JPH01143161A - Electrolyte circulation type battery - Google Patents

Electrolyte circulation type battery

Info

Publication number
JPH01143161A
JPH01143161A JP62301224A JP30122487A JPH01143161A JP H01143161 A JPH01143161 A JP H01143161A JP 62301224 A JP62301224 A JP 62301224A JP 30122487 A JP30122487 A JP 30122487A JP H01143161 A JPH01143161 A JP H01143161A
Authority
JP
Japan
Prior art keywords
separator
channel
battery
electrolyte
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62301224A
Other languages
Japanese (ja)
Inventor
Koji Nakamura
好志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP62301224A priority Critical patent/JPH01143161A/en
Publication of JPH01143161A publication Critical patent/JPH01143161A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To prevent the liquid leakage from channels by separately forming channels and rectifying sections on the surface and the back face of separators and containing two closely stuck separator frames on the channel formation side. CONSTITUTION:Channels 42 are formed on the surface of one side of separator frames 38 and rectifying sections 44 are formed on the back face of the other side, the other sides of the channels 42 extended from a manifold 40 are penetrated from the surface of one side of each separator frame 38 to the back face of the other side and connected to the rectifying sections 44. The channel 42 formation sides of two separator frames 38 are closely stuck by a means such as bonding. The channel sections 42 are buried in each separator frame 38, the channel sections 42 are completely sealed in each separator 34 as a unit, thereby the liquid leakage to the outside from the channel sections 42 is prevented regardless of the results of the laminating work of the electrode plates and the separators 34.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は電解液循環式電池、特に亜鉛−臭素電池やレ
ドックスフロー電池のようにセパレータ(隔膜)によっ
て反応槽が正負両極に分離された電池の構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to electrolyte circulation batteries, particularly batteries in which a reaction tank is separated into positive and negative electrodes by a separator, such as a zinc-bromine battery or a redox flow battery. Regarding the structure of

[従来の技術] この種の積層二次電池は、単電池を必要に応じて直列や
並列に接続して実用的な電圧と電流を得たり、バイポー
ラ型積層電池として使用されることも多い。
[Prior Art] This type of laminated secondary battery is often used as a bipolar type laminated battery, by connecting unit cells in series or parallel as necessary to obtain a practical voltage and current.

第3図には亜鉛−臭素電池の原理的構成が示されており
、同図において、10は負極、12は正極、14はセパ
レータ、16は正極側電解液貯蔵槽、18は負極側電解
液貯蔵槽、20.22はポンプ、24aは負極側反応槽
、24bは正極側反応槽である。そして、充電時には正
極12に臭素、負極工0に亜鉛が生成する。
FIG. 3 shows the basic structure of a zinc-bromine battery, in which 10 is a negative electrode, 12 is a positive electrode, 14 is a separator, 16 is a positive electrode electrolyte storage tank, and 18 is a negative electrode electrolyte. A storage tank, 20.22 is a pump, 24a is a negative electrode side reaction tank, and 24b is a positive electrode side reaction tank. During charging, bromine is produced in the positive electrode 12 and zinc is produced in the negative electrode 0.

第4図は前記原理に基づ〈従来の電解液循環式積層二次
電池(特開昭57−199167号、特開昭59−96
671号)の−例を示す分解斜視図が示されている。
Figure 4 shows a conventional electrolyte circulating type laminated secondary battery (Japanese Patent Laid-Open No. 57-199167, Japanese Patent Laid-open No. 59-96) based on the above principle.
No. 671) is shown in an exploded perspective view.

同図において、電極26は絶縁部28と電極板30とに
より構成され、マニホールド32が対角線上に設けられ
ている。セパレータ34はセパレータ膜36の周囲にセ
パレータ枠38を存し、このセパレータ枠38には電解
液を正極室と負極室に供給するマニホールド40、チャ
ンネル42)及びセパレータ面に均一に電解液を分配す
るための整流器44が形成されている。
In the figure, the electrode 26 is composed of an insulating part 28 and an electrode plate 30, and a manifold 32 is provided diagonally. The separator 34 has a separator frame 38 around a separator membrane 36, and this separator frame 38 includes a manifold 40 and a channel 42) for supplying electrolyte to the positive electrode chamber and the negative electrode chamber, and a channel 42) for uniformly distributing the electrolyte to the separator surface. A rectifier 44 is formed for this purpose.

第5図には従来のセパレータの構成が示されており、セ
パレータ膜36はセパレータ枠38に溶着等により取り
付けられる場合と、逆に、セパレータ膜36の周りにイ
ンサートインジェクション等によりセパレータ枠38が
形成される場合とがある。いずれの場合にも、チャンネ
ル42がセパレータ枠38の表裏両面に溝加工されてい
ることが特徴であり、チャンネル42の加工部位の詳細
は第6図に示されている。
FIG. 5 shows the structure of a conventional separator, in which the separator film 36 is attached to the separator frame 38 by welding or the like, and the separator frame 38 is formed around the separator film 36 by insert injection or the like. There are cases where it is done. In either case, a feature is that channels 42 are grooved on both the front and back sides of the separator frame 38, and the details of the processed portions of the channels 42 are shown in FIG.

そして、−船釣には前述した電極26とセパレータ34
とを積層していく場合に、絶縁部28とセパレータ枠3
8それぞれにホットメルト等の接着剤を塗布して重ね合
せていく手段がとられる。
- For boat fishing, the electrode 26 and separator 34 described above are used.
When stacking the insulating part 28 and the separator frame 3,
A method is taken of applying an adhesive such as hot melt to each of the 8 parts and stacking them on top of each other.

[発明が解決しようとする問題点コ 従来の問題点 しかしながら、前述した積層電池では、接着剤の塗布量
を多くするとこの接着剤によりチャンネル42が詰まり
やすくなり、反対に塗布量を減らせば、チャンネル42
から反応槽外部への液漏れ及びチャンネル壁の液の乗り
越えが起こりやすくなるという問題があった。
[Problems to be Solved by the Invention] Conventional Problems However, in the above-mentioned laminated battery, if the amount of adhesive applied is large, the channels 42 are likely to be clogged by this adhesive, and conversely, if the amount of applied adhesive is decreased, the channels 42 become clogged. 42
There was a problem in that liquid leakage from the reactor to the outside of the reaction tank and liquid easily climbed over the channel walls.

発明の目的 この発明は係る問題点を解決するためになされたもので
、チャンネルからの液漏れやチャンネル内でのホットメ
ルトの詰まり等を防止し、電池性能と寿命の改善を図り
得る電解液循環式電池の提供を目的とする。
Purpose of the Invention The present invention was made to solve the above problems, and provides an electrolytic solution circulation method that prevents liquid leakage from channels and clogging of hot melt in channels, and improves battery performance and life. The purpose is to provide rechargeable batteries.

[問題点を解決するための手段及び作用]前記目的を達
成するために、本発明は電極板とセパレータとを積層配
置し電極板間に形成される反応槽と電解液貯蔵槽との間
で電解液を循環させ反応槽内において所定の充放電反応
を行う電解液循環式電池において、 前記セパレータは一側表面にチャンネルが形成され他側
裏面に整流部が形成されると共にチャンネル形成側が互
いに密着された2枚のセパレータ枠を含み、マニホール
ドから伸張された各チャンネルの他端側は各セパレータ
枠の一側表面から他側裏面に向け貫通されて整流部に接
続されていることを特徴とする。
[Means and effects for solving the problems] In order to achieve the above object, the present invention provides a structure in which electrode plates and separators are arranged in a stacked manner, and a reaction tank and an electrolyte storage tank are formed between the electrode plates. In an electrolyte circulation battery that circulates an electrolyte and performs a predetermined charging/discharging reaction in a reaction tank, the separator has a channel formed on one surface and a rectifying section on the other back surface, and the channel-forming sides are in close contact with each other. The other end side of each channel extending from the manifold is penetrated from one surface of each separator frame to the back surface of the other side and connected to the rectifier. .

以上の構成により、本発明によれば、2枚のセパレータ
枠のチャンネル形成側が接着等の手段により密着される
ことにより、チャンネル部はセパレータ枠内部に埋設さ
れた状態となり、セパレータ単体の状態でチャンネル部
は完全にシールされる。このため、電極板とセパレータ
との積層作業の出来不出来に拘らず、チャンネル部から
外部への液漏れが防止される。又、電解液がチャンネル
部から反応槽に流れ込む際、電解液は整流部によって均
一な流れとなって反応槽において円滑な充放電反応が行
われる。
With the above configuration, according to the present invention, the channel forming sides of the two separator frames are brought into close contact with each other by means such as adhesive, so that the channel portion is buried inside the separator frame, and the channel portion is buried in the separator frame. The section is completely sealed. Therefore, regardless of whether the electrode plate and the separator are laminated or not, leakage of liquid from the channel portion to the outside is prevented. Further, when the electrolytic solution flows into the reaction tank from the channel section, the electrolytic solution becomes a uniform flow by the rectifying section, so that a smooth charging/discharging reaction is performed in the reaction tank.

[実施例] 以下、図面に基づき本発明の好適な実施例を説明する。[Example] Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図は、(a)、  (b)本発明に係る電解液循環
式電池に適用されたセパレータ枠の構造が示されており
、第2図にはセパレータの完成状態断面が示されている
Figures 1 (a) and (b) show the structure of a separator frame applied to a circulating electrolyte battery according to the present invention, and Figure 2 shows a cross section of the separator in a completed state. .

本実施例における電池は、前述したように図示しない電
極板とセパレータ34とが積層配置され、セパレータ3
4を挾む左右の画電極板間に形成される負極側反応槽4
6aと正極側反応槽46b1及び図示しない電解液貯蔵
槽との間で電解液が循環され反応tf146a、46b
内において所定の充放電反応が行われる。
As described above, in the battery in this embodiment, the electrode plate (not shown) and the separator 34 are arranged in a stacked manner, and the separator 3
The negative electrode side reaction tank 4 is formed between the left and right image electrode plates sandwiching the negative electrode side reaction tank 4.
The electrolytic solution is circulated between the positive electrode side reaction tank 46b1 and an electrolytic solution storage tank (not shown), and reactions tf146a, 46b are carried out.
A predetermined charging/discharging reaction takes place within the battery.

本発明の特徴的なことは、前記セパレータは一側表面に
チャンネルが形成され他側裏面に整流部が形成されると
共にチャンネル形成側が互いに密着された2枚のセパレ
ータ枠を含み、マニホールドから伸張された各チャンネ
ルの他端側は各セパレータ枠の一側表面から他側裏面に
向け貫通されて整流部に接続されていることである。
A characteristic feature of the present invention is that the separator includes two separator frames in which a channel is formed on one side surface and a rectifying section is formed on the other side back surface, and the channel forming sides are in close contact with each other, and the separator is extended from the manifold. The other end of each channel is connected to the rectifier by being penetrated from one surface of each separator frame to the back surface of the other side.

本実施例において、第1図(a)におけるセパレータ枠
38の一側表面の上部と下部に、対角線上に配置された
マニホールド40.40からチャンネル42.42がそ
れぞれ溝加工により伸長されており、又、他側裏面の上
部と下部にはそれぞれ整流器44.44が形成されてい
る。この整流器44、チャンネル2から供給されてきた
電解液を均一な流れに変えて電池反応部に送り込むと共
に、電池反応部で充放電に関与した後の電解液を均一に
送り出す役目をなす。そして、マニホールド40から伸
長された各チャンネル42.42の他端側は、裏面に整
流器44.44が形成されている近傍でセパレータ枠3
8を貫通して整流器44.44に接続されている。この
ようなセパレータ枠38,38の2枚が、第2図のよう
に互いにチャンネル42が形成された側で熱溶若若しく
は超音波接着等の溶着手段により密着される。こうして
密着されたセパレータ枠38,3gの中央部には、セパ
レータ膜36が熱溶着又は超音波溶着等の手段により一
体的に取り付けられている。
In this embodiment, channels 42 and 42 are extended by groove processing from manifolds 40 and 40 arranged diagonally in the upper and lower parts of one side surface of the separator frame 38 in FIG. 1(a), respectively. Further, rectifiers 44 and 44 are formed at the upper and lower parts of the back surface on the other side, respectively. This rectifier 44 serves to convert the electrolytic solution supplied from the channel 2 into a uniform flow and send it to the battery reaction section, and also to uniformly send out the electrolytic solution that has been involved in charging and discharging in the battery reaction section. The other end side of each channel 42.42 extending from the manifold 40 is connected to a separator frame 3 near where a rectifier 44.44 is formed on the back surface.
8 and is connected to the rectifier 44.44. As shown in FIG. 2, these two separator frames 38, 38 are closely attached to each other on the side where the channel 42 is formed by welding means such as hot melting or ultrasonic bonding. A separator film 36 is integrally attached to the central portion of the separator frames 38, 3g that have been brought into close contact with each other by heat welding, ultrasonic welding, or the like.

このセパレータ膜36は、一般にイオン交換膜あるいは
多孔質膜が用いられ、自己放電を防止するために電解液
は透過するがこれに溶解している臭素の透過は阻止する
機能を有する。
This separator membrane 36 is generally an ion exchange membrane or a porous membrane, and has the function of allowing the electrolytic solution to pass therethrough, but blocking the permeation of bromine dissolved therein, in order to prevent self-discharge.

以上によりマニホールド4oから供給された電解液は、
チャンネル42を通過し、このチャンネル42の終端部
近傍でセパレータ枠38を貫通して整流器44に至り、
ここで均一な流れにされて反応部に送り込まれる。
The electrolyte supplied from the manifold 4o as described above is
It passes through the channel 42, penetrates the separator frame 38 near the end of the channel 42, and reaches the rectifier 44.
Here, it is made into a uniform flow and sent to the reaction section.

即ち、本発明の実施例によれば、セパレータ34は単体
の状態でチャンネル部が完全にシールされることから、
スタック積層作業の出来不出来に拘らずチャンネル部か
ら外部への液漏れ、あるいはチャンネル壁の液の乗り越
えを防止することかできる。また、ホットメルト等の接
着剤の塗布面にはチャンネルが形成されていないため、
多量の接着剤を塗布したとしてもチャンネル内で詰まり
を起こすことがない。
That is, according to the embodiment of the present invention, since the channel portion of the separator 34 is completely sealed when it is alone,
Regardless of the quality of the stacking work, it is possible to prevent liquid from leaking to the outside from the channel portion or from flowing over the channel wall. In addition, since there are no channels formed on the surface where adhesives such as hot melt are applied,
Even if a large amount of adhesive is applied, the channel will not become clogged.

従って、液漏れに対する信頼性が大幅に向上するのみな
らず、電池性能や電池寿命を大幅に改善することができ
る。更に、前述のように接着剤の塗布面にはチャンネル
がないことから、接着剤塗布作業が著しく簡単となり電
池積層部の製作作業性が大幅に向上する。また、セパレ
ータ枠の面積が同じ場合には、接着剤の塗布面積がチャ
ンネル部分だけ実質的に増加するためシール性も向上す
名。
Therefore, not only reliability against liquid leakage is greatly improved, but also battery performance and battery life can be significantly improved. Furthermore, as described above, since there is no channel on the surface to which the adhesive is applied, the adhesive application process is significantly simplified, and the workability of manufacturing the battery stack is greatly improved. In addition, if the area of the separator frame is the same, the adhesive application area is substantially increased in the channel area, which improves sealing performance.

[発明の効果] この発明は以上説明した通り、セパレータは表面と裏面
にそれぞれチャンネルと整流部が別々に形成されると共
に、チャンネル形成側に密着された2枚のセパレータ枠
を含むことにより、チャンネルからの液漏れやチャンネ
ル内でのホットメルトの詰まり等を防止し、電池性能と
寿命の改善を図ることができる。
[Effects of the Invention] As explained above, the separator has a channel and a rectifier formed separately on the front and back sides, and includes two separator frames closely attached to the channel forming side, so that the channel It is possible to prevent liquid leakage and hot melt clogging in the channels, and improve battery performance and life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明に係る電解液循環式電池に適用さ
れるセパレータ枠の正面図、 第1図(b)はそのA −A 1tli面図、第2図は
セパレータの側断面図、 第3図は電解液循環式電池の原理説明図、第4図は従来
の積層型電池の分解斜視図、第5図は従来の積層型電池
に適用されたセパレータの正面図、 第6図はその側断面図である。 34 ・・・ セパレータ 36 ・・・ セパレータ膜 38 ・・・ セパレータ枠 40 ・・・ マニホールド 42 ・・・ チャンネル 44 ・・・ 整流器 46a、46b  −反応槽
FIG. 1(a) is a front view of a separator frame applied to the electrolyte circulation type battery according to the present invention, FIG. 1(b) is an A-A 1tli plan view thereof, and FIG. 2 is a side sectional view of the separator. , Fig. 3 is a diagram explaining the principle of an electrolyte circulation type battery, Fig. 4 is an exploded perspective view of a conventional stacked battery, Fig. 5 is a front view of a separator applied to a conventional stacked battery, and Fig. 6 is a side sectional view thereof. 34... Separator 36... Separator membrane 38... Separator frame 40... Manifold 42... Channel 44... Rectifier 46a, 46b - Reaction tank

Claims (2)

【特許請求の範囲】[Claims] (1)電極板とセパレータとを積層配置し電極板間に形
成される反応槽と電解液貯蔵槽との間で電解液を循環さ
せ反応槽内において所定の充放電反応を行う電解液循環
式電池において、 前記セパレータは一側表面にチャンネルが形成され他側
裏面に整流部が形成されると共にチャンネル形成側が互
いに密着された2枚のセパレータ枠を含み、マニホール
ドから伸張された各チャンネルの他端側は各セパレータ
枠の一側表面から他側裏面に向け貫通されて整流部に接
続されていることを特徴とする電解液循環式電池。
(1) Electrolyte circulation type in which electrode plates and separators are stacked and the electrolyte is circulated between a reaction tank and an electrolyte storage tank formed between the electrode plates, and a predetermined charging/discharging reaction is carried out in the reaction tank. In the battery, the separator includes two separator frames in which a channel is formed on one surface and a rectifying portion is formed on the back surface of the other side, and the channel forming sides are in close contact with each other, and the other end of each channel extended from the manifold. An electrolyte circulation type battery characterized in that the side of each separator frame is penetrated from one side surface to the other side back side and connected to a rectifier.
(2)特許請求の範囲(1)記載の電池において、前記
セパレータはチャンネル形成側が互いに密着されたセパ
レータ枠の中央部に1枚のセパレータ膜を有しているこ
とを特徴とする電解液循環式電池。
(2) In the battery according to claim (1), the separator is an electrolyte circulation type, characterized in that the separator has one separator film in the center of a separator frame whose channel forming sides are in close contact with each other. battery.
JP62301224A 1987-11-27 1987-11-27 Electrolyte circulation type battery Pending JPH01143161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62301224A JPH01143161A (en) 1987-11-27 1987-11-27 Electrolyte circulation type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62301224A JPH01143161A (en) 1987-11-27 1987-11-27 Electrolyte circulation type battery

Publications (1)

Publication Number Publication Date
JPH01143161A true JPH01143161A (en) 1989-06-05

Family

ID=17894276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62301224A Pending JPH01143161A (en) 1987-11-27 1987-11-27 Electrolyte circulation type battery

Country Status (1)

Country Link
JP (1) JPH01143161A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172752A (en) * 2004-12-13 2006-06-29 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
JP2017092052A (en) * 2017-02-27 2017-05-25 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Electrochemical device and method for controlling corrosion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172752A (en) * 2004-12-13 2006-06-29 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
JP2017092052A (en) * 2017-02-27 2017-05-25 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Electrochemical device and method for controlling corrosion

Similar Documents

Publication Publication Date Title
US4945019A (en) Friction welded battery component
JPH087913A (en) Full vanadium redox cell
EP0130723B1 (en) Secondary battery having a separator
JPS60185375A (en) Galvanic cell
AU2017373097A1 (en) Bipolar plate, cell stack, and redox flow battery
JPH0131668B2 (en)
JPS62229772A (en) Lead-acid battery
CN210224178U (en) Electrode assembly
JPH01143161A (en) Electrolyte circulation type battery
JPH0626145B2 (en) Galvanic batteries
JPH0629893Y2 (en) Secondary battery separator
JP2505007Y2 (en) Electrolyte circulation type laminated battery
JPH02247983A (en) Electrolyte circulation type battery
JP2853296B2 (en) Bipolar electrode plate for stacked batteries
JPH05166550A (en) Electrolyte circulation type layered secondary battery
JP2853295B2 (en) Stacked secondary battery
JPS6158159A (en) Secondary battery
KR101862369B1 (en) Redox flow battery
JP2853271B2 (en) Electrolyte static zinc-bromine battery
JPH0334843Y2 (en)
JPH0145095Y2 (en)
JP4501334B2 (en) Aggregate battery and method of manufacturing the same
JP2890852B2 (en) Manufacturing method of laminated battery
JP2677137B2 (en) Thin sealed storage battery
JPH01264166A (en) Cell structure