JPH01143605A - Manufacture of porous film - Google Patents

Manufacture of porous film

Info

Publication number
JPH01143605A
JPH01143605A JP30271687A JP30271687A JPH01143605A JP H01143605 A JPH01143605 A JP H01143605A JP 30271687 A JP30271687 A JP 30271687A JP 30271687 A JP30271687 A JP 30271687A JP H01143605 A JPH01143605 A JP H01143605A
Authority
JP
Japan
Prior art keywords
thermoplastic polymer
liquid
film
mixture
porous film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30271687A
Other languages
Japanese (ja)
Other versions
JPH057048B2 (en
Inventor
Seiji Kagawa
清二 加川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP30271687A priority Critical patent/JPH01143605A/en
Publication of JPH01143605A publication Critical patent/JPH01143605A/en
Publication of JPH057048B2 publication Critical patent/JPH057048B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To uniformly disperse through-holes formed at high density by adding and mixing soda silicate to a thermoplastic polymer, changing this mixture to ultra-fine particles, and forming numerous fine through-holes in film which is thermally formed using the ultra-fine particles. CONSTITUTION:One kind or a mixture of thermoplastic polymer such as polyethylene or polyimide is added and mixed with 0.1-30wt.% of soda silicate. This mixture is dispersed in liquid such as alcohol at a desired ratio into a liquid substance, and it is pressurized at a temperature lower than thermal deformation temperature of thermoplastic polymer and crushed by collision at high speed into ultra-fine particles. An ultra-fine particle composition is thermally formed to obtain porous film. Consequently, micro through holes of (sub)micron order are uniformly dispersed and formed at high density and film with high mechanical strength is obtained. Especially film is useful for separation and filtering of gas and liquid.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多孔質フィルムの製造方法に関し、特に気体
状や液体状の各種の物質の分離、濾過に有用な多孔質フ
ィルムの製造方法に係わる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a porous film, and particularly to a method for producing a porous film useful for separating and filtering various gaseous and liquid substances. Involved.

[従来の技術] 近年、先端技術産業においては製品の高純度化、超微細
精密加工化、高性能化の要求が一段と高まっており、精
密濾過技術のニーズとその応用分野は急速に発展しつつ
ある。電子、光工業、原子カニ業、ファインケミカル、
医用、医薬品工業では、水、有機溶媒、その他化学薬品
、ガス、空気などの物質から0.1μm以下の超微粒子
や細菌、バクテリア類の完全な除去技術の確立が不可欠
となり、より濾過精度の高い精密濾過材の開発が求めら
れている。これらの要望に対応するために、濾過の高能
率化、濾過精度の向上、応用分野の拡大を目指して各種
の素材から精密な組織構造をもった濾過材とモジュール
の開発が進められている。
[Conventional technology] In recent years, demands for high purity, ultra-fine precision processing, and high performance of products have been increasing in the advanced technology industry, and the needs for precision filtration technology and its application fields are rapidly developing. be. Electronics, optical industry, atomic crab industry, fine chemicals,
In the medical and pharmaceutical industries, it is essential to establish technology to completely remove ultrafine particles of 0.1 μm or less, germs, and bacteria from substances such as water, organic solvents, other chemicals, gas, and air, and to achieve higher filtration accuracy. There is a need for the development of precision filtration media. In order to meet these demands, the development of filtration media and modules with precise tissue structures made from various materials is underway with the aim of increasing filtration efficiency, improving filtration accuracy, and expanding the range of applications.

一方、精密濾過材は単に濾過材として使用されるだけで
はなく、広い表面積と表面極性、多量の均一な細孔を活
用する機能性素材として注目され、各種の用途開発が期
待されている。
On the other hand, precision filtration media are not only used as filtration media, but are also attracting attention as functional materials that make use of their large surface area, surface polarity, and large number of uniform pores, and are expected to be developed for a variety of applications.

ところで、従来より精密濾過材の一つとして有機高分子
系多孔質フィルムが知られており、例えば溶剤−ゲル化
法や溶融急冷法がある。溶剤−ゲル化法は、キャスト溶
液の調製、成膜、ゲル化、アニーリング等により高分子
集合体の大きさ、分散性で決定されるシャープな孔径分
布を有する多孔質フィルムを製造する方法である。溶融
急冷法は、高温で溶剤、低温で非溶剤となる溶媒の存在
下で結晶性ポリマを高温で溶融溶解させ、成膜後に急冷
凝固させてレース状構造をもった多孔質フィルムを製造
する方法である。
Incidentally, organic polymer porous films have been known as one type of precision filtration material, such as the solvent-gelling method and the melt quenching method. The solvent-gelling method is a method of producing a porous film with a sharp pore size distribution determined by the size and dispersibility of polymer aggregates by preparing a casting solution, forming a film, gelling, annealing, etc. . The melt-quenching method is a method in which a crystalline polymer is melted and dissolved at high temperatures in the presence of a solvent that becomes a solvent at high temperatures and a non-solvent at low temperatures, and after film formation, it is rapidly solidified to produce a porous film with a lace-like structure. It is.

[発明が解決しようとする問題点] しかしながら、上記溶剤−ゲル化法では高分子集合体の
大きざ、分散性を均一化する目的でキャスト溶液の調製
、成膜、ゲル化、アニーリングの各工程の成膜条件を精
密に制御する必要があり、作業の煩雑化、生産性の低下
を招く。また、溶融急冷法では孔寸法のバラツキが大き
く、かつ超微細な丸孔を形成することが困難である。
[Problems to be Solved by the Invention] However, in the above-mentioned solvent-gelling method, each step of preparing a casting solution, forming a film, gelling, and annealing is necessary in order to uniformize the size and dispersibility of the polymer aggregate. It is necessary to precisely control the film-forming conditions, which complicates the work and reduces productivity. Furthermore, in the melt quenching method, the pore size varies widely and it is difficult to form ultrafine round holes.

本発明は、上記従来の問題点を解決するためになされた
もので、ミクロンロンオーダ乃至サブミクロンオーダの
微細な貫通孔が高密度かつ均一に分散形成され、しかも
機械的強度の優れた多孔質フィルムを簡甲に製造し得る
方法を提供しようとするものである。
The present invention was made in order to solve the above-mentioned conventional problems, and has a porous structure in which fine through-holes on the order of microns to submicrons are formed in a highly dense and uniformly distributed manner, and that has excellent mechanical strength. The purpose of this invention is to provide a method for easily producing a film.

[問題点を解決するための手段1 本発明は、熱可塑性高分子単独又は亙いに物性の異なる
2種以上の熱可塑性高分子に珪酸ソーダを0.1〜30
重慣%添加し、この混合物を超微粒子化した後、この超
微粒子状組成物を加熱成形してフィルムに多数の微細な
貫通孔を形成することを特徴とする多孔質フィルムの製
造方法である。
[Means for Solving the Problems 1] The present invention provides a thermoplastic polymer alone or two or more thermoplastic polymers having widely different physical properties with 0.1 to 30% of sodium silicate.
This is a method for producing a porous film, which comprises adding 1% by weight, converting the mixture into ultrafine particles, and then heat-forming the ultrafine particulate composition to form a large number of fine through holes in the film. .

上記熱可塑性高分子としては、例えばポリエチレン、ポ
リプロピレン、ポリイミド、ポリメチルメタクリレート
、ポリエステル等の各種の熱可塑性樹脂を挙げることが
できる。また、物性の異なる2種以上の熱可塑性高分子
を用いる場合、それらの混合比率は得ようとする多孔質
フィルムにより適宜選定すればよい。
Examples of the thermoplastic polymer include various thermoplastic resins such as polyethylene, polypropylene, polyimide, polymethyl methacrylate, and polyester. Furthermore, when using two or more types of thermoplastic polymers having different physical properties, the mixing ratio thereof may be appropriately selected depending on the porous film to be obtained.

上記珪酸ソーダの添加量を限定した理由は、その添加量
を0.1重量%未満にすると多数の微細な貫通孔の形成
が困難となり、かといってその添加■が30重量%を越
えると超微粒子化を阻害して機械的強度の優れた多孔質
フィルムの!ll造が困難となるからである。
The reason for limiting the amount of sodium silicate added is that if the amount added is less than 0.1% by weight, it will be difficult to form many fine through holes, whereas if the amount added exceeds 30% by weight, the A porous film with excellent mechanical strength that inhibits atomization! This is because it becomes difficult to build.

上記超微粒子化手段としては、例えば熱可塑性高分子単
独又は互いに物性の異なる2種以上の熱可塑性高分子に
珪酸ソーダを所定量添加した混合物をその比重に合せた
液体に所望比率で分散させて液状物とした後、該液状物
を前記熱可塑性高分子の熱変形温度以下で加圧し、高速
度で衝突破砕することにより行なう方法等を採用し得る
。ここに用いる液体としては、例えば各種のアルコール
等を挙げることができる。また、こうした工程で形成さ
れた超微粒子状組成物の粒径は0.5μm以下にするこ
とが望ましい。この理由は、その粒径が0.5μmを越
えると熱可塑性高分子ど珪酸ソーダとを均一にの分散接
合、分散結合又は融合できず、加熱成形により引張り強
度等の機械的強度の優れた多孔質フィルムの製造が困難
となる。更に。
The above-mentioned ultrafine particle formation means, for example, involves dispersing a thermoplastic polymer alone or a mixture of two or more thermoplastic polymers having different physical properties and a predetermined amount of sodium silicate in a liquid whose specific gravity is adjusted to a desired ratio. A method may be employed in which the liquid material is made into a liquid material, then the liquid material is pressurized at a temperature below the thermal deformation temperature of the thermoplastic polymer, and the material is crushed by collision at a high speed. Examples of the liquid used here include various alcohols. Further, it is desirable that the particle size of the ultrafine particulate composition formed by such a step is 0.5 μm or less. The reason for this is that if the particle size exceeds 0.5 μm, the thermoplastic polymer cannot be uniformly dispersion-bonded, dispersion-bonded, or fused with the thermoplastic polymer and sodium silicate. It becomes difficult to produce a quality film. Furthermore.

前記液状物の加圧、高速度で衝突破砕に際し、該液状物
中の熱可塑性高分子の熱変形温度以下で行なう理由は、
かかる工程での温度が熱可塑性高分子の熱変形温度を越
えると、熱重合を含む化学反応による有機高分子同志の
付着、凝集現蒙が生じて超微粒子化効率が低下する恐れ
があるからである。なお、上記超微粒子化工程では熱可
塑性高分子に珪酸ソーダを添加したものを対象として加
圧し、高速度で衝突破砕したが、これに限定されない。
The reason why the pressure and high speed collision crushing of the liquid is carried out at a temperature below the thermal deformation temperature of the thermoplastic polymer in the liquid is as follows:
If the temperature in this process exceeds the thermal deformation temperature of the thermoplastic polymer, the organic polymers may adhere to each other or aggregate due to chemical reactions including thermal polymerization, which may reduce the efficiency of ultrafine particle formation. be. In the above ultrafine particle formation step, a thermoplastic polymer with sodium silicate added thereto was pressurized and crushed by collision at high speed, but the method is not limited thereto.

例えば、予め熱可塑性高分子をアルコール等の液体に分
散させ、これを加圧し、高速度で衝突破砕した後、この
超微粒子液状物に珪酸ソーダを添加し、この混合物を同
様に加圧し、高速度で衝突破砕する超微粒子化方法を採
用してもよい。
For example, after dispersing a thermoplastic polymer in a liquid such as alcohol in advance, pressurizing it, and colliding it at high speed, adding sodium silicate to this ultrafine particle liquid, pressurizing the mixture in the same way, and crushing it at high speed. An ultrafine particleization method in which the particles are crushed by collision at high speed may be adopted.

上記加熱成形時の温度は、120〜500℃、より好ま
しくは150〜250℃に設定することが望ましい。こ
の理由は、加熱温度を120℃未満にすると加熱成形時
に超微粒子状組成物中に均一に分散した珪酸ソーダの脱
水を伴う多孔質化が充分になされず、目的とする多孔質
フィルムの製造が困難となるからである。
It is desirable that the temperature during the heat molding is set at 120 to 500°C, more preferably 150 to 250°C. The reason for this is that if the heating temperature is lower than 120°C, the ultrafine particulate composition will not be sufficiently porous due to the dehydration of the sodium silicate uniformly dispersed in the composition during thermoforming, making it difficult to produce the desired porous film. This is because it becomes difficult.

[作用] 本発明は、熱可塑性高分子単独又は互いに物性の異なる
2種以上の熱可塑性高分子に珪酸ソーダを所定量添加し
、この混合物を超微粒子化する。
[Function] In the present invention, a predetermined amount of sodium silicate is added to a thermoplastic polymer alone or to two or more types of thermoplastic polymers having different physical properties, and the mixture is made into ultrafine particles.

これによってメカノケミカル的な反応と超微粒子レベル
での静電相互作用を主体とした分子間相互作用によって
熱可塑性高分子をマトリックスとし、このマトリックス
に珪酸ソーダが均一に分散接合、分散結合又は融合され
た粒径0.5μm以下の超微粒子状組成物となる。こう
した超微粒子化を行なうための一方法である加圧、衝突
破砕時において温度条件を熱可塑性高分子の熱変形温度
以下で行なえば、熱可塑性高分子同志の付@凝集現象、
つまり熱重合を含んだ化学反応、を抑止できるため、超
微粒子化効率を向上できる。次いで、かかる超微粒子状
組成物を加圧成形することによって、多数の微細なn通
孔が高密度かつ均一に分散され、しかち引張り強度等の
機械的強度の優れた多孔質フィルムを得ることができる
。このように微細なn通孔が高密度かつ均一に分散され
た多孔質フィルムを製造できる詳細な挙動は明らかでは
ないが、本発明者の研究によれば次のようなメカニズム
によるものと推定される。
This allows thermoplastic polymer to be used as a matrix through mechanochemical reactions and intermolecular interactions mainly based on electrostatic interactions at the ultrafine particle level, and sodium silicate is uniformly dispersed, bonded, or fused to this matrix. This results in an ultrafine particulate composition with a particle size of 0.5 μm or less. If the temperature conditions during pressurization and collision crushing, which is one method for achieving such ultrafine particle formation, are carried out below the thermal deformation temperature of the thermoplastic polymer, the adhesion @ agglomeration phenomenon of the thermoplastic polymers,
In other words, since chemical reactions including thermal polymerization can be suppressed, the efficiency of forming ultrafine particles can be improved. Next, by pressure-molding such an ultrafine particulate composition, a porous film in which a large number of fine n-holes are dispersed in a high density and uniformity and has excellent mechanical strength such as tensile strength can be obtained. Can be done. The detailed behavior that enables the production of a porous film in which fine n-holes are dispersed at high density and uniformly is not clear, but according to the research of the present inventors, it is presumed that the mechanism is as follows. Ru.

即ち、珪酸ソーダは反応による硬化現象と脱水による硬
化現象が生じる。珪酸ソーダ中に添加されている水分を
100%脱水するには、1000℃以上の高温で加熱し
ないと達成されず、ガラス化しない。しかし、1000
℃より低い120℃〜500℃の温度領域で多孔質化現
象が起り、200℃前後で95%程度の脱水が可能とさ
れている。このような珪酸ソーダの性質から熱可塑性高
分子のマトリックス中に珪酸ソーダを均一に分散、接合
した81微粒子状組成物を加熱成形(120℃以上の温
度で加熱成形)することによって、均一分散された珪酸
ソーダの脱水を伴う多孔質化現象が起こって、該珪酸ソ
ーダの分散箇所に微細な貫通孔が形成され、既述の如く
多数の微細な貫通孔が高密度かつ均一に分散された多孔
質フィルムが得られるものと推定される。
That is, sodium silicate undergoes a hardening phenomenon due to reaction and a hardening phenomenon due to dehydration. In order to dehydrate 100% of the water added to sodium silicate, it cannot be achieved unless it is heated at a high temperature of 1000°C or higher, and vitrification will not occur. But 1000
A porosity phenomenon occurs in a temperature range of 120°C to 500°C, which is lower than 120°C, and dehydration of about 95% is said to be possible at around 200°C. Due to the properties of sodium silicate, sodium silicate is uniformly dispersed in a thermoplastic polymer matrix, and the 81 fine particulate composition is bonded and then heat-formed (heat-formed at a temperature of 120°C or higher). A porosity phenomenon accompanied by dehydration of the sodium silicate occurs, and fine through holes are formed at the locations where the sodium silicate is dispersed, and as described above, a large number of fine through holes are densely and uniformly distributed. It is estimated that a quality film will be obtained.

[発明の実施例] 以下、本発明の実施例を図面を参照して説明する。[Embodiments of the invention] Embodiments of the present invention will be described below with reference to the drawings.

まず、薗、1が0.5、密度がo、93g/ QC,粒
径が150μm以下のポリエチレン(以下、PEと略す
)パウダー10gを200 ccのエチルアルコールに
分散させた。つづいて、この液状物を第1図に示すタン
ク1内に常温状態で移し、ポンプ2を作動して該タンク
1内の液状物を400に9/Cdの加圧条件で圧送し、
フィルタ3を通して衝突破砕部4に供給し、該衝突破砕
部4において液状物を高速度で衝突破砕させる超微粒子
化操作を10分間行ない、更にかかる操作をもう一回繰
返した。
First, 10 g of polyethylene (hereinafter abbreviated as PE) powder having a particle size of 0.5, a density of 93 g/QC, and a particle size of 150 μm or less was dispersed in 200 cc of ethyl alcohol. Next, this liquid material is transferred into the tank 1 shown in FIG. 1 at room temperature, and the pump 2 is operated to pump the liquid material in the tank 1 under pressure of 400 to 9/Cd.
The liquid was supplied through the filter 3 to the collision crushing section 4, and in the collision crushing section 4, the liquid material was collided and crushed at a high speed to form ultrafine particles for 10 minutes, and this operation was repeated once more.

次いで、前記超微粒子化操作により得たPEの液状物に
珪酸ソーダ(Na 20 :(1〜10重屯%、5i0
2:28〜30重虫%含むJ l5−3号相当品)を1
g添加した後、この混合液状物を第1図に示すタンク1
内に常温状態で移し、ポンプ2を作動して該タンク1内
の液状物を500に9/dの加圧条件で圧送し、フィル
タ3を通して衝突破砕部4に供給し、該衝突破砕部4に
おいて混合液状物を高速度で衝突破砕させる超微粒子化
操作を10分間行なった。
Next, sodium silicate (Na 20 :(1-10% by weight, 5i0
2: 28-30% heavy insects (equivalent to J15-3) at 1
After adding g, this mixed liquid was transferred to tank 1 shown in Figure 1.
The pump 2 is operated to pump the liquid in the tank 1 under a pressurized condition of 500 to 9/d, and the liquid is supplied to the collision crushing section 4 through the filter 3. An ultrafine particle formation operation was carried out for 10 minutes in which the liquid mixture was collided and crushed at high speed.

上記操作後に取出した混合液状物は、前記PEのマトリ
ックスとこの中に均一分散された珪酸ソーダとからなる
超微粒子状組成物が浮遊した乳白色を呈するコロイド状
のものであった。しかも、この超微粒子状組成物の平均
粒径を限外顕微鏡で測定したところ、0.15μmであ
った。
The mixed liquid taken out after the above operation was a milky white colloid in which an ultrafine particulate composition consisting of the PE matrix and sodium silicate uniformly dispersed therein was suspended. Moreover, when the average particle diameter of this ultrafine particulate composition was measured using an ultramicroscope, it was found to be 0.15 μm.

また、上記方法で得られた超微粒子状組成物を60〜1
00℃の温度でアルコール分を蒸発させ、残存した超微
粒子状粉末を110℃の温度で3分間プレスして脱気し
た模、5に;t/c!の条件で1分間プレスし、更に3
0℃、5に9/cAの条件で2分間プレスしてフィルム
を1J造した。
In addition, the ultrafine particulate composition obtained by the above method was
The alcohol content was evaporated at a temperature of 00°C, and the remaining ultrafine powder was degassed by pressing at a temperature of 110°C for 3 minutes. Press for 1 minute under the conditions of
A 1J film was produced by pressing for 2 minutes at 0° C. and 5 to 9/cA.

得られたフィルムは、厚さが40μmで透明なものであ
った。このフィルムを2000倍の限外顕微鏡で観察し
たところ、0.5μm以下の微細な貫通孔が80%以上
の面積比率で形成されていることが確認された。なお、
この限外顕微鏡によるフィルム表面の多孔質化ガラス超
微粒子の分散形態及び貫通孔の状態を第2図に示す。こ
の第2図の写真中の白点は、粒径0.5μm以下の多孔
質化ガラス超微粒子を、該超微粒子周囲の白色の環状部
分は貫通孔を夫々示す。
The obtained film had a thickness of 40 μm and was transparent. When this film was observed under an ultramicroscope with a magnification of 2000 times, it was confirmed that fine through holes of 0.5 μm or less were formed with an area ratio of 80% or more. In addition,
FIG. 2 shows the dispersion form of the ultrafine porous glass particles on the surface of the film and the state of the through-holes observed with this ultramicroscope. The white dots in the photograph of FIG. 2 indicate porous glass ultrafine particles with a particle size of 0.5 μm or less, and the white annular portions around the ultrafine particles indicate through holes.

[発明の効果] 以上詳述し如く、本発明によれば以下に列挙する種々の
効果を奏する。
[Effects of the Invention] As detailed above, the present invention provides various effects listed below.

■、ミク0ンロンオーダ乃至サブミクロンオーダの貫通
した多数の微細孔が高密度でかつ均一に形成された単層
の多孔質フィルムを製造できる。
(2) It is possible to produce a single-layer porous film in which a large number of penetrating micropores on the order of microns to submicrons are formed uniformly and densely.

■、引張り強度等の機械的の優れた多孔質フィルムを製
造できる。
(2) A porous film with excellent mechanical properties such as tensile strength can be produced.

■、微細な負通孔が目詰まりした場合、温度差によるフ
ィルムの膨張、収縮の動作を繰返して微細な貫通孔の径
を変化させることによって、容易に目詰まり物の除去、
洗浄を行なうことができる。
■If the fine negative through holes become clogged, the clogging material can be easily removed by changing the diameter of the fine through holes by repeating the expansion and contraction of the film due to temperature differences.
Can be washed.

■、多孔躾が上記■〜■に示した優れた特性を有するこ
とから、半導体装置、医薬品、バイオマスなどの製造に
用いられる超清浄雰囲気を作るクリーンルーム、ファイ
ンケミカル、医薬品工業等の精密濾過材として有効に利
用できる。
■Since the porous filter has the excellent properties shown in ■ to ■ above, it is effective as a precision filtration material in clean rooms, fine chemicals, pharmaceutical industries, etc. that create ultra-clean atmospheres used in the production of semiconductor devices, pharmaceuticals, biomass, etc. available for use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例で使用した超微粒子状組成物
の製造装置を示す概略図、第2図は本実施例により製造
された多孔質フィルム表面を限外顕微鏡で撮った写真で
ある。 1・・・タンク、 2・・・ポンプ、 3・・・フィル
タ、4・・・衝突破砕部。 出願人代理人  弁理士  鈴江武彦 第1図 第2図 手続ン市正書(方式) 昭和 643・V 日 特許庁長官 小 川 邦 夫 殿 1、事件の表示 特願昭62−302716号 2、発明の名称 多孔質フィルムの製造方法 3、補正をする者 事件との関係  特許出願人 加  川  敦  子 4、代理人 東京都千代田区霞が関3丁目7番2号 UBEビル7、
補正の内容 明細書中箱12頁9〜11行目にかけて、「第2図は・
・・撮った写真である。」とあるを「第2図は本実施例
により製造された多孔質フィルム表面の粒子構造を限外
顕微鏡で撮った写真である。」と訂正する。
Figure 1 is a schematic diagram showing an apparatus for producing an ultrafine particulate composition used in an example of the present invention, and Figure 2 is a photograph taken with an ultramicroscope of the surface of a porous film manufactured in this example. be. DESCRIPTION OF SYMBOLS 1...tank, 2...pump, 3...filter, 4...collision crushing part. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Procedural official document (method) Showa 643/V Japanese Patent Office Commissioner Kunio Ogawa 1, Indication of case Patent application No. 1982-302716 2, Invention Name of Porous Film Manufacturing Method 3, Relationship with the Amendment Case Patent Applicant: Atsuko Kagawa 4, Agent: UBE Building 7, 3-7-2 Kasumigaseki, Chiyoda-ku, Tokyo;
Contents of the Amendment From page 12, lines 9 to 11 of the specification, it is written that ``Figure 2 is...''
...This is a photo I took. '' should be corrected to read, ``Figure 2 is a photograph taken using an ultramicroscope of the particle structure on the surface of the porous film produced according to this example.''

Claims (3)

【特許請求の範囲】[Claims] (1)、熱可塑性高分子単独又は互いに物性の異なる2
種以上の熱可塑性高分子に珪酸ソーダを0.1〜30重
量%添加し、この混合物を超微粒子化した後、この超微
粒子状組成物を加熱成形してフィルムに多数の微細な貫
通孔を形成することを特徴とする多孔質フィルムの製造
方法
(1), thermoplastic polymer alone or two with different physical properties
After adding 0.1 to 30% by weight of sodium silicate to a thermoplastic polymer of at least 100% by weight and turning this mixture into ultrafine particles, this ultrafine particulate composition is heat-formed to form a large number of fine through holes in the film. A method for producing a porous film characterized by forming
(2)、超微粒子化工程を、熱可塑性高分子単独又は互
いに物性の異なる2種以上の熱可塑性高分子に珪酸ソー
ダを0.1〜30重量%添加した混合物をその比重に合
せた液体に所望比率で分散させて液状物とした後、該液
状物を前記熱可塑性高分子の熱変形温度以下で加圧し、
高速度で衝突破砕することにより行なうことを特徴とす
る特許請求の範囲第1項記載の多孔質フィルムの製造方
法。
(2) In the ultrafine particle formation step, a mixture of a thermoplastic polymer alone or two or more thermoplastic polymers with different physical properties and 0.1 to 30% by weight of sodium silicate is made into a liquid whose specific gravity is adjusted to the specific gravity of the mixture. After dispersing in a desired ratio to form a liquid, pressurize the liquid at a temperature below the heat deformation temperature of the thermoplastic polymer,
2. The method for producing a porous film according to claim 1, wherein the method is carried out by colliding and crushing at high speed.
(3)、超微粒子状組成物は粒径が0.5μm以下のも
のであることを特徴とする特許請求の範囲第1項記載の
多孔質フィルムの製造方法。
(3) The method for producing a porous film according to claim 1, wherein the ultrafine particulate composition has a particle size of 0.5 μm or less.
JP30271687A 1987-11-30 1987-11-30 Manufacture of porous film Granted JPH01143605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30271687A JPH01143605A (en) 1987-11-30 1987-11-30 Manufacture of porous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30271687A JPH01143605A (en) 1987-11-30 1987-11-30 Manufacture of porous film

Publications (2)

Publication Number Publication Date
JPH01143605A true JPH01143605A (en) 1989-06-06
JPH057048B2 JPH057048B2 (en) 1993-01-28

Family

ID=17912314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30271687A Granted JPH01143605A (en) 1987-11-30 1987-11-30 Manufacture of porous film

Country Status (1)

Country Link
JP (1) JPH01143605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090041A2 (en) 2003-04-07 2004-10-21 Dow Corning Asia Ltd. Curable organopolysiloxane resin composition for optical transmission components, optical transmission components, and fabrication process thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090041A2 (en) 2003-04-07 2004-10-21 Dow Corning Asia Ltd. Curable organopolysiloxane resin composition for optical transmission components, optical transmission components, and fabrication process thereof

Also Published As

Publication number Publication date
JPH057048B2 (en) 1993-01-28

Similar Documents

Publication Publication Date Title
Dommati et al. A comprehensive review of recent developments in 3D printing technique for ceramic membrane fabrication for water purification
Prasad et al. Generation of monodisperse inorganic–organic janus microspheres in a microfluidic device
US5328613A (en) Polymer membranes for separation processes
Yabu Creation of functional and structured polymer particles by self-organized precipitation (SORP)
GB2203733A (en) Methods for producing hollow microspheres made from dispersed particle compositions
JPS61127659A (en) Composition containing granular ceramic material
JPS63278943A (en) Production of porous body
Liu Nanostructures of functional block copolymers
WO2001036522A1 (en) Porous beads and process for producing the same
CN104629151A (en) Porous vinyl resin film with controllable structure and preparation method thereof
Sun et al. Combining robocasting and alkali-induced starch gelatinization technique for fabricating hierarchical porous SiC structures
JPH01143605A (en) Manufacture of porous film
US20040043204A1 (en) Ceramic castable nanomaterials
JP2009542463A (en) Method for producing a masterbatch for injection molding or extrusion molding
Yang et al. Porous mullite ceramics with hierarchical pores constructed via vat photopolymerization of multi-phase Pickering emulsion
CN109021282B (en) Preparation method of monodisperse three-dimensional ordered porous material and material prepared by same
US11986776B2 (en) Method for forming a body comprising at least one through-going passage
CN112191231B (en) Hydrogel coated adsorbent material, preparation method and application
CN110698826B (en) Preparation method of high-barrier polylactic acid film containing three-dimensional barrier network
US5116561A (en) Method of preparing a composite material in the form of ultra-fine particles
DE4130440A1 (en) METHOD FOR PRODUCING MOLDED BODIES FROM CERAMIC OR GLASS
CN110755692A (en) Preparation method of polyvinyl alcohol composite bone scaffold
CN109173743A (en) A kind of hollow nano silver/attapulgite/PVDF ultrafiltration membrane and preparation method thereof
NL2031074B1 (en) Method for rapidly preparing monodisperse polyvinyl alcohol (pva) microspheres at room temperature
JPH01198633A (en) Production of ultrafine particulate composite material