therein
JPH11160588A (en) Manufacture of metal thin pipe equipped with optical fiber
US6137934A (en) Optical cable with tubular metal core and method of making same
US6500365B1 (en) Process for the manufacture of an optical core for a telecommunications cable
JPH01145353A (en) Production of optical fiber and covered with metal
EP1036344B1 (en) Process for the manufacture of an optical core for a telecommunications cable
US4904323A (en) Manufacture of plastic jacketed steel pipe
FR2622024A1 (en) METHOD FOR MANUFACTURING A CABLE WITH OPTICAL FIBER AND CABLE OBTAINED BY THIS PROCESS
JPH01285904A (en) Metal-coated optical fiber and its production
JPS58223636A (en) Preparation of core wire of optical fiber
JPS636504B2 (en)
JPS5911366B2 (en) Manufacturing method of composite wire rod
JPH04362038A (en) Optical fiber producing device
CN117649983B (en) Preparation process of steel wire embedded cable
CA1315933C (en) Manufacture of plastic jacketed steel pipe