JPH01145168A - Paper feed mechanism - Google Patents

Paper feed mechanism

Info

Publication number
JPH01145168A
JPH01145168A JP62303522A JP30352287A JPH01145168A JP H01145168 A JPH01145168 A JP H01145168A JP 62303522 A JP62303522 A JP 62303522A JP 30352287 A JP30352287 A JP 30352287A JP H01145168 A JPH01145168 A JP H01145168A
Authority
JP
Japan
Prior art keywords
paper
elastic body
pressing member
elastomer
pressure contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62303522A
Other languages
Japanese (ja)
Other versions
JPH0588676B2 (en
Inventor
Tadayasu Uchikawa
内川 忠保
Osamu Myoga
修 冥加
Osamu Onishi
修 大西
Takeshi Inoue
武志 井上
Sadayuki Takahashi
高橋 貞行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62303522A priority Critical patent/JPH01145168A/en
Publication of JPH01145168A publication Critical patent/JPH01145168A/en
Publication of JPH0588676B2 publication Critical patent/JPH0588676B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Handling Of Sheets (AREA)
  • Handling Of Continuous Sheets Of Paper (AREA)
  • Jigging Conveyors (AREA)
  • Feeding Of Articles By Means Other Than Belts Or Rollers (AREA)

Abstract

PURPOSE:To feed paper without using a motor, a speed reducing mechanism or a rubber roller by a method wherein an elastomer whose oval motion is excited by an elastic advance wave or standing wave and the paper press member arranged in opposed relation to said elastomer are mounted and a piezoelectric ceramic element operating in synchronous relation to the reciprocating operation of the paper press member is formed to the paper press member. CONSTITUTION:An advance wave is operated so as to be separated into outside rings in two directions from the center of an elastomer 11 and again returned to the origin. Oval motion 13 is generated on the surface of the elastomer 11 and a paper 14 is placed on the elastomer 11 and, further, a press member 15 is supported thereon by a slider mechanism 16 to be arranged at a predetermined position by a return spring 18. The press member 15 has two pressure contact surfaces 17 so that the advance waves are moved in the same direction in the outside rings of the elastomer 11 and said contact surfaces 17 correspond to the outside rings. By this constitution, the paper 14 is fed by the pressure contact of the oval motion 13 and the press member 15.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は紙送り機構に関し、特にプリンタ、ファクシミ
リ、複写機等に使用され、用紙を送るための紙送り機構
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a paper feeding mechanism, and more particularly to a paper feeding mechanism used in printers, facsimile machines, copying machines, etc., for feeding paper.

(従来の技術) 従来のプリンタ、ファクシミリ、複写機等に使用されて
いる紙送り機構はモータの回転を歯車やベルト等の減速
機構を介して紙送り用のゴムローラに伝達し、このゴム
ローラの摩擦を利用して紙送りを行なっていた。
(Prior art) Paper feeding mechanisms used in conventional printers, facsimile machines, copying machines, etc. transmit the rotation of a motor to a rubber roller for paper feeding through a reduction mechanism such as a gear or a belt. was used to feed paper.

(発明が解決しようとする問題点) 上述の従来の紙送り機構はモータや減速機構やゴムロー
ラ等を必要とし、複雑な構成となる上に用紙の寸法に対
して装置が大型となる欠点がある。
(Problems to be Solved by the Invention) The conventional paper feeding mechanism described above requires a motor, a reduction mechanism, a rubber roller, etc., resulting in a complicated structure and has the disadvantage that the device is large in relation to the size of the paper. .

本発明の目的はモータや減速機構やゴムローラ等を用い
ないで用紙を送ることができる紙送り機構を提供するこ
とにある。
An object of the present invention is to provide a paper feeding mechanism that can feed paper without using a motor, a speed reduction mechanism, a rubber roller, or the like.

(問題を解決するための手段) 本発明の紙送り機構は、弾性進行波又は定在波により楕
円運動が励起される弾性体と、前記弾性体表面に対向し
て配置された紙押付部材とを備え、紙押部材にはその往
復動作に同期して動作する圧電セラミック素子が形成さ
れている。
(Means for Solving the Problem) The paper feeding mechanism of the present invention includes an elastic body whose elliptical motion is excited by an elastic traveling wave or a standing wave, and a paper pressing member disposed opposite to the surface of the elastic body. A piezoelectric ceramic element that operates in synchronization with the reciprocating motion of the paper pushing member is formed on the paper pushing member.

(作用) 本発明は超音波振動子により励起された振動を用いた超
音波モータの原理を用いている。超音波モータは周知の
ように圧電セラミック振動子などにより弾性体に縦振動
と横振動を合成させた進行波又は定在波を発生させ、そ
の弾性体表面には質点の運動として楕円運動をおこし、
その弾性体に対向するように押付けられたロータが楕円
運動の力に動作し回転するものである。
(Operation) The present invention uses the principle of an ultrasonic motor using vibrations excited by an ultrasonic vibrator. As is well known, an ultrasonic motor uses a piezoelectric ceramic vibrator or the like to generate a traveling wave or a standing wave that combines longitudinal and transverse vibrations in an elastic body, and causes an elliptical motion on the surface of the elastic body as the movement of a mass point. ,
The rotor, which is pressed against the elastic body, is rotated by the force of the elliptical motion.

本発明においては楕円運動が励起されている弾性体表面
上に押付部材を配置する。その押付部材は前記弾性体表
面に発生する楕円運動の方向に沿って往復運動できるよ
うにバネ、スライダガイド、又は支点により支持される
。また押付部材には前記弾性体表面の方向に向って運動
できるように圧電セラミック素子が接合される。
In the present invention, a pressing member is placed on the surface of an elastic body where elliptical motion is excited. The pressing member is supported by a spring, a slider guide, or a fulcrum so that it can reciprocate along the direction of the elliptical motion generated on the surface of the elastic body. Further, a piezoelectric ceramic element is bonded to the pressing member so as to be movable toward the surface of the elastic body.

このような構成で弾性体と押付部材の間に紙を挾み、前
記楕円運動の動作と、圧電セラミック素子による押付部
材の紙への圧接を同期することにより紙が送行される。
With this configuration, the paper is sandwiched between the elastic body and the pressing member, and the paper is fed by synchronizing the elliptical movement and the pressing of the pressing member against the paper by the piezoelectric ceramic element.

すなわち、弾性体表面は楕円運動が生じているが、その
楕円運動軌跡の上部半円の状態のときに押付部材が紙を
圧接するようにする。このとき紙は弾性体との摩擦力に
より弾性体上の楕円運動の運動方向に送行され、また押
付部材も紙との摩擦力により同時に送行される。
That is, although the surface of the elastic body is undergoing elliptical motion, the pressing member is configured to press against the paper when the surface is in the upper semicircle of the elliptical motion locus. At this time, the paper is fed in the direction of the elliptical motion on the elastic body due to the frictional force with the elastic body, and the pressing member is also simultaneously fed due to the frictional force with the paper.

一方、楕円運動が下部半円の状態では押付部材の紙への
圧接を解放するようにする。このとき楕円運動は紙を元
に戻す方向の運動となるが、紙には圧接力が作用してい
ないため弾性体とのスベリにより紙は停止又はわずかの
紙自身の惰性力により送行され戻る方向には送行された
い。また押付部材は紙との圧接の解放によりバネなどの
復帰力により元の位置に戻る。また次に楕円運動が上部
半円の状態のときに押付部材が紙を圧接し紙が送行され
る。
On the other hand, when the elliptical motion is in a lower semicircle, the pressing member is released from being pressed against the paper. At this time, the elliptical motion is a movement in the direction of returning the paper to its original position, but since there is no pressing force acting on the paper, the paper may stop due to slippage with the elastic body, or be fed back by a slight inertia force of the paper itself. I would like to be sent to Further, the pressing member returns to its original position by the return force of a spring or the like when the pressure contact with the paper is released. Next, when the elliptical motion is in the upper semicircular state, the pressing member presses the paper and the paper is fed.

このように楕円運動の動作方向に同期して押付部材が弾
性体表面方向に動作できるように押付部材に圧電セラミ
ック素子を接合し、その圧電素子の励起変形動作により
紙の圧接、非圧接を行なう。
In this way, a piezoelectric ceramic element is bonded to the pressing member so that the pressing member can move toward the surface of the elastic body in synchronization with the operating direction of the elliptical motion, and paper is pressed or non-pressured by the excitation deformation of the piezoelectric element. .

すなわち紙は弾性体表面の楕円運動とその運動に同期し
た圧電セラミック素子と押付手段による圧接によって送
行できる。
That is, the paper can be fed by the elliptical movement of the surface of the elastic body and the pressure contact between the piezoelectric ceramic element and the pressing means in synchronization with the movement.

(実施例) 本発明について図面を参照して詳細に説明する。第1図
は本発明の第一の実施例を示し、第1図(a)、(b)
は原理、動作を説明するための模式的断面図、第1図(
C)は押付部材を説明するための模式的斜視図、第1図
(d)は紙送り機構の模式的な斜視図である。第1図(
a>、(b)において、弾性体11には励振源としての
圧電セラミック素子(以降これを励振用素子12と呼ぶ
)が接合され、その励振用素子12の励起により弾性体
11には縦振動と横振動を生じる。それらの振動は励振
用素子12を複数個で構成し、各励振用素子12に位相
差をつけて励起することにより弾性体11には進行波が
生じ、また複数個を一′体とした励振用素子12を含め
た弾性体11の共振で励起することにより定在波が生じ
る。この進行波、定在波の両方式のいづれにしても縦振
動と横振動の合成により弾性体11の表面には質点の運
動として楕円運動13が発生できる。その弾性体11の
上に紙14を置き、その上には押付部材15を配置する
。その押付部材15はスライダ機構16により押付部材
15の圧接面17と紙14とに隙間があるように支持さ
れ、かつ復帰ばね18により所定の位置に配置されてい
る。さらに押付部材15には圧電セラミック素子(以降
これを圧接用素子1つと呼ぶ)が接合され、その圧接用
素子19の励起により圧接面17が弾性変形できるよう
に薄板となっている。このような構成において、励振用
素子12の励起により弾性体11の表面には楕円運動1
3が生じているが、その楕円運動13の運動軌跡の上部
半円のときに圧接用素子1つを励起し、押付部材15の
圧接面17は下に凸、すなわち紙14を圧接する状態と
なる。この圧接により紙14は弾性体11との摩擦力に
より楕円運動13が伝達され、紙14は矢印Aの方向に
送られる。またこのとき押付部材15は紙14との摩擦
力により紙14と同様の矢印Bの方向に送られる。一方
、楕円運動13の運動軌跡の下部°半円のときには楕円
運動13は紙14を元に戻す方向となるが振幅が負とな
り紙14への圧接力が小さくなるため紙14は元に戻る
こ・とけない。そのうえに圧接用素子19の励起を解放
することにより押付部材15は紙14の圧接が解放され
復帰ばね18の手段により矢印Cの方向に戻る。このよ
うな動作を繰返すことにより紙14は弾性体11の表面
に生ずる楕円運動13と押付部材15の圧接力により送
行される。
(Example) The present invention will be described in detail with reference to the drawings. FIG. 1 shows a first embodiment of the present invention, and FIGS. 1(a) and (b)
is a schematic cross-sectional view for explaining the principle and operation, Figure 1 (
C) is a schematic perspective view for explaining the pressing member, and FIG. 1(d) is a schematic perspective view of the paper feeding mechanism. Figure 1 (
In a> and (b), a piezoelectric ceramic element (hereinafter referred to as an excitation element 12) as an excitation source is bonded to the elastic body 11, and due to the excitation of the excitation element 12, longitudinal vibration is generated in the elastic body 11. and causes lateral vibration. These vibrations are generated by a plurality of excitation elements 12, and by exciting each excitation element 12 with a phase difference, a traveling wave is generated in the elastic body 11. A standing wave is generated by exciting the elastic body 11 including the elastic body 12 by resonance. In both the traveling wave and standing wave types, an elliptical motion 13 can be generated as a mass point motion on the surface of the elastic body 11 due to the combination of longitudinal vibration and transverse vibration. A paper 14 is placed on the elastic body 11, and a pressing member 15 is placed on top of it. The pressing member 15 is supported by a slider mechanism 16 so that there is a gap between the pressing surface 17 of the pressing member 15 and the paper 14, and is placed at a predetermined position by a return spring 18. Furthermore, a piezoelectric ceramic element (hereinafter referred to as one pressure contact element) is bonded to the pressing member 15, and the pressure contact surface 17 is formed into a thin plate so that it can be elastically deformed by the excitation of the pressure contact element 19. In such a configuration, the excitation of the excitation element 12 causes an elliptic motion 1 on the surface of the elastic body 11.
3 is occurring, one pressure contact element is excited at the upper semicircle of the locus of the elliptical motion 13, and the pressure contact surface 17 of the pressing member 15 is convex downward, that is, in a state in which it presses against the paper 14. Become. Due to this pressure contact, the elliptical motion 13 is transmitted to the paper 14 due to the frictional force with the elastic body 11, and the paper 14 is sent in the direction of arrow A. Further, at this time, the pressing member 15 is sent in the same direction of arrow B as the paper 14 due to the frictional force with the paper 14. On the other hand, when the motion trajectory of the elliptical motion 13 is in the lower semicircle, the elliptical motion 13 returns the paper 14 to its original position, but the amplitude becomes negative and the pressing force on the paper 14 becomes small, so the paper 14 does not return to its original position.・It doesn't melt. Moreover, by releasing the excitation of the pressing element 19, the pressing member 15 is released from pressing against the paper 14 and returns in the direction of arrow C by means of the return spring 18. By repeating such operations, the paper 14 is fed by the elliptical movement 13 generated on the surface of the elastic body 11 and the pressing force of the pressing member 15.

第1図(c)、(d)は以上のような紙送り機構の具体
例を示しており、(C)図は押付部材の圧接面側からみ
た斜視図で、(d)図は紙送り機構の一実施例である。
Figures 1(c) and 1(d) show a specific example of the paper feeding mechanism as described above. Figure 1(C) is a perspective view seen from the pressure contact side of the pressing member, and Figure 1(d) is a paper feeding mechanism. This is an example of a mechanism.

押付部材15は弾性変形する薄板の圧接面17とその裏
面に接合された圧接用素子1つから構成されている。ま
た振動子としての弾性体11は2つのリングが合わされ
た形状となりその表面には進行波が励起されている。
The pressing member 15 is composed of a pressing surface 17 of an elastically deformable thin plate and one pressing element bonded to the back surface of the pressing surface 17. Further, the elastic body 11 as a vibrator has a shape in which two rings are combined, and a traveling wave is excited on its surface.

その進行波は弾性体11のセンタより2方向の外側のリ
ングに分かれ、また元に戻るように動作している。この
ような弾性体11の表面には楕円運動13が生じており
、その弾性体11上に紙14を置き、さらにその上には
押付部材15がスライダ機構16により支持され、かつ
復帰ばね18により所定の位置に配置されている。この
押付部材15の圧接面17は弾性体11の外側のリング
で進行波が同一の方向に運動しており、その外側のリン
グに対応するように二つの圧接面17を有している。こ
のような構成で、楕円運動13と押付部材15の圧接に
より紙14が送行される。また本実施例では弾性体11
の外側のリングを圧接しているが、弾性体11のセンタ
部のみを圧接しても紙14を送行することができる。
The traveling wave splits into two outer rings from the center of the elastic body 11 and returns to its original state. An elliptical motion 13 is generated on the surface of the elastic body 11. A paper 14 is placed on the elastic body 11, and a pressing member 15 is supported by a slider mechanism 16 on top of the paper 14. placed in a predetermined position. The pressure contact surface 17 of this pressing member 15 is an outer ring of the elastic body 11 in which the traveling waves move in the same direction, and has two pressure contact surfaces 17 corresponding to the outer ring. With such a configuration, the paper 14 is fed by the elliptical movement 13 and the pressure contact of the pressing member 15. Further, in this embodiment, the elastic body 11
Although the outer ring of the elastic body 11 is pressed, the paper 14 can be fed even if only the center portion of the elastic body 11 is pressed.

以上の構成により単純な構造で小型、薄型の紙送り機構
が得られる。
With the above configuration, a small and thin paper feeding mechanism with a simple structure can be obtained.

第2図は本発明の第2の実施例を示す、第2図において
、励振用素子12の接合された弾性体11上に紙14を
介してビン21などの手段により回転支持され、かつ復
帰ばね18により支持された押付部材22を設ける。そ
の押付部材22の圧接面23には紙14の方向に変形で
きるように弾性変形できる薄板に°圧接用素子19が接
合されている。このような構成において、弾性体11に
おける楕円運動13とその運動に同期した圧接用素子1
9の励起による紙14の圧接により紙14は矢印Aの方
向に送行される。また押付部材22は紙14への圧接時
に紙14と同じ方向に移動し、また非圧接時には復帰ば
ね18により元の位置に戻るような矢印Bの運動を行な
う。このような構成においても本発明の効果は発揮でき
る。
FIG. 2 shows a second embodiment of the present invention. In FIG. 2, an excitation element 12 is rotatably supported on the bonded elastic body 11 with a paper 14 interposed therebetween by means such as a bottle 21, and is returned to its original position. A pressing member 22 supported by a spring 18 is provided. A pressure contact element 19 is joined to a pressure contact surface 23 of the pressing member 22, and is a thin plate that can be elastically deformed so as to be deformable in the direction of the paper 14. In such a configuration, the elliptical movement 13 in the elastic body 11 and the pressure welding element 1 synchronized with the movement
The paper 14 is fed in the direction of the arrow A by the pressure contact of the paper 14 by the excitation of the paper 9 . Further, the pressing member 22 moves in the same direction as the paper 14 when pressed against the paper 14, and returns to its original position by the return spring 18 when not pressed, as shown by arrow B. Even in such a configuration, the effects of the present invention can be exhibited.

第3図は本発明の第3の実施例を示す。第3図において
励振用素子12が接合された弾性体11上に紙14を介
して押付部材31を配置する。その押付部材31は剛性
のある基板32にくびれ部33を有した一体のものであ
り、そのくびれ部33は弾性変形可能でばね性を有する
。そのため押付部材31はくびれ部33を中心として矢
印Bのように往復運動に近い回転動作ができる。また押
付部材31の圧接面34には圧接用素子19が接合され
ている。このような構成において、弾性体11の楕円運
動13と、その運動に同期した圧接用素子1つの励起に
より紙14は矢印Aの方向に送行される。このような構
成においても本発明の効果は発揮できる。
FIG. 3 shows a third embodiment of the invention. In FIG. 3, a pressing member 31 is placed on the elastic body 11 to which the excitation element 12 is bonded, with a paper 14 interposed therebetween. The pressing member 31 is an integral member having a constricted portion 33 on a rigid substrate 32, and the constricted portion 33 is elastically deformable and has spring properties. Therefore, the pressing member 31 can perform a rotational motion similar to a reciprocating motion as shown by arrow B around the constricted portion 33. Further, a pressure contact element 19 is joined to the pressure contact surface 34 of the pressing member 31. In such a configuration, the paper 14 is fed in the direction of arrow A by the elliptical motion 13 of the elastic body 11 and the excitation of one pressure contact element synchronized with the motion. Even in such a configuration, the effects of the present invention can be exhibited.

第4図は本発明の第4の実施例を示す。第4図において
、励振用素子12が接合された弾性体11上に紙14を
介して押付部材41を設ける。その押付部材41はビン
21などにより回転支持され、かつ復帰ばね18により
所定の位置に置かれている。また押付部材41は縦効果
のある圧電素子を用いた圧接用素子42が接合され、そ
の先端に圧接面43を設けている。この圧接用素子42
はその励起により紙14に向かって変形動作し、圧接面
43は紙14の圧接、非圧接動作ができる。このような
構成において、弾性体11の楕円運動13と、その運動
に同期した圧接用素子42の励起により紙14は矢印A
の方向に送行され、押付部材41はビン21と復帰ばね
18により矢印Bの動作を行なう。このような構成にお
いても本発明の効果は発揮できる。
FIG. 4 shows a fourth embodiment of the invention. In FIG. 4, a pressing member 41 is provided on the elastic body 11 to which the excitation element 12 is bonded, with a paper 14 interposed therebetween. The pressing member 41 is rotatably supported by the bottle 21 or the like, and is placed in a predetermined position by the return spring 18. Further, a pressure contact element 42 using a piezoelectric element having a vertical effect is joined to the pressing member 41, and a pressure contact surface 43 is provided at the tip thereof. This pressure contact element 42
is deformed toward the paper 14 due to its excitation, and the pressure contact surface 43 can perform pressure contact and non-pressure contact operations with the paper 14. In such a configuration, the paper 14 moves in the direction of arrow A due to the elliptical movement 13 of the elastic body 11 and the excitation of the pressure contact element 42 in synchronization with the movement.
The pressing member 41 moves in the direction of the arrow B by the pin 21 and the return spring 18. Even in such a configuration, the effects of the present invention can be exhibited.

本発明においては表面の質点が楕円運動する弾性体と、
その楕円運動に同期して紙の圧接、非圧接動作のできる
押付部材による構成により小型、薄型の紙送り機構が得
られる。本発明において、振動子としての弾性体は進行
波、定在波いづれの方式でも可能である。
In the present invention, an elastic body in which mass points on the surface move in an elliptical manner;
A compact and thin paper feeding mechanism can be obtained by using a pressing member that can press and non-press the paper in synchronization with the elliptical movement. In the present invention, the elastic body as a vibrator can be of either a traveling wave type or a standing wave type.

(発明の効果) 以上のように本発明によれば超音波振動する弾性体とそ
の弾性体の振動に同期して圧接動作する押付部材により
小型、薄型の紙送り機構が得られる。
(Effects of the Invention) As described above, according to the present invention, a small and thin paper feeding mechanism can be obtained using an elastic body that vibrates ultrasonically and a pressing member that presses against the elastic body in synchronization with the vibration of the elastic body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)、(c)、(d)は本発明の第1
実施例を示し、(a、)、(b)は原理、動作を説明す
るための模式的な断面図、(c)、(d、)は本発明の
紙送り機構の模式的な斜視図、第2図〜第4図は本発明
の実施例を示す模式的断面図。 図中各記号はそれぞれ次の内容を示す。 11・・・弾性体、12・・・励振用素子、13・・・
楕円運動、14・・・紙、 15.22,31.41・・・押付部材、16・・・ス
ライダ機構、 17.23.34.43・・・圧接面、18・・・復帰
ばね、19.42・・・圧接用素子、21・・・ビン、
32・・・基板、33・・・くびれ部。
FIGS. 1(a), (b), (c), and (d) are the first embodiments of the present invention.
Examples are shown, (a,) and (b) are schematic sectional views for explaining the principle and operation, (c) and (d,) are schematic perspective views of the paper feeding mechanism of the present invention, FIGS. 2 to 4 are schematic cross-sectional views showing embodiments of the present invention. Each symbol in the figure indicates the following content. 11... Elastic body, 12... Excitation element, 13...
Elliptical motion, 14... Paper, 15.22, 31.41... Pressing member, 16... Slider mechanism, 17.23.34.43... Pressure contact surface, 18... Return spring, 19 .42... Pressure welding element, 21... Bin,
32... Board, 33... Neck part.

Claims (1)

【特許請求の範囲】[Claims] 弾性進行波又は定在波により楕円運動が励起される弾性
体と、前記弾性体表面に対向して配置された紙押付部材
とを備え、紙押付部材にはその往復動作に同期して動作
する圧電セラミック素子が形成されてなることを特徴と
する紙送り機構。
It includes an elastic body whose elliptical motion is excited by an elastic traveling wave or a standing wave, and a paper pressing member disposed opposite to the surface of the elastic body, and the paper pressing member operates in synchronization with the reciprocating motion of the elastic body. A paper feeding mechanism characterized by being formed with a piezoelectric ceramic element.
JP62303522A 1987-11-30 1987-11-30 Paper feed mechanism Granted JPH01145168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62303522A JPH01145168A (en) 1987-11-30 1987-11-30 Paper feed mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62303522A JPH01145168A (en) 1987-11-30 1987-11-30 Paper feed mechanism

Publications (2)

Publication Number Publication Date
JPH01145168A true JPH01145168A (en) 1989-06-07
JPH0588676B2 JPH0588676B2 (en) 1993-12-24

Family

ID=17922000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62303522A Granted JPH01145168A (en) 1987-11-30 1987-11-30 Paper feed mechanism

Country Status (1)

Country Link
JP (1) JPH01145168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080597A (en) * 2010-09-30 2012-04-19 Nikon Corp Piezoelectric actuator, lens barrel, and imaging device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149938A (en) * 1980-04-21 1981-11-20 Fujitsu Ltd Feeding mechanism for paper
JPS5778378A (en) * 1980-10-30 1982-05-17 Toshio Sashita Motor device utilizing supersonic vibration
JPS59177243A (en) * 1983-03-23 1984-10-06 Canon Inc Sheet feed device
JPS60148385A (en) * 1984-01-11 1985-08-05 Hitachi Maxell Ltd Ring-shaped supersonic vibrator of twisting and bending mode
JPS60161846A (en) * 1984-02-01 1985-08-23 Ricoh Co Ltd Paper feed mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149938A (en) * 1980-04-21 1981-11-20 Fujitsu Ltd Feeding mechanism for paper
JPS5778378A (en) * 1980-10-30 1982-05-17 Toshio Sashita Motor device utilizing supersonic vibration
JPS59177243A (en) * 1983-03-23 1984-10-06 Canon Inc Sheet feed device
JPS60148385A (en) * 1984-01-11 1985-08-05 Hitachi Maxell Ltd Ring-shaped supersonic vibrator of twisting and bending mode
JPS60161846A (en) * 1984-02-01 1985-08-23 Ricoh Co Ltd Paper feed mechanism

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080597A (en) * 2010-09-30 2012-04-19 Nikon Corp Piezoelectric actuator, lens barrel, and imaging device
CN102447415A (en) * 2010-09-30 2012-05-09 株式会社尼康 Piezoelectric actuator, lens barrel, and imaging device
US8611020B2 (en) 2010-09-30 2013-12-17 Nikon Corporation Piezoelectric actuator, lens barrel, and imaging device

Also Published As

Publication number Publication date
JPH0588676B2 (en) 1993-12-24

Similar Documents

Publication Publication Date Title
JP2002058266A (en) Ultrasonic driving device
JPH01145168A (en) Paper feed mechanism
US5499808A (en) Sheet feeding apparatus
JP2669913B2 (en) Vibration wave drive device and mobile device using the vibration wave drive device as a drive source
JPH0331140A (en) Sheet feeder
JPH02209341A (en) Sheet feeder
JPS63316676A (en) Piezoelectric linear motor
JPS6258883A (en) Drive device
JPH01126180A (en) Ultrasonic motor
JP3160342B2 (en) Ultrasonic drive
JP2595812Y2 (en) Transfer device
JPH05122951A (en) Driving mechanism
JPH01315276A (en) Ultrasonic motor
JPH0331139A (en) Sheet feeder
JPH01315275A (en) Ultrasonic motor
JPH0373707A (en) Drive mechanism
JPH07337046A (en) Ultrasonic motor drive
JPH04138083A (en) Displacement driving mechanism
JPH0356077A (en) Driving mechanism
JPH0331141A (en) Printer device
JPH03159581A (en) Ultrasonic motor
JPH0336109A (en) Sheet feed device
JPS61102177A (en) Surface wave drive motor
JPH01214075A (en) Driving apparatus
JPH0346943A (en) Thin plate feed mechanism