JPH01143799A - Method and device for vibration powder compacting - Google Patents

Method and device for vibration powder compacting

Info

Publication number
JPH01143799A
JPH01143799A JP62297666A JP29766687A JPH01143799A JP H01143799 A JPH01143799 A JP H01143799A JP 62297666 A JP62297666 A JP 62297666A JP 29766687 A JP29766687 A JP 29766687A JP H01143799 A JPH01143799 A JP H01143799A
Authority
JP
Japan
Prior art keywords
powder
pressurizing
pressure
cylinder
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62297666A
Other languages
Japanese (ja)
Other versions
JPH0325278B2 (en
Inventor
Tsuneji Nakatani
中谷 恒二
Shuichi Nakada
修一 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP62297666A priority Critical patent/JPH01143799A/en
Publication of JPH01143799A publication Critical patent/JPH01143799A/en
Publication of JPH0325278B2 publication Critical patent/JPH0325278B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/022Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space whereby the material is subjected to vibrations

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Powder Metallurgy (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To obtain an uniform formed part of dense density by filling a resin powder, etc., into a die, executing an air vent at a 1st stage by adding specified vibration and executing powder compacting at a 2nd stage. CONSTITUTION:The powder body 11 of a resin powder, metal powder body, ceramic powder body, etc., is filled in a die 10 first. The vibration of 1-10Hz is then given to the die 10 by the command from an exciting function generator 3 to execute the air vent of the powder body 11. When the air vent is completed enough with the lapse of a preset time, the vibration of 5-1,000Hz is given to the die 10 via an exciting frame by the command from the exciting function generator 3. A servovalve 14 for working is acted by the command signal from the pressurizing function generator 2 simultaneously, an oil pressure is acted on an upper punch 9 and the powder compacting can be executed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、樹脂粉末、金属粉末やセラミック蚤粉末など
を振動を加えなから圧粉成形するための撮動粉末成形(
方法及び)装置に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a method for compacting resin powder, metal powder, ceramic fleas powder, etc. without applying vibration.
METHODS AND APPARATUS.

(従来の技術) 従来粉末全ダイに封入し、油圧成形プレスで成形ざ几で
いたが、近時こnに振動を加えて圧粉成形することが行
わ几でおり、また、こnに用いら几る装置では振動周波
数が27KHZtiは20 KHZといった超音波振動
を成形パンチやダイに与えており、また、成形圧力は油
圧によっている。
(Prior technology) Conventionally, the powder was sealed in the entire die and compacted using a hydraulic press, but recently it has become common practice to add vibration to compaction. In this machine, ultrasonic vibrations with a vibration frequency of 27 KHZ or 20 KHZ are applied to the forming punch or die, and the forming pressure is based on hydraulic pressure.

(発明が解決しようとする問題点) 従来の装置は油圧成形プレスであり、大きな圧力で成形
する必要があり、いきおい装置の容量が大きくなった。
(Problems to be Solved by the Invention) The conventional device is a hydraulic molding press, and it is necessary to mold with a large pressure, resulting in a large capacity of the molding device.

まt、大きな圧力で成形する理由力・ら粉末材料の組織
の破壊が発生することがある。
Furthermore, the structure of the powder material may be destroyed due to the force of molding with large pressure.

さらに、パンチの周辺部に圧力が集中し、中心部分の圧
力が不均一になり、成形品全体の密度も一定しない・加
えて粉末間に介在するエアの十分なエア抜きがなさ乃な
いうちに加圧成形がなさnるために成形品の密度不均一
を助長する。
Furthermore, the pressure concentrates around the periphery of the punch, the pressure in the center becomes uneven, and the density of the entire molded product is also inconsistent.In addition, the air intervening between the powders is not sufficiently vented. Pressure molding is not performed, which promotes non-uniform density of the molded product.

さらにこの問題を解決するために成形パンチやダイに圧
電アクチュエータで超音波振動を発生させ、成形品の密
度を一定にするなどの改良を試みらnたが、圧電アクチ
ュエータの振動振幅が小さいtめ、エネルギーの発生が
十分でなく、必ずしも有効な結果を上げていない・ (問題点を解決する九めの手段) 本発明は、樹脂粉末、金属粉末やセラミックなどの粉末
をダイに封入し、l〜l0Hzの振動を与えてエア抜き
し、さらに5〜1000 HZの振動を与えて圧粉成形
して密度の均一な成形品を得之のであり、成形加工に用
いらnる装置として加圧シリンダ、および加振用サーボ
シリンダの駆動源として油圧を用い、サーボシリンダは
加振用関数発生器からの指令信号を加振サーボアンプを
経て制御さnるとともに、加振差動トランスからのフィ
ードバック信号を加振サーボアンプに入力して常に適正
な成形状態を維持したものである。
Furthermore, attempts were made to improve the density of the molded product by generating ultrasonic vibrations using piezoelectric actuators in the forming punches and dies to solve this problem, but the piezoelectric actuators' vibration amplitude was small. However, the generation of energy is not sufficient, and the results are not necessarily effective. The process involves applying vibrations of ~10Hz to remove air, and then applying vibrations of 5~1000Hz to compact the product to obtain a molded product with a uniform density. The hydraulic pressure is used as the drive source for the excitation servo cylinder, and the servo cylinder receives a command signal from the excitation function generator via the excitation servo amplifier, and also receives a feedback signal from the excitation differential transformer. is input into the excitation servo amplifier to maintain proper molding conditions at all times.

(作 用) まず、ダイ叩又はq8に粉末(1υを充填する。次いで
、加振用関数発生器(3)カらの指令でダイα0 、 
asに1−10 HZの振動が与えらn1粉禾のエア抜
きカf を行う。予め設定された時間濾過して充分にエア抜きが
終了すると加振用関数発生器(3)カらの指令で5〜1
00OHZの振動が加振フレーム(21ftMてダイ(
1(1、a均に与えらnる・この場合、振幅は0.05
〜1.0 m11であり、大きなパワーが与えらnる。
(Function) First, powder (1υ) is filled into the die punch or q8. Next, the die α0,
A vibration of 1-10 Hz is applied to as, and air is removed from n1 powder. When the air has been sufficiently removed after filtration for a preset time, a command from the excitation function generator (3) will cause 5 to 1
00OHZ vibration is applied to the excitation frame (21ftM die (
1 (1, given to a uniform n) In this case, the amplitude is 0.05
~1.0 m11, giving a large amount of power.

同時に加圧用関数発生器口からの指令信号で加圧用サー
ボバルブα4が作用し、上パンチ(9)に油圧が作用し
て圧粉成形がなさn ;b、さらに、第2図に示す実施
例では成形時に付与さnる縦振動に加えて5〜l 00
0Hzの横振動が加えらnる。横振動をプラスすると粉
体はより均一な密度に圧粉成形さnる。あるいは横振動
のみの場合でも有効である。
At the same time, the pressurizing servo valve α4 acts in response to a command signal from the pressurizing function generator port, and hydraulic pressure acts on the upper punch (9) to prevent powder compaction. Then, in addition to the longitudinal vibration imparted during molding, 5 to l 00
A lateral vibration of 0 Hz is applied. By adding transverse vibration, the powder is compacted to a more uniform density. Alternatively, it is effective even in the case of only lateral vibration.

(実施例) 次に実施例を第111Nにより説明する・コ字形の加振
フレーム(2)の下部には成形用粉末を装入する庭付ダ
イαOが載置され、さらに上部には加圧シリンダ(8)
が固定さ几ている。加圧シリンダ(8)のピストンロッ
ド(至)の先端に取付けらnた上パンチ(9)は、庭付
ダイ110に摺動可能に挿通される。加振用サーボバル
ブ(5)を経て圧油源妙と連通するサーボシリンダ(1
)のピストンロッド(7)の上端は前記加振フレーム(
2)の下部に連結される。また前記ピストンロッドの下
端は加振用差動トランス(6)に対置されると共に、該
加振用差動トランスは加振用差動トランスアンプ(7)
ヲ経て加振用サーボアンプ(4]に接続さnていて、前
記加振用差動トランスにて検知さnた信号が加振用サー
ボアンプ(4)にフィードバックさnる。さらに加振用
サーボアンプ(4)は振動数、振幅、加振時間、位置な
どの指令信号奮発する加振用関数発生器(3)に接続さ
nる。
(Example) Next, an example will be explained using No. 111N. A garden die αO for charging powder for molding is placed at the bottom of the U-shaped vibration frame (2), and a pressurizing die is placed at the top. Cylinder (8)
is fixed. The upper punch (9) attached to the tip of the piston rod (to) of the pressurizing cylinder (8) is slidably inserted into the garden die 110. The servo cylinder (1) communicates with the pressure oil source through the vibration servo valve (5).
The upper end of the piston rod (7) of the excitation frame (
2) is connected to the lower part of. Further, the lower end of the piston rod is placed opposite to an excitation differential transformer (6), and the excitation differential transformer is connected to an excitation differential transformer amplifier (7).
The signal detected by the differential transformer for vibration is fed back to the servo amplifier for vibration (4). The servo amplifier (4) is connected to an excitation function generator (3) that generates command signals such as frequency, amplitude, excitation time, and position.

加振フレーム(2)に載置さnた加圧シリンダ(8) 
id、加圧用サーボバルブα4を経て圧油源−に接続さ
れる。加圧シリンダの上パンチ(9)の位置は、上パン
チに取付けらnたバー叩の先端に対置さnた加圧用差動
トランスによって検知される。加圧用差動トランスα5
は加圧用差動トランスアンプαfi経て加圧用サーボア
ンプα3に接続さnていて、上記の加圧用差動トランス
αりによって検知さfl−た信号は加圧用サーボアンプ
α3にフィードバラフサ几ル。
Pressure cylinder (8) placed on vibration frame (2)
id, and is connected to a pressure oil source through a pressurizing servo valve α4. The position of the upper punch (9) of the pressurizing cylinder is detected by a pressurizing differential transformer mounted on the upper punch and placed opposite to the tip of the bar punch. Pressure differential transformer α5
is connected to the pressurizing servo amplifier α3 via the pressurizing differential transformer αfi, and the signal detected by the pressurizing differential transformer α is fed to the pressurizing servo amplifier α3.

さらに加圧用サーホアンプ卯は加圧用関数発生器qaに
接続さ几て、加圧用関数発生器aつからの振動数・振幅
・加工時間・位置などの指令信号が7JO王用サーボア
ンプq3から加圧用サーホバルフ創4に送らnて、71
0 aE用クシリンダ8)のロンド(至)の位置が制御
される。
Furthermore, the pressurizing servo amplifier U is connected to the pressurizing function generator qa, and command signals such as frequency, amplitude, machining time, position, etc. from the pressurizing function generator A are sent from the 7JO servo amplifier Q3 for pressurizing. Send to Sirhobalf 4, 71
0 The position of the rondo (to) of the aE cylinder 8) is controlled.

第2図に示す実施例では加去フレームに振動全付加する
サーボアンプの制御回路は第1図の実施例と同じである
ので説明は省略するが、成形用粉末q〃を封入したダイ
α8は上ノくンチ(9]の他に下ノ(ンチαカが設けら
n、下パンチは加振フレームの底部に固定さnて下パン
チから振動が粉末に加わるようになっている。加圧シリ
ンダ(8)は差圧アンプ(至)を経て加圧用サーボアン
プ(2)に接続され、加圧シリンダ(8)の差圧検知信
号が加圧用サーボアンプα3にフィードバックされる。
In the embodiment shown in Fig. 2, the control circuit of the servo amplifier that applies all the vibrations to the ablation frame is the same as the embodiment shown in Fig. 1, so the explanation will be omitted. In addition to the upper punch (9), a lower punch (9) is provided, and the lower punch is fixed to the bottom of the vibration frame so that vibration is applied to the powder from the lower punch. The cylinder (8) is connected to a pressurizing servo amplifier (2) via a differential pressure amplifier (to), and a differential pressure detection signal of the pressurizing cylinder (8) is fed back to the pressurizing servo amplifier α3.

さらに加圧用サーボアンプα3は、振動数・差圧・加振
時間・位置などの指令信号を発する加圧用関数発生器(
6)に接続さnる。かくて、加圧シリンダ(8)の上パ
ンチ(9)の成形位fitは加圧シリンダ(8)の動き
により圧力制御さnることになる。
Furthermore, the pressurizing servo amplifier α3 is a pressurizing function generator (
6). Thus, the forming position of the upper punch (9) of the pressure cylinder (8) is pressure-controlled by the movement of the pressure cylinder (8).

さらに、本実施例では、ダイ(18の外側に横加援用す
−ボシリンダ翰のロッド0ηの一端が取付けらn、他端
には横加振用差動トランス(ハ)が対置さn。
Further, in this embodiment, one end of the rod 0η of the cylinder holder for lateral support is attached to the outside of the die 18, and a differential transformer for lateral vibration (c) is placed opposite to the other end.

該横加振用差動トランスで検知さnfl−位置信号は横
加振用差動トランスアンプ翰ヲ経て横加援用サーボバル
ブ四にフィードバックされる。さらに横加援用す−ボシ
リンダ翰は横加援用す−ボバルブ四を経て圧油源0オに
接続さnる。横加振用関数発生器3ηは横加掘用す−ボ
アンプ翰に接続さn2ていて、横加振用関数発生器Qυ
からの指令信号はサーボアンプ(ハ)を経てサーボバル
ブ@に達し、ダイQ8への横からの加振が制御される。
The nfl-position signal detected by the lateral vibration differential transformer is fed back to the lateral support servo valve 4 via the lateral vibration differential transformer amplifier. Further, the lateral support cylinder head is connected to a pressure oil source 0 via a lateral support valve 4. The lateral vibration function generator 3η is connected to the lateral vibration amplifier wire n2, and the lateral vibration function generator Qυ
The command signal from the servo amplifier (c) reaches the servo valve @, and the lateral vibration to the die Q8 is controlled.

なお上記実施例は代表例であり、加振方法、金型形状、
加圧制御方式の組み合せは第1表のどの組み合せでも可
能である。
The above example is a typical example, and the vibration method, mold shape,
Any combination of pressurization control methods listed in Table 1 is possible.

第   1   表 である。Chapter 1 Table It is.

第   2   表 圧粉成形を行った実施例を示すと第3表のようなもので
ある。
Table 2 Table 3 shows examples in which powder compaction was performed.

第   3   表 本発明は、上記のように低周波の振動でエア抜きがなさ
れ、次いで5〜l0QOHzの周波数の振動を加えなが
ら圧粉成形さnるので、きわめて密度の緻密な成形品が
得られる。
Table 3 In the present invention, air is removed by low-frequency vibration as described above, and then powder compaction is performed while applying vibration at a frequency of 5 to 10 QOHz, so a molded product with extremely high density can be obtained. .

さらに、本発明に係る振動成形装置は成形時に5〜10
0OHZの低周波の振動しながら加圧するため振幅は0
.05〜1.0 !13となり成形効率が良く従ってパ
ワー効率も良くなりマシ、ンの容量を小さくすることが
できる。従って、適正な圧縮力で成形でき成形品に不均
一層も発生せずに成形できる。
Furthermore, the vibration molding apparatus according to the present invention has a vibration molding temperature of 5 to 10
The amplitude is 0 because the pressure is applied while vibrating at a low frequency of 0OHZ.
.. 05~1.0! 13, the molding efficiency is good, the power efficiency is also good, and the capacity of the machine can be reduced. Therefore, the molded product can be molded with an appropriate compression force and can be molded without producing an uneven layer.

また、本発明は実施例に示すように加圧力を圧力制御方
式にも位置制御方式にも制御することができるので、従
来のプレス機よりも高い加工寸法精度を維持できる。
Furthermore, as shown in the embodiments of the present invention, the pressurizing force can be controlled using both the pressure control method and the position control method, so that higher machining dimensional accuracy can be maintained than with conventional press machines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の概略図、第2図は他の実施例
の概略図である。 1・・・サーボシリンダ 2・・・加振フレーム3・・
・加振用関数発生器 4・・・加振用サーボアンプ5・
・・ l サーボバルブ6・・・ I 差動トランス8
・・・加圧シリンダ  10・・・ダ イ12・・・加
圧用関数発生器 13・・・加圧用サーボアンプ14・
・・ lサーボバルブ 1B・・・ダ イ27・・・圧
油源     29・・・圧油源32・・・ I 代理人 弁理士  河 内 潤 二 斎1 図 拓2図
FIG. 1 is a schematic diagram of an embodiment of the present invention, and FIG. 2 is a schematic diagram of another embodiment. 1... Servo cylinder 2... Vibrating frame 3...
・Excitation function generator 4...Excitation servo amplifier 5・
... l Servo valve 6... I Differential transformer 8
...Pressure cylinder 10...Die 12...Pressure function generator 13...Pressure servo amplifier 14.
...l Servo valve 1B...Die 27...Pressure oil source 29...Pressure oil source 32...I Agent Patent attorney Jun Kawachi Nisai 1 Illustration 2

Claims (4)

【特許請求の範囲】[Claims] (1)樹脂粉体、金属粉体、セラミック粉体などの粉体
をダイに封入し、1〜10HZの振動を付加する第1の
工程と、5〜1000HZの振動を付加しながら圧粉成
形する第2の工程とからなる振動粉末成形方法。
(1) The first step is to enclose powder such as resin powder, metal powder, ceramic powder, etc. in a die and apply vibrations of 1 to 10 Hz, and compaction while applying vibrations of 5 to 1000 Hz. A vibratory powder compacting method comprising a second step of:
(2)粉末成形用ダイと、粉末成形用ダイの少なくとも
一部を取付けた加振フレームと、加振フレームに取付け
られ粉末を加圧する加圧シリンダと、ロッドの一端が加
振フレームに取付けられ他端が加振用差動トランスに対
置されたサーボシリンダとからなり、該サーボシリンダ
は加振用サーボバルブを経て圧油源に接続され、さらに
該サーボバルブは加振用関数発生器からの指令信号を受
ける加振用サーボアンプに接続されると共に、前記加圧
シリンダは加圧用サーボバルブを経て圧油源に接続され
、さらに、該加圧用サーボバルブは加圧用関数発生器の
指令信号を受ける加圧用サーボアンプに接続され、加圧
シリンダを前記加圧用サーボアンプを介して制御する振
動粉末成形装置。
(2) A powder compacting die, a vibrating frame to which at least a portion of the powder compacting die is attached, a pressure cylinder attached to the vibrating frame to pressurize the powder, and one end of a rod attached to the vibrating frame. It consists of a servo cylinder whose other end is placed opposite to an excitation differential transformer, and the servo cylinder is connected to a pressure oil source via an excitation servo valve, and the servo valve is connected to a pressure oil source from an excitation function generator. The pressurizing cylinder is connected to an excitation servo amplifier that receives a command signal, and is also connected to a pressure oil source via a pressurizing servo valve, and the pressurizing servo valve also receives a command signal from a pressurizing function generator. A vibratory powder molding apparatus that is connected to a pressurizing servo amplifier that receives a pressurizing cylinder, and controls a pressurizing cylinder via the pressurizing servo amplifier.
(3)前記加圧シリンダは加圧シリンダのパンチの位置
を検知する加圧用差動トランスを介して位置制御される
特許請求の範囲第2項記載の振動粉末成形装置。
(3) The vibratory powder molding apparatus according to claim 2, wherein the pressure cylinder is position-controlled via a pressure differential transformer that detects the position of the punch of the pressure cylinder.
(4)前記加圧シリンダは加圧シリンダの差圧を検知す
る差圧アンプを介して圧力制御される特許請求の範囲第
2項記載の振動粉末成形装置。
(4) The vibratory powder molding apparatus according to claim 2, wherein the pressure of the pressurized cylinder is controlled via a differential pressure amplifier that detects a differential pressure between the pressurized cylinders.
JP62297666A 1987-11-27 1987-11-27 Method and device for vibration powder compacting Granted JPH01143799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62297666A JPH01143799A (en) 1987-11-27 1987-11-27 Method and device for vibration powder compacting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62297666A JPH01143799A (en) 1987-11-27 1987-11-27 Method and device for vibration powder compacting

Publications (2)

Publication Number Publication Date
JPH01143799A true JPH01143799A (en) 1989-06-06
JPH0325278B2 JPH0325278B2 (en) 1991-04-05

Family

ID=17849557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62297666A Granted JPH01143799A (en) 1987-11-27 1987-11-27 Method and device for vibration powder compacting

Country Status (1)

Country Link
JP (1) JPH01143799A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381097A (en) * 1989-08-22 1991-04-05 Matsushita Electric Ind Co Ltd Powder molding machine
US5039476A (en) * 1989-07-28 1991-08-13 Ube Industries, Ltd. Method for production of powder metallurgy alloy
JP2004174596A (en) * 2002-11-29 2004-06-24 Nano Control:Kk Powder press and method of the same
CN102950789A (en) * 2011-08-26 2013-03-06 东北大学 Device for realizing powder high-density vibration compression moulding
CN111804909A (en) * 2020-06-18 2020-10-23 西北稀有金属材料研究院宁夏有限公司 Powder filling method of beryllium material forming blank for CETR reactor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039476A (en) * 1989-07-28 1991-08-13 Ube Industries, Ltd. Method for production of powder metallurgy alloy
JPH0381097A (en) * 1989-08-22 1991-04-05 Matsushita Electric Ind Co Ltd Powder molding machine
JP2004174596A (en) * 2002-11-29 2004-06-24 Nano Control:Kk Powder press and method of the same
CN102950789A (en) * 2011-08-26 2013-03-06 东北大学 Device for realizing powder high-density vibration compression moulding
CN111804909A (en) * 2020-06-18 2020-10-23 西北稀有金属材料研究院宁夏有限公司 Powder filling method of beryllium material forming blank for CETR reactor
CN111804909B (en) * 2020-06-18 2022-07-08 西北稀有金属材料研究院宁夏有限公司 Powder filling method of beryllium material forming blank for CETR reactor

Also Published As

Publication number Publication date
JPH0325278B2 (en) 1991-04-05

Similar Documents

Publication Publication Date Title
US6305925B1 (en) Apparatus for pressing ceramic powders
US3767351A (en) Vibratory granulate compacting apparatus for block manufacture
JP2013220446A (en) Method of manufacturing powder molding and powder molding apparatus
US6309206B1 (en) Plant for forming ceramic tiles, including those of large dimensions, by means of a partially isostatic molds
EP0988142A1 (en) Impacting method and machine for forming compacts
JPH01143799A (en) Method and device for vibration powder compacting
US6054079A (en) Method and installation for compacting a granular mass, such as concrete mortar
JPH067885A (en) Method of compressing sand
EP0326870B1 (en) Method and machine for compacting foundry sand
US4439129A (en) Hydraulic refractory press including floating upper and lower plunger assemblies
GB2031767A (en) Method and apparatus for the compacting of foundry moulding sand
JP2004174596A (en) Powder press and method of the same
RU204778U1 (en) Device for forming products from powder material
JP2000288677A (en) Metal forming method and metal forming device
DE2552852C3 (en) Method for compacting molded bodies made of concrete or the like. plastic masses
JP2662910B2 (en) Vibration compression molding machine
US7147820B2 (en) Method and apparatus for minimizing the spread of maximum compression forces in a powder press
JP2917761B2 (en) Apparatus and method for molding powder molded product
JPS6330199A (en) Isotropic pressure pressing method and press
JPH02151398A (en) Powder forming method
JPS59144555A (en) Casting mold forming machine
KR100311737B1 (en) Plaster casting apparatus and method imparted pressurized vibration for the simulated die-casting process
JP3030059B2 (en) Forming method of friction material
JPH0217839Y2 (en)
JPS60215701A (en) Sintering device using ultrasonic wave

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees