JPH01143684A - Combined water producing, air-conditioning and electricity generating equipment - Google Patents

Combined water producing, air-conditioning and electricity generating equipment

Info

Publication number
JPH01143684A
JPH01143684A JP62299578A JP29957887A JPH01143684A JP H01143684 A JPH01143684 A JP H01143684A JP 62299578 A JP62299578 A JP 62299578A JP 29957887 A JP29957887 A JP 29957887A JP H01143684 A JPH01143684 A JP H01143684A
Authority
JP
Japan
Prior art keywords
brine
solar pond
water
layer
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62299578A
Other languages
Japanese (ja)
Inventor
Akio Ochi
大地 昭生
Naotake Okawa
大川 尚武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62299578A priority Critical patent/JPH01143684A/en
Publication of JPH01143684A publication Critical patent/JPH01143684A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/22Treatment of water, waste water, or sewage by freezing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To make an effective use of stored cold and hot energy by combining a water producing plant appropriately with an air-conditioning equipment for cooling purpose and a solar pond electricity generating equipment. CONSTITUTION:A concentrated brine formed at a water producing plant 1 is sent by a brine supply pump 13 through a conducting pipe 14 to a solar pond 15, on whose lowermost part is formed a layer of the concentrated brine, in which a solar energy is stored to form the brine layer of a high temperature and the natural brine layer of a relatively low temperature at a long layer portion thereof. The concentrated brine layer on the lowermost part of the solar pond 15 is connected through conducting pipes 16 and 17 to the side of high temperature heat source of a solar pond electricity generating system 18 and its outer layer to the side of low temperature heat source thereof, whereby the concentrated brine can be used as a brine for solar pond to improve efficiency.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、海水からの造水プラントと、冷房用空調設備
、ソーラポンド発電設備とを適宜組合わせた複合造水空
調発電プラントに関する。
[Detailed description of the invention] [Object of the invention] (Industrial application field) The present invention is a combined desalination air-conditioning power generation system that appropriately combines a seawater desalination plant, cooling air conditioning equipment, and solar pond power generation equipment. Regarding plants.

(従来の技術および発明が解決しようとする問題点) 一般に、海水より真水を製造する造水プラントでは、多
段フラッシュ法、冷凍法など種々の方法が実用化されて
いる。ところで、上記冷凍法による造水プラントは、海
水を氷点以下に冷却せしめ、海水中の水を氷結させ、そ
の後その氷を融解することによって真水を抽出するもの
である。しかしながら、現状の造水プラントにおいては
、上記氷結させるために使用された冷熱と、その氷結に
際して生じる濃縮ブラインは何ら他の目的に利用されず
にそのまま系外に排出されている。
(Prior Art and Problems to be Solved by the Invention) Generally, in water production plants that produce fresh water from seawater, various methods such as a multi-stage flash method and a freezing method are put into practical use. By the way, the water production plant using the above-mentioned freezing method cools seawater to below the freezing point, freezes the water in the seawater, and then extracts fresh water by melting the ice. However, in current water production plants, the cold energy used for freezing and the concentrated brine produced during freezing are not used for any other purpose and are directly discharged from the system.

一方、夜間の安い電力により蓄熱を行ない、その蓄熱を
昼間の冷房等に利用しようとする蓄熱式冷房空調設備が
注目され始め、特に上記夜間の安い電力により氷による
蓄熱を行ない、昼間の冷房時にこれを解氷して利用する
ことにより、比較的小さな容積で大量の蓄熱が可能な氷
蓄熱システムか検討され始めている。しかし、この単な
る氷により蓄熱させるという氷蓄熱システムにおいては
、氷製造のために冷媒温度を氷点以下にする必要がある
ことから、冷凍機の機械効率が低下すること、また冷媒
量の増加による搬送動力が増加する等の経済的な阻害要
因がある。
On the other hand, thermal storage type cooling and air conditioning equipment that stores heat using cheap electricity at night and uses it for cooling during the day has begun to attract attention. Studies have begun to consider ice heat storage systems that can store a large amount of heat in a relatively small volume by melting and utilizing this ice. However, in this ice heat storage system where heat is stored simply by ice, the refrigerant temperature needs to be below the freezing point in order to produce ice, which reduces the mechanical efficiency of the refrigerator and increases the amount of refrigerant transported. There are economic impediments such as an increase in power.

また、ソーラポンドの底部に滞溜するrllllラブラ
イン中陽エネルギーを蓄熱せしめ、高温となった濃縮ブ
ラインを高熱源として使用し、また表層部の比較的温度
の低い天然のブラインを低熱源として使用し、これらの
温度差により2次系の媒体の蒸発、膨張、凝縮を行なわ
せて電気エネルギを発生せしめるソーラポンド発電シス
テムも開発されている。ところが、このシステムは太陽
熱を利用するものであるため、日中の日射量が多い地域
においては十分その利用が可能であるが、ソーラポンド
中に経済的に濃縮ブライン層を形成する必要がある。
In addition, the rllll love line chuyang energy accumulated at the bottom of the solar pond is stored, and the high temperature concentrated brine is used as a high heat source, and the relatively low temperature natural brine on the surface layer is used as a low heat source. A solar pond power generation system has also been developed that uses these temperature differences to cause evaporation, expansion, and condensation of a secondary medium to generate electrical energy. However, since this system utilizes solar heat, it can be fully used in areas with high amounts of solar radiation during the day, but it is necessary to economically form a concentrated brine layer in the solar pond.

本発明はこのような点に鑑み、前記冷凍法による造水プ
ラントでその造水時に生成する氷塊を冷房用空調設備の
冷熱源に利用し、また同時に生成される濃縮ブラインを
ソーラポンドに利用することによって、造水時に氷とし
て蓄熱された冷熱を有効に利用して経済的な冷房を行な
うことができ、さらにソーラポンド発電をも行ない得る
複合造水空調発電プラントを得ることを目的とする。
In view of these points, the present invention utilizes ice blocks generated during water generation in a water generation plant using the freezing method as a cold source for cooling air conditioning equipment, and utilizes concentrated brine generated at the same time for a solar pond. The object of the present invention is to obtain a combined water production air conditioning power generation plant that can perform economical cooling by effectively utilizing the cold heat stored as ice during water production, and can also perform solar pond power generation.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、海水を氷点以下に冷却せしめて海水中の水を
氷結させて真水を抽出する、冷凍法による造水プラント
に、上記造水製造時に生成される氷塊の冷熱を冷熱源と
して使用する冷房用空調設備、および上記造水装置によ
り濃縮されたブラインを濃縮ブラインとして使用するソ
ーラポンド発電設備の少なくとも一方を組合わせたこと
を特徴とするものである。
(Means for Solving the Problems) The present invention provides a water production plant using a freezing method that cools seawater below the freezing point to freeze the water in the seawater and extract fresh water. This system is characterized by a combination of at least one of a cooling air conditioning system that uses the cold energy of the ice cubes as a cold source, and a solar pond power generation system that uses the brine concentrated by the water generator as the concentrated brine.

しかして、造水プラントにおいて生成された氷塊が融解
することによって得られた冷水は、冷房用空調設備に送
られ空調用空気と熱交換せしめられ、コミユニティの冷
房が行なわれ、また上記熱交換した後の水は生活用水と
してコミユニティに送られる。一方、上記造水プラント
において生成された濃縮ブラインはソーラポンド発電設
備に送られ、ソーラポンド用の濃縮ブラインとして使用
される。
The cold water obtained by melting the ice cubes produced in the water production plant is sent to the cooling air conditioning equipment and exchanged heat with the air conditioning air, cooling the community, and the above heat exchange. The water is then sent to the community for domestic use. On the other hand, the concentrated brine produced in the fresh water production plant is sent to the solar pond power generation facility and used as concentrated brine for the solar pond.

(実施例) 以下、添付図面を参照して本発明の一実施例について説
明する。
(Example) Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.

図中、符号1は造水プラントであって、その造水プラン
ト1には造水のために海水2か供給され、この海水2は
プラント1で内蔵される製氷機(図示せず)により冷却
され、海水中の水分が氷結される。一方、氷結しない塩
分は真水の氷塊と濃縮ブラインとして分離される。
In the figure, reference numeral 1 indicates a water production plant, and seawater 2 is supplied to the water production plant 1 for water production, and this seawater 2 is cooled by an ice maker (not shown) built in the plant 1. The water in the seawater is frozen. On the other hand, salt that does not freeze is separated as fresh water ice blocks and concentrated brine.

ところで、上記氷塊が融解して得られる真水は0°Cの
冷水であるため、冷水ポンプ3によって冷房用空調設備
4に送られる。この冷房用空調設備に送られた冷水は、
そこで空調用空気と熱交換し、昇温した真水は造水プラ
ント1から汲み上げられる真水とともに浄化ポンプ5に
よって造水浄化装置6へ送られ、ここでさらに塩分が除
去された後、生活用水としてコミユニティ7へ送水され
る。また、空調用空気8は、空気予冷器9において前記
冷房用空気設置ii4への給水管11から分岐導出され
た冷水と熱交換して冷却され、さらに冷房用空調設備4
の内部で前記造水プラント1から送給された冷水と熱交
換して温度が低下せしめられ、冷風として導管12を介
してコミユニティ7へ送られる。
By the way, since the fresh water obtained by melting the ice cubes is cold water at 0°C, it is sent to the cooling air conditioner 4 by the cold water pump 3. The chilled water sent to this cooling air conditioning equipment is
There, the fresh water exchanges heat with the air conditioning air, and the heated fresh water is sent along with the fresh water pumped from the water production plant 1 to the water production and purification equipment 6 by the purification pump 5, where salt is further removed and then used as domestic water. Water is sent to Unity 7. In addition, the air conditioning air 8 is cooled by heat exchange with the cold water branched out from the water supply pipe 11 to the cooling air installation ii4 in the air precooler 9, and is further cooled by cooling the air conditioner 4.
The temperature is lowered by heat exchange with the cold water supplied from the water production plant 1 inside the water production plant 1, and the cooled air is sent to the community 7 via the conduit 12.

一方、造水プラント1で生成された濃縮ブラインはブラ
イン送水ポンプ13により導管14を介してソーラポン
ド15に送給され、ソーラポンド15の最底部に濃縮ブ
ライン層か形成される。
On the other hand, the concentrated brine produced in the water production plant 1 is sent to the solar pond 15 via the conduit 14 by the brine water pump 13, and a concentrated brine layer is formed at the bottom of the solar pond 15.

上記ソーラポンド15では、最底部に濃縮ブライン層内
に太陽エネルギが蓄熱され高温のブライン層が形成され
、表層部には比較的低温の天然のブライン層が形成され
る。
In the solar pond 15, solar energy is stored in a concentrated brine layer at the bottom to form a high temperature brine layer, and a relatively low temperature natural brine layer is formed at the surface layer.

ところで、上記ソーラポンド15の最底部の濃縮ブライ
ン層部は導管16.17によってソーラポンド発電シス
テム18の高温熱源側に接続されており、また表層部は
導管19.20によって上記ソーラポンド発電システム
18の低温熱源側に接続されている。
By the way, the concentrated brine layer at the bottom of the solar pond 15 is connected to the high temperature heat source side of the solar pond power generation system 18 through a conduit 16.17, and the surface layer is connected to the low temperature heat source of the solar pond power generation system 18 through a conduit 19.20. connected to the side.

しかして、上記ソーラポンド15の高温のブラインは導
管〕6を経てソーラポンド発電システム18の高温熱源
側に送られ、そこで2次系の媒体を蒸発させた後、温度
降下して導管17を経てソーラポンド15に回収される
The high-temperature brine from the solar pond 15 is sent to the high-temperature heat source side of the solar pond power generation system 18 through the conduit 6, where it evaporates the secondary system medium, and then the temperature drops and passes through the conduit 17 to the solar pond 15. will be collected.

一方、低温ブラインは、導管1つによってソーラポンド
発電システム18の低温熱源側である2次系媒体の凝縮
器に冷却水として送給され、そこで2次系媒体を冷却凝
縮させた後導管20を介して再びソーラポンド15に回
収される。
On the other hand, the low-temperature brine is sent as cooling water to the secondary medium condenser on the low-temperature heat source side of the solar pond power generation system 18 through one conduit, where the secondary medium is cooled and condensed, and then passed through the conduit 20. It is then collected again in the solar pond 15.

上記ソーラポンド発電システム18では、上記2次系媒
体に与えられた熱エネルギーが機械エネルギーに変換さ
れ、発電機22を駆動して電気エネルギーに変換されて
電力として前記コミユニティ7に送られる。
In the solar pond power generation system 18, the thermal energy given to the secondary medium is converted into mechanical energy, which drives the generator 22 to be converted into electrical energy and sent to the community 7 as electric power.

なお、上記実施例においては、冷凍法による造水プラン
トと、冷房用空調システムおよびソーラポンド発電シス
テムとを組合わせたものを示したが、上記造水プラント
と冷房用空調システムとを組合わせ、或は造水プラント
とソーラポンド発電システムとを組合わせてもよい。
In addition, in the above embodiment, a water production plant using a freezing method is combined with a cooling air conditioning system and a solar pond power generation system. Alternatively, a water desalination plant and a solar pond power generation system may be combined.

〔発明の効果〕〔Effect of the invention〕

本発明は上述のように構成したので、冷凍法による造水
プラントと冷房用空調システムの組合わせにより、造水
プラントで生成される氷によって蓄熱を行ない、その蓄
熱された冷熱を冷房用に使用することができ、造水用に
使用されたエネルギーを冷房用の低熱源として有効に使
用することができる。また、造水プラントとソーラポン
ド発電システムとの組合せによっては、上記造水プラン
トで生成された濃縮ブラインをソーラポンドのブライン
として使用することができ、経済的な造水と冷房、発電
を行なうことができ、プラントとしての効率を向上せし
めることができる。さらに、造水に夜間割引の深夜電力
を利用し、氷として蓄熱し、昼間にその蓄熱を利用でき
るので、昼夜間の電力格差を軽減する負荷平準化にも貢
献する等の効果をも秦する。
Since the present invention is configured as described above, by combining a water production plant using a freezing method and an air conditioning system for cooling, heat is stored by the ice produced in the water production plant, and the stored cold energy is used for cooling. The energy used for water production can be effectively used as a low-temperature heat source for air conditioning. In addition, depending on the combination of a water desalination plant and a solar pond power generation system, the concentrated brine produced in the desalination plant can be used as brine for the solar pond, making it possible to economically generate water, cool water, and generate electricity. , the efficiency of the plant can be improved. In addition, the system uses discounted midnight electricity for water generation, stores heat as ice, and uses the stored heat during the day, contributing to load leveling that reduces power disparities between day and night. .

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明のプラントの概略構成図である。 1・・・造水プラント、4・・・冷房用空調設備、6・
・造水浄化装置、7・・・コミユニティ、9・・・空気
予冷器、]3・・・ブライン送水ポンプ、15・・・ソ
ーラポンド、18・・・ソーラポンド発電システム。 出願人代理人  佐  藤  −雄
The drawing is a schematic diagram of the plant of the present invention. 1... Water desalination plant, 4... Cooling air conditioning equipment, 6...
・Water generation purification device, 7... Community, 9... Air precooler, ] 3... Brine water pump, 15... Solar pond, 18... Solar pond power generation system. Applicant's agent Mr. Sato

Claims (1)

【特許請求の範囲】[Claims] 海水を氷点以下に冷却せしめて海水中の水を氷結させて
真水を抽出する、冷凍法による造水プラントに、上記造
水製造時に生成される氷塊の冷熱を冷熱源として使用す
る冷房用空調設備、および上記造水装置により濃縮され
たブラインを濃縮ブラインとして使用するソーラポンド
発電設備の少なくとも一方を組合わせたことを特徴とす
る、複合造水空調発電プラント。
Cooling air conditioning equipment that uses the cold energy of the ice blocks generated during the above-mentioned water production process as a cold heat source for a water production plant that uses the freezing method, which cools seawater below the freezing point and freezes the water in the seawater to extract fresh water. , and at least one of solar pond power generation equipment that uses the brine concentrated by the above-mentioned freshwater generation device as concentrated brine.
JP62299578A 1987-11-27 1987-11-27 Combined water producing, air-conditioning and electricity generating equipment Pending JPH01143684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62299578A JPH01143684A (en) 1987-11-27 1987-11-27 Combined water producing, air-conditioning and electricity generating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299578A JPH01143684A (en) 1987-11-27 1987-11-27 Combined water producing, air-conditioning and electricity generating equipment

Publications (1)

Publication Number Publication Date
JPH01143684A true JPH01143684A (en) 1989-06-06

Family

ID=17874449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299578A Pending JPH01143684A (en) 1987-11-27 1987-11-27 Combined water producing, air-conditioning and electricity generating equipment

Country Status (1)

Country Link
JP (1) JPH01143684A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100360876C (en) * 2004-03-18 2008-01-09 上海交通大学 Urban integral air comditioning system using subsurface seawater as natural cooling source
CN100418896C (en) * 2005-06-24 2008-09-17 北京师范大学 Sea ice desalting device with temperature control and frost thawing functions
JP2010507776A (en) * 2006-10-23 2010-03-11 エム. エニス,ベン Thermal energy storage system using compressed air energy and / or cooling water by desalination process
JP2014171941A (en) * 2013-03-07 2014-09-22 Risoh Kesoku Kk Ltd System and method for removing salinity content from seawater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100360876C (en) * 2004-03-18 2008-01-09 上海交通大学 Urban integral air comditioning system using subsurface seawater as natural cooling source
CN100418896C (en) * 2005-06-24 2008-09-17 北京师范大学 Sea ice desalting device with temperature control and frost thawing functions
JP2010507776A (en) * 2006-10-23 2010-03-11 エム. エニス,ベン Thermal energy storage system using compressed air energy and / or cooling water by desalination process
JP2014171941A (en) * 2013-03-07 2014-09-22 Risoh Kesoku Kk Ltd System and method for removing salinity content from seawater

Similar Documents

Publication Publication Date Title
JPH0120334B2 (en)
KR20170089615A (en) Thermal seawater heat pump apparatus and its method for performing a fresh water production and air-conditioning at the same time
JP2000064813A (en) Cold storage type load leveling power generating system and power generating method using this system
JPH02214502A (en) Method and device for cooling and degumidifying air of high temperature and humidity
JP2000105020A (en) Ice heat storage heat pump device using unutilized heat source
JPH01143684A (en) Combined water producing, air-conditioning and electricity generating equipment
JP5015389B2 (en) Power generation / cooling system and operation method thereof
CN114930087A (en) Thermal energy transfer method using water and carbon dioxide
KR101553553B1 (en) Heating system of indoor ice rink using colling configuration
WO2019132703A1 (en) Condensation system for recuperating energy discharge of nuclear power plant
WO2004076359A1 (en) Water desalination
JPH02308954A (en) Composite distilling air conditioner power plant
JP2000120404A (en) Combined power generating plant
CN102538286A (en) Solar refrigerating system and refrigerating method thereof
CN110294505B (en) Freezing seawater desalination system based on solar energy and LNG cold energy
JP2021113638A (en) Device for making daily temperature difference into temperature energy to produce hot water and cold water, and preserving/supplying the hot water and cold water
CN106150700B (en) Seawater is cooling, mixes the efficient combustion engine inlet gas cooling device of low-temperature receiver
CN220283691U (en) Sea water desalination system based on radiation refrigeration technology
US20230304746A1 (en) Storing cold energy and freeze desalination of salt water
KR100542806B1 (en) Combination Energy System of Heat Pump and Brown Gas
JP2001132475A (en) Power generation system combined cycle of steam/gas turbine
CN206683297U (en) A kind of new off-grid type solar domestic refrigerator
RU2812381C1 (en) Operating method of steam gas plant
JPS5855080A (en) Method for obtaining pure water from sea water
CN202709549U (en) Energy collecting tower heat pump application system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080215

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20080321

Free format text: JAPANESE INTERMEDIATE CODE: A912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20101116

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250