JPH01143283A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH01143283A
JPH01143283A JP30072287A JP30072287A JPH01143283A JP H01143283 A JPH01143283 A JP H01143283A JP 30072287 A JP30072287 A JP 30072287A JP 30072287 A JP30072287 A JP 30072287A JP H01143283 A JPH01143283 A JP H01143283A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
type
thin film
quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30072287A
Other languages
Japanese (ja)
Inventor
Yoshihiro Mori
義弘 森
Atsushi Shibata
淳 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30072287A priority Critical patent/JPH01143283A/en
Publication of JPH01143283A publication Critical patent/JPH01143283A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a threshold value current, improve luminous efficiency, further make low chirping and high speed modulation possible by reducing a current not contributing to luminance in a semiconductor laser element having a quantum fine line. CONSTITUTION:An n-type Al1-xGax clad layer 102, an active layer 103, a p-type Al1-xGaxAs clad layer 104 and a p-type GaAs cap layer 105 are formed by turns on an n-type GaAs substrate 101. The active layer 103 consists of four kinds of layers, that is, a quantum fine line 201 made of GaAs, a Cr-doped Al1-zGazAs high resistance layer 202 filling the interval between the neighboring quantum fine lines 201 and an n-type Al1-yGayAs layer 203 made by holding these layers in between and a p-type Al1-yGayAs core layer 204. By such constitution, an injected current can not pass through the high resistance layer 202 so that almost of it comes to pass through the quantum fine line 201 so as to be efficienly caught.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は量子細線あるいは量子箱を活性層に持つ半導体
レーザ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor laser device having a quantum wire or a quantum box in its active layer.

従来の技術 量子サイズ効果を利用した半導体レーザ素子は低しきい
値電流高発光効率、低チャーピング、高速変調が可能等
の特徴を持つ。特に量子細線や量子箱を活性層中に持つ
半導体レーザ素子はキャリアのエネルギー準位の縮退が
解けるだめ上記した特徴が一層顕著になる。第5図に従
来技術の一例を示す。すなわち、活性層に量子細線を持
つ半導体レーザ素子の活性層、p型クラッド層及びn型
クラッド層の部分のみを示す。501はn型A l 1
−x G a x A s  クラ−)ド層、602は
A11−yGayAll活性層、503はp型A l 
1−x G a x A sクラッド層である。尚Xの
値はyよりも大きく1よりも小さい値である。活性層5
02の内部にはG a A sから成り幅と厚みが約1
00オングストロームあるいはそれ以下の量子細線領域
504が間隙505を隔てて並んでいる。この半導体レ
ーザに電流を通じると活性層に正孔と電子が注入される
。量子細線領域504は活性層中で最も禁制帯幅が小さ
く且つエネルギー準位の縮退がかなり解けているので、
この領域に流れ込み捕獲された電子と正孔は狭いエネル
ギー範囲の中で分布する。したがってレーザ発振に際し
ては特定の波長域だけの利得が上昇し、前述の特徴を現
出するに至る。
Semiconductor laser devices using conventional technology quantum size effects have features such as low threshold current, high luminous efficiency, low chirping, and high-speed modulation. In particular, in a semiconductor laser device having a quantum wire or a quantum box in its active layer, the above-mentioned characteristics become more pronounced because the degeneracy of carrier energy levels is resolved. FIG. 5 shows an example of the prior art. That is, only the active layer, p-type cladding layer, and n-type cladding layer of a semiconductor laser device having a quantum wire in the active layer are shown. 501 is n-type Al 1
-xGaxAs cladding layer, 602 is A11-yGayAll active layer, 503 is p-type Al
1-xGaxAs cladding layer. Note that the value of X is larger than y and smaller than 1. active layer 5
The inside of 02 is made of Ga As and has a width and thickness of about 1
Quantum wire regions 504 of 0.00 angstroms or less are arranged with a gap 505 in between. When current is passed through this semiconductor laser, holes and electrons are injected into the active layer. Since the quantum wire region 504 has the smallest forbidden band width in the active layer and the degeneracy of energy levels is considerably resolved,
The electrons and holes that flow into this region and are captured are distributed within a narrow energy range. Therefore, during laser oscillation, the gain increases only in a specific wavelength range, resulting in the above-mentioned characteristics.

発明が解決しようとする問題点 ところが上記した構成によると1間隙505を通り抜け
る電子と正孔は発光に寄与せず無効電流となること、ま
た発光波長が、活性層502の材料と、量子細線領域の
材料及び寸法とのみで決まってしまい、波長の選択にお
ける設計の自由度が小さい等の問題があった。
Problems to be Solved by the Invention However, according to the above configuration, electrons and holes passing through one gap 505 do not contribute to light emission and become invalid current, and the emission wavelength is different from the material of the active layer 502 and the quantum wire region. The wavelength is determined only by the material and dimensions of the wavelength, which poses problems such as a small degree of design freedom in selecting the wavelength.

問題点を解決するための手段 本発明はこのような問題点を解決するために、活性層が
量子細線や量子箱状に分断された量子井戸層と、前記量
子井戸層の分断された箇所を補填して成り前記量子井戸
層より大きい禁制帯幅を持つ高抵抗層と、前記量子井戸
層と高抵抗層にはさまれた部分に存在する間隙を補填し
且つこれらの層の上下をはさんで成り前記量子井戸層よ
りも大きい禁制帯幅を持つ半導体層とから成り、前記活
性層の上下にp型及びn型のクラッド層を持つ半導体レ
ーザ素子を提供するものである。
Means for Solving the Problems In order to solve these problems, the present invention provides a quantum well layer in which the active layer is divided into quantum wires or quantum box shapes, and a quantum well layer in which the quantum well layer is divided into parts. a high-resistance layer having a larger forbidden band width than the quantum well layer, and a gap existing in a portion sandwiched between the quantum well layer and the high-resistance layer and sandwiching the top and bottom of these layers; and a semiconductor layer having a larger forbidden band width than the quantum well layer, and provides a semiconductor laser element having p-type and n-type cladding layers above and below the active layer.

作  用 本発明によれば、活性層に注入された電流のうち量子細
線あるいは量子箱を通過しない無効な電流が低減できる
ので、より一層のしきい値電流の低減9発光効率の高効
率化等が実現できると共に、量子細線あるいは量子箱中
にできるエネルギー準位を本発明によって新たに付加さ
れた高抵抗層の材料の組成を変えることによっても制御
できるため発振波長の選択における設計の自由度が大き
くなる。
Effects According to the present invention, of the current injected into the active layer, the invalid current that does not pass through the quantum wire or the quantum box can be reduced, so that the threshold current can be further reduced.9 Higher luminous efficiency, etc. In addition, the energy level created in the quantum wire or quantum box can be controlled by changing the composition of the material of the high-resistance layer newly added by the present invention, which increases the degree of design freedom in selecting the oscillation wavelength. growing.

実施例 以下に本発明に基づ〈実施例を示す。第1図。Example Examples based on the present invention are shown below. Figure 1.

第2図はそれぞれ本発明による第1の実施例の斜視図及
び部分的な(第1図のA−A’線)断面図を示す。10
1はn型GaAs基板でこの上に順次n型A l 1.
、、、 x G a xAsクラッド層102.活性M
l 103tp型A l 1−x G a xA sク
ラッド層104.p型GaAsキャップ層105が形成
されている。p型A l 1−、 G a x A s
クラ−tド層104.p型G a A sキャラプ層1
06は幅2ミクロンのストライプ状にエツチングされて
いる。106,107はそれぞれp型とn型のオーミッ
ク電極で例えばAuZnとAuGeNiである。図中A
 −A/における断面の一部分を第2図に示している。
FIG. 2 shows a perspective view and a partial sectional view (along line AA' in FIG. 1) of a first embodiment of the invention, respectively. 10
1 is an n-type GaAs substrate on which n-type Al 1.
, , xGaxAs cladding layer 102. Active M
l 103tp type A l 1-x G a xA s cladding layer 104. A p-type GaAs cap layer 105 is formed. p-type A l 1-, G a x A s
Clad layer 104. p-type G a As character layer 1
06 is etched in a stripe shape with a width of 2 microns. 106 and 107 are p-type and n-type ohmic electrodes, for example, AuZn and AuGeNi. A in the diagram
A part of the cross section at -A/ is shown in FIG.

図中の第1図と同じ番号は第1図と共通の部分を示す。The same numbers as in FIG. 1 in the figure indicate parts common to FIG. 1.

活性層103は4種類の層から成っている。すなわち、
G a A sからなる量子細線2o1.隣り合った量
子細線201の間を埋めるCr  ドープのA I 、
−2G a z A s高抵抗fi202.  これら
の層をはさんで成るn型A l 1−y G a y 
A m コア層203.p型A11−アGayAsコア
層204である。これらの層はまず、n型G a A 
s基板101の上に、n型A11−xGaXAsクラッ
ド層102.n型A11−アGayA8コア層203゜
G a A s量子細線用半導体薄膜を順次成長した後
、幅1000オングストローム、周期2000オングス
トロ一ム程度のストライプ状のレジストパターンを表面
に形成し、これをエツチングマスクとして臭化水素系の
エツチング液でエツチングを行ない量子細線201を形
成した後、レジストを除去し、Ael−2Ga2A8高
抵抗層、p型Al 1− 、Ga yA sコア層等を
順次成長することで得られる。尚、添え字yはIよりも
大きく1よりも小さい。このような構成によると、注入
された電流は高抵抗層202を通れないので、はとんど
が量子細線201を通過することになシ効率よく捕獲さ
れる。また、高抵抗層の組成を変化させることによシ、
発光のピーク波長を制御することができる。
The active layer 103 consists of four types of layers. That is,
Quantum wire 2o1. Cr-doped AI filling the space between adjacent quantum wires 201,
-2G az A s high resistance fi202. n-type Al 1-y Ga y consisting of these layers
A m core layer 203. This is a p-type A11-A GayAs core layer 204. These layers are first of n-type Ga A
On the s-substrate 101, an n-type A11-xGaXAs cladding layer 102. After sequentially growing the n-type A11-A Gay A8 core layer 203°GaAs quantum wire semiconductor thin film, a striped resist pattern with a width of 1000 angstroms and a period of about 2000 angstroms was formed on the surface, and this was etched. After etching is performed using a hydrogen bromide-based etching solution as a mask to form a quantum wire 201, the resist is removed and an Ael-2Ga2A8 high-resistance layer, a p-type Al1-, a GayAs core layer, etc. are sequentially grown. It can be obtained with Note that the subscript y is larger than I and smaller than 1. According to such a configuration, the injected current cannot pass through the high resistance layer 202, so that most of it passes through the quantum wire 201 and is efficiently captured. In addition, by changing the composition of the high resistance layer,
The peak wavelength of light emission can be controlled.

第3図、第4図は本発明による第2の実施例の斜視図及
び部分的な第3図のB−B’線断面を示す。
3 and 4 show a perspective view of a second embodiment of the present invention and a partial cross section taken along the line BB' in FIG. 3. FIG.

図中、番号が第1図、第2図と同じ部分は同じ番号を持
つ層と同様の組成2機能を持つ。この素子のp型クラッ
ド層104.活性層103.p型キャップ層105は、
p型A11−!GaxAs埋込層301、n型Ae1−
xGaxAs埋込層302で埋込まれているため、キャ
リアと光が活性層103の中にとじこめられる。第4図
は第3図で示しだBB/における断面を部分的に示す。
In the figure, portions with the same numbers as in FIGS. 1 and 2 have the same composition and function as the layers with the same numbers. p-type cladding layer 104 of this device. Active layer 103. The p-type cap layer 105 is
p-type A11-! GaxAs buried layer 301, n-type Ae1-
Since it is buried in the xGaxAs buried layer 302, carriers and light are confined in the active layer 103. FIG. 4 shows a partial cross-section at BB/ shown in FIG.

活性層103中には第1の実施例と同様量子細線202
が多数存在するが、異なる点は多層に積層されている点
である。従って各層の間にA11−ア1GayzAsバ
リア層401が挿入されている。y′はyと等しくても
よいし、異なっても良い。このようにすると、活性層に
注入された電流は量子細線202とバリア層401とか
ら成る細長い電流パスを流れるので、量子細線202に
正孔と電子は効率良く捕獲されレーザ発振に寄与する。
In the active layer 103, there are quantum wires 202 as in the first embodiment.
There are many types, but the difference is that they are stacked in multiple layers. Therefore, an A11-A1GayzAs barrier layer 401 is inserted between each layer. y' may be equal to or different from y. In this way, the current injected into the active layer flows through a long and narrow current path consisting of the quantum wire 202 and the barrier layer 401, so holes and electrons are efficiently captured in the quantum wire 202 and contribute to laser oscillation.

尚、本構成においても高抵抗層203の組成を変化させ
ることにより発光のピーク波長を制御できる。
Note that also in this configuration, the peak wavelength of light emission can be controlled by changing the composition of the high-resistance layer 203.

尚、ここに示した2つの実施例では、レーザの共振器と
してフラプリ・ベロー型を用いているが、分布帰還型や
分布ブラック反射型の共振器を用いてもなんら問題はな
い。また本実施例ではG a A g /A I G 
a A s系の化合物半導体系を用いたが、InGaA
sP/InP系やAIGaInP/GaAs系、あるい
はそれ以外の化合物半導体を用いてもなんら問題はない
。また、量子細線の代わりに量子箱を用いてもなんら問
題はない。
In the two embodiments shown here, a Frapley-Bellows type resonator is used as the laser resonator, but there is no problem in using a distributed feedback type or distributed black reflection type resonator. In addition, in this example, G a A g /A I G
aAs-based compound semiconductor system was used, but InGaA
There is no problem in using sP/InP-based, AIGaInP/GaAs-based, or other compound semiconductors. Moreover, there is no problem in using a quantum box instead of a quantum wire.

発明の効果 本発明によれば、量子細線や量子箱を持つ半導体レーザ
素子において発光に寄与しない電流が低減されるため、
しきい値電流の低減2発光効率の向上、さらには低チャ
ーピング性、高速変調が可能等の効果を現出し得る。ま
た、pn接合中に高抵抗層が存在するので、容量も低減
でき、高速動作が容易になる。
Effects of the Invention According to the present invention, current that does not contribute to light emission is reduced in a semiconductor laser device having a quantum wire or a quantum box.
Effects such as reduction in threshold current, improvement in luminous efficiency, low chirping property, and high-speed modulation can be achieved. Furthermore, since a high resistance layer is present in the pn junction, capacitance can be reduced and high-speed operation can be facilitated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による第1の実施例の半導体レーザ素子
の斜視図、第2図は第1の実施例の部分的な断面図、第
3図は本発明による第2の実施例のレーザ素子の斜視図
、第4図は第2の実施例のレーザ素子の要部断面図、第
5図は従来のレーザの部分的な斜視図である。 101−−−−−・GaAs基板、102,104・旧
・・クラッド層、103・・・・・・活性層、105・
・・・・・G a A sキャラプ層〇 代理人の氏名 弁理士 中 尾 敏 男 ほか1名憾 
              へ 城
FIG. 1 is a perspective view of a semiconductor laser device according to a first embodiment of the present invention, FIG. 2 is a partial cross-sectional view of the first embodiment, and FIG. 3 is a laser diode according to a second embodiment of the present invention. FIG. 4 is a sectional view of a main part of the laser device of the second embodiment, and FIG. 5 is a partial perspective view of a conventional laser. 101-----GaAs substrate, 102, 104-old cladding layer, 103--active layer, 105-
...G a As character group 〇 Name of agent Patent attorney Toshi Nakao Male and 1 other person Sorry
castle

Claims (2)

【特許請求の範囲】[Claims] (1)細線状あるいは箱状に分断された半導体薄膜層と
、前記半導体薄膜層の分断された箇所を補填して成る高
抵抗で且つ前記半導体薄膜層より大きい禁制帯幅を持つ
第1の半導体層と、前記半導体薄膜層と第1の半導体層
をはさんで成り且つ前記半導体薄膜層よりも大きい禁制
帯幅を持つ第2、第3の半導体層と、前記第2、第3の
半導体層の一主面にそれぞれ接して成る第1導電型の第
4の半導体層と第2導電型の第5の半導体層を有してな
る半導体レーザ素子。
(1) A semiconductor thin film layer divided into thin lines or boxes, and a first semiconductor with high resistance and a larger forbidden band width than the semiconductor thin film layer, which is made up of a semiconductor thin film layer that compensates for the divided parts of the semiconductor thin film layer. a layer, second and third semiconductor layers sandwiching the semiconductor thin film layer and the first semiconductor layer and having a larger forbidden band width than the semiconductor thin film layer, and the second and third semiconductor layers. A semiconductor laser element comprising a fourth semiconductor layer of a first conductivity type and a fifth semiconductor layer of a second conductivity type, each of which is in contact with one principal surface of the semiconductor laser element.
(2)細線状あるいは箱状に分断された複数の化合物半
導体薄膜と、前記化合物半導体薄膜の分断された箇所を
補填して成り高抵抗で且つ前記半導体薄膜層より大きい
禁制帯幅を持ち少なくとも一つの部分から成る第1の半
導体層と、前記化合物半導体薄膜の各層間を補填して成
り前記化合物半導体薄膜よりも大きな禁制帯幅を持ち少
なくとも一つの部分から成る第2の半導体層と、前記半
導体薄膜層と第1、第2の半導体層から成る部分をはさ
んで成り且つ前記半導体薄膜層よりも大きい禁制帯幅を
持つ第3、第4の半導体層と、前記第3、第4の半導体
層の一主面にそれぞれ接して成る第1導電型の第5の半
導体層と第2導電型の第6の半導体層を有してなる半導
体レーザ素子。
(2) Comprising a plurality of compound semiconductor thin films divided into thin lines or box shapes, and compensating for the divided parts of the compound semiconductor thin film, and having a high resistance and a forbidden band width larger than the semiconductor thin film layer, at least one a first semiconductor layer consisting of two parts, a second semiconductor layer comprising at least one part and having a larger forbidden band width than the compound semiconductor thin film, which fills the space between each layer of the compound semiconductor thin film; third and fourth semiconductor layers sandwiching a portion consisting of a thin film layer and the first and second semiconductor layers and having a forbidden band width larger than that of the semiconductor thin film layer; and the third and fourth semiconductor layers. A semiconductor laser element comprising a fifth semiconductor layer of a first conductivity type and a sixth semiconductor layer of a second conductivity type, each of which is in contact with one main surface of the layer.
JP30072287A 1987-11-27 1987-11-27 Semiconductor laser element Pending JPH01143283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30072287A JPH01143283A (en) 1987-11-27 1987-11-27 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30072287A JPH01143283A (en) 1987-11-27 1987-11-27 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH01143283A true JPH01143283A (en) 1989-06-05

Family

ID=17888315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30072287A Pending JPH01143283A (en) 1987-11-27 1987-11-27 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH01143283A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168983A (en) * 1985-01-22 1986-07-30 Nec Corp High output semiconductor laser
JPS62140485A (en) * 1985-12-16 1987-06-24 Hitachi Ltd Semiconductor structure and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168983A (en) * 1985-01-22 1986-07-30 Nec Corp High output semiconductor laser
JPS62140485A (en) * 1985-12-16 1987-06-24 Hitachi Ltd Semiconductor structure and manufacture thereof

Similar Documents

Publication Publication Date Title
US6855959B2 (en) Nitride based semiconductor photo-luminescent device
JPH07202312A (en) Semiconductor laser embedded structure
JP2006253212A (en) Semiconductor laser
JP2001015851A (en) Semiconductor laser device and its manufacture
JP2001308379A (en) Semiconductor light-emitting element and manufacturing method thereof
JP2001509638A (en) Laser diode of the type with buried heterostructure
JPH01143283A (en) Semiconductor laser element
JPH05267715A (en) Semiconductor light-emitting device
JPH1012958A (en) Semiconductor laser device and manufacture thereof
JP2000353849A (en) Optical semiconductor device and its manufacture
JP4164248B2 (en) Semiconductor element, manufacturing method thereof, and semiconductor optical device
TW507406B (en) Semiconductor laser device and process for manufacturing the same
JP3568147B2 (en) Semiconductor light emitting device
JP2748570B2 (en) Semiconductor laser device
JP3403915B2 (en) Semiconductor laser
JPH07107945B2 (en) Semiconductor light emitting device
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPH0632343B2 (en) Semiconductor laser
JPS62279688A (en) Manufacture of semiconductor laser element
KR100255694B1 (en) Semiconductor laser diode
JP2908125B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0513872A (en) Hetero junction type semiconductor laser
JP2628638B2 (en) Semiconductor laser device
JPS6261383A (en) Semiconductor laser and manufacture thereof
JPH05110193A (en) Semiconductor laser