JPH01143116A - Electronic tube cathode - Google Patents

Electronic tube cathode

Info

Publication number
JPH01143116A
JPH01143116A JP62300667A JP30066787A JPH01143116A JP H01143116 A JPH01143116 A JP H01143116A JP 62300667 A JP62300667 A JP 62300667A JP 30066787 A JP30066787 A JP 30066787A JP H01143116 A JPH01143116 A JP H01143116A
Authority
JP
Japan
Prior art keywords
nickel
electron
oxide
sintered layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62300667A
Other languages
Japanese (ja)
Inventor
Kinjiro Sano
佐野 金次郎
Toshio Nakanishi
中西 寿夫
Toyoichi Kamata
鎌田 豊一
Keiji Watanabe
渡辺 勁二
Masato Saito
正人 斉藤
Ryo Suzuki
量 鈴木
Keiji Fukuyama
福山 敬二
Shigeko Ishida
石田 誠子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62300667A priority Critical patent/JPH01143116A/en
Publication of JPH01143116A publication Critical patent/JPH01143116A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To make it possible to obtain high curent density action stable extending for a long time by providing a nickel powder sintered layer on a nickel base metal and making it contain an electron radiator consisting of mixture alkaline earth metal oxide and scandium oxide. CONSTITUTION:A base matal 1 is nickel which contains silicon as a reductive metal and the surface of the base metal 1 is coated with a particle sintered layer 12 consisting of nickel which contains reductive metal like at least silicon. An electron radiator 5 filled in the space inside the sintered layer 12 has alkaline earth metal oxide 51 which contains barium and in addition strontium or calcium for its main ingredient and scandium oxide 52 at 0.1-20 weight percent being dispersed. Hereby, the formation of an intermediate layer substance created near the surface of nickel powder is prevented and life can be maintained for a long period even if it is actuated at high current density for a long time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、受像管などの電子管に具備される陰極に係
わるもので、陰極から放出される電流密度の向上を図っ
たものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a cathode included in an electron tube such as a picture tube, and is intended to improve the current density emitted from the cathode.

〔従来の技術〕[Conventional technology]

従来、受像管などの電子管に具備される陰極には、ニッ
ケル(Ni )を主成分としマグネシウム(Mg)、シ
リコン(Si)などの還元性金属を微量含有した基体金
属上にバリウム(Ba)を含むアルカリ土類金属酸化物
を被着形成した、所謂、酸化物陰極が多用されてきた。
Conventionally, cathodes included in electron tubes such as picture tubes are made by coating barium (Ba) on a base metal that is mainly composed of nickel (Ni) and contains small amounts of reducing metals such as magnesium (Mg) and silicon (Si). So-called oxide cathodes, in which alkaline earth metal oxides containing alkaline earth metals are deposited, have been widely used.

この酸化物陰極はアルカリ土類金属の炭酸塩を熱分解し
て酸化物に変換せしめ、次に還元性金属と酸化物とを反
応させながら酸化物から遊離京子を生成し9子放射のド
ナー(源)として電子放射を行わせるようにしたもので
ある。このような複雑な手順を経る理由は、Baは電子
放射能力には優れているが非常に活性であるため空気中
の水分と反応して水酸化バリウム(Ba(OH)z )
となり、この水酸化バリウム(Ba(OR)! )から
遊離バリウA (Ba)を電子管内に生成することは困
難であるので、化学的に安定である炭酸塩を出発物質に
せざるを得ないからである。炭酸塩にはBaC0,の単
元のものと(Ba、 Sr 、 Ca )ω3などの復
元のものがあるが、ドナーを形成する活性化の基本的な
機構は同じであるから、理解を容易にするため以下、単
元炭酸塩を例にし。て詳細に説明する。
This oxide cathode thermally decomposes alkaline earth metal carbonate to convert it into an oxide, and then reacts the reducing metal with the oxide to generate free Kyoko from the oxide, which is the donor for 9-ion radiation ( It is designed to emit electrons as a source (source). The reason for such a complicated procedure is that although Ba has excellent electron emission ability, it is very active and reacts with moisture in the air to form barium hydroxide (Ba(OH)z).
Since it is difficult to generate free barium A (Ba) from this barium hydroxide (Ba(OR)!) in an electron tube, we have no choice but to use chemically stable carbonate as the starting material. It is. There are two types of carbonates: unitary ones such as BaC0, and restored ones such as (Ba, Sr, Ca)ω3, but the basic mechanism of activation to form donors is the same, so it is easier to understand. Therefore, below we will use a unitary carbonate as an example. This will be explained in detail.

第3図は従来の酸化物陰極の一例を示す概略構速断面図
であって、(1)は基体金属、(2)はスリーブ、(3
)は加熱用のヒータ、(5)は基体金属(1)の表面に
被着形成された炭酸バリウム(BaCOl)からなる電
子放射物質である。この電子放射物質(5)は、有機溶
剤に溶解したニトロセルロース等のバインダに炭酸バリ
ウム(BaCO3)を混合し、吹きつけ、電着、あるい
は塗布等の方法で被着形成する。
FIG. 3 is a schematic cross-sectional view showing an example of a conventional oxide cathode, in which (1) is the base metal, (2) is the sleeve, and (3) is the base metal.
) is a heater for heating, and (5) is an electron emitting material made of barium carbonate (BaCOl) deposited on the surface of the base metal (1). The electron emitting material (5) is formed by mixing barium carbonate (BaCO3) with a binder such as nitrocellulose dissolved in an organic solvent and depositing the mixture by spraying, electrodeposition, coating, or the like.

このように構成された酸化物陰極は、電子管内に組み込
まれ、電子管内を真空にするための排気工程でヒータ(
3)によって約1000°Cに加熱昇温され、炭酸バリ
ウム(BaC03)が次式のように熱分解される。
The oxide cathode configured in this way is incorporated into an electron tube, and a heater (
3), the temperature is raised to about 1000°C, and barium carbonate (BaC03) is thermally decomposed as shown in the following equation.

BaC0,→BaO+CO2・・−(1)この反応によ
って生成された炭酸ガス(CO3)は真空ポンプによっ
て電子管外に排出される。同時にニトロセルロース等の
樹脂も熱分解されて気体となり、炭酸ガスと共に管外に
排出される。
BaC0,→BaO+CO2...-(1) Carbon dioxide (CO3) generated by this reaction is discharged outside the electron tube by a vacuum pump. At the same time, resins such as nitrocellulose are also thermally decomposed and turned into gases, which are discharged from the tube together with carbon dioxide gas.

第(1)式の反応によって、電子放射物質(5)の炭酸
バリウム(BaCO,)は酸化バリウム(Bad)に変
換される。この反応の際に、従来の酸化物陰極では、管
内の炭酸ガス(COz)、酸漿(0,)等の酸化性雰囲
気のもとで、基体金属(1)の表面でニッケルαi)と
共に、還元反応の重要な役割を担う還元性金属のシリコ
ン(Si)やマグネシウム絢)も共に酸化されるという
欠点がある。
By the reaction of equation (1), barium carbonate (BaCO,), which is the electron emitting substance (5), is converted to barium oxide (Bad). During this reaction, in a conventional oxide cathode, under an oxidizing atmosphere such as carbon dioxide gas (COz) and acid plasma (0,) inside the tube, reduction occurs together with nickel αi) on the surface of the base metal (1). The drawback is that the reducing metals silicon (Si) and magnesium (Si) that play an important role in the reaction are also oxidized.

第4図は基体金属(1)と電子放射物質(5)の接合近
傍を詳細に説明するための部分拡大断面図である。
FIG. 4 is a partially enlarged sectional view for explaining in detail the vicinity of the junction between the base metal (1) and the electron emitting material (5).

一般に酸化バリウムは棒状の微小な結晶(8)が凝集し
て数ミクロンないし数十ミクロンの大きさの結晶粒(9
)となる。結晶粒間には適度の間隙CLIを形成した多
孔質の電子放射物質(5)を作るように配慮されている
。この酸化バリウム(Bad)は基体金属(1)と接曽
する界面aυに於て、前記還元性金属のシリコン(Si
 )やマグネシウム(Mg)と反応、遊離バリウム(B
a)を生成する。これらの還元性金属は基体金属(1)
のニッケル(Ni)の結晶粒界(7)を拡散移動し、界
面(lIυ近傍で還元反応を行う。反応例を次に示す。
In general, barium oxide is made by agglomerating rod-shaped microcrystals (8) into crystal grains (9) with a size of several microns to several tens of microns.
). Care is taken to create a porous electron emitting material (5) with appropriate gaps CLI between crystal grains. This barium oxide (Bad) is deposited on the reducing metal silicon (Si) at the interface aυ in contact with the base metal (1).
) and magnesium (Mg), free barium (B
a) Generate. These reducing metals are base metals (1)
The nickel (Ni) is diffused through the grain boundaries (7), and a reduction reaction occurs near the interface (lIυ).An example of the reaction is shown below.

zBaO+ Si −+ zBa + 5i02−・−
−−−−・−(2)BaO+ Mg −Ba +MgO
−−−−・−−−−(3)この遊離バリウム(Ba)が
電子放射のドナーとなって作用する。この際、次の反応
も同時に起こる。
zBaO+ Si −+ zBa + 5i02−・−
−−−・−(2) BaO+ Mg −Ba +MgO
-----・---- (3) This free barium (Ba) acts as a donor for electron emission. At this time, the following reactions also occur simultaneously.

Sin、 + zBao −+ Ba、5i0. ・・
−・・−・−(4)以上のように、ドナーは電子放射物
質(5)と基体金属(1)の接合面で生成され、電子放
射物質(5)の間隙(1(lを移動し、その表面に出て
電子放射の役を担うが、蒸発したり、電子管内の残留ガ
スであるω。
Sin, + zBao −+ Ba, 5i0.・・・
−・・−・−(4) As described above, the donor is generated at the joint surface of the electron emitting material (5) and the base metal (1), and the donor moves through the gap (1(l)) of the electron emitting material (5). , which comes out to the surface and plays the role of electron emission, but ω evaporates or is a residual gas inside the electron tube.

Co2.O,、H,0等と反応して消滅するので、絶え
ず上記のような反応を行って補給する必要があり、陰極
は使用中宮にこの還元反応を行っている。この補給と消
滅のバランスを取るために、一般に、この種の陰極は約
800°Cの高温で使用される。
Co2. Since it reacts with O, H, 0, etc. and disappears, it is necessary to constantly perform the above reaction and replenish it, and the cathode performs this reduction reaction during use. To balance this replenishment and depletion, cathodes of this type are generally used at high temperatures of about 800°C.

陰極の使用中、第(2)、(4)式、(7) Sin、
 、 Ba、5in4等の反応生成物備が電子放射物質
(5)と基体金属(1)の接合面である界面(ロ)で生
成され、界面αηや結晶粒界(7)にどんどん蓄積され
てSiなどの通る障壁(一般に、これを中間層と呼ぶ)
となり、反応は次第に遅れドナーであるBaの生成が困
難となる。
During use of the cathode, equations (2) and (4), (7) Sin,
, Ba, 5in4, etc. are generated at the interface (b), which is the joint surface between the electron emitting material (5) and the base metal (1), and are rapidly accumulated at the interface αη and grain boundaries (7). Barrier through which Si etc. pass (generally called an intermediate layer)
As a result, the reaction is gradually delayed and it becomes difficult to generate Ba, which is a donor.

この中間層は高抵抗値を有し放射電子電流の流れを妨げ
る。このような問題点に対して、第5図に示すような、
酸化スカンジウム(SctOg)(転)を電子放射物質
(5)の中に分散させるという提案(特開昭62−22
347)がある。これはスカンジウム(Sc)によって
Ba、5i04などの反応生成物@を解離する作用があ
ると考えられるものである。また、別の提案(USP 
4369392)として第6図に示すようにニッケル粉
末の焼結層(6)の中に電子放射物質(5)を含有させ
たものもある。これは、焼結層(6)によって中間層が
生成しても実質の抵抗値を下げようとしたものである。
This intermediate layer has a high resistance value and impedes the flow of radiated electron current. To address these problems, as shown in Figure 5,
Proposal to disperse scandium oxide (SctOg) in an electron-emitting substance (5) (Japanese Patent Laid-Open No. 62-22
347). This is thought to be due to the effect of scandium (Sc) dissociating reaction products such as Ba and 5i04. Also, another proposal (USP
4369392) in which an electron-emitting substance (5) is contained in a sintered layer (6) of nickel powder, as shown in FIG. This is intended to lower the actual resistance value even if an intermediate layer is formed by the sintered layer (6).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、従来の電子管陰極においては、電子放射源
のドナーを形成するための炭酸塩の分解、還元の反応作
用中に還元性金属の酸化と反応生成物の蓄積が起こり、
また、動作中に基体金属(1)と電子放射物質(5)の
界面0υ近傍、特に基体金属(1)の表面近傍のニッケ
ル結晶粒界(7)に反応生成物が蓄積されるので放射電
子流および電子放射物質(5)への還元性金属の拡散補
給が次第に妨げられ、高電流密度下の十分な電子放射特
性が長時間にわたって得られないという欠点がある。上
記提案の酸化スカンジウム分散型陰極(特開昭62−2
2347)およびニッケル焼結型陰極(USP 436
9392)はこれらの欠点に対処するものであるが、長
時間の動作に耐え得る電流密度の限界が2A/cnlで
あり高解像度あるいは高輝度用の受像管への適用には問
題があった。
As described above, in conventional electron tube cathodes, oxidation of reducing metals and accumulation of reaction products occur during the decomposition and reduction reactions of carbonates to form donors for electron emission sources.
In addition, during operation, reaction products accumulate near the 0υ interface between the base metal (1) and the electron emitting material (5), especially at the nickel grain boundaries (7) near the surface of the base metal (1), so the emitted electrons The disadvantage is that the diffusion and replenishment of reducing metals into the current and electron emitting material (5) are gradually hindered, and sufficient electron emitting properties under high current density cannot be obtained for a long time. Scandium oxide dispersed cathode proposed above (Japanese Unexamined Patent Publication No. 62-2
2347) and nickel sintered cathode (USP 436
9392) addresses these drawbacks, but the current density limit that can withstand long-term operation is 2 A/cnl, which poses a problem in its application to high-resolution or high-brightness picture tubes.

〔問題を解決するための手段〕[Means to solve the problem]

この発明に係る電子管陰極は、ニッケルの基体金属にニ
ッケル粉末焼結層を設()、更にこのニッケル粉末焼結
層の中の空孔部にアルカリ土類金属酸化物と酸化スカン
ジウムとの混合物とからなる電子放射物質を含有さすこ
とにより長時間に渡つて安定した高電流密度動作を得よ
うとするものである。
In the electron tube cathode according to the present invention, a sintered nickel powder layer is provided on a base metal of nickel (), and a mixture of an alkaline earth metal oxide and scandium oxide is added to the pores in the sintered nickel powder layer. By containing an electron-emitting substance consisting of a material containing an electron-emitting material, it is attempted to obtain stable high current density operation over a long period of time.

〔作用〕[Effect]

この発明における、ニッケル粉末焼結層は基体金属と電
子放射面との間の電気抵抗値を低減することができ、更
に、電子放射物質中の酸化スカンジウムは基体金属ある
いはニッケル粉末の表面近傍で生成される中間層物質の
形成を防止することができる。
In this invention, the nickel powder sintered layer can reduce the electrical resistance between the base metal and the electron emitting surface, and furthermore, scandium oxide in the electron emitting material is generated near the surface of the base metal or nickel powder. It is possible to prevent the formation of an intermediate layer material.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図によって説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は、この発明の電子管陰極の一実施例を示す概略
構造断面図であって、カップ状の基体金属(1)が筒状
のスリーブ(2)に接続され、その内部にはヒータ(3
)が配備され加熱昇温する構成となっている。基体金属
(1)は少なくともシリコン(Si)を還元性金属とし
て含有したニッケル(Ni )である。スリーブ(2)
はニクロム(Ni−Cr)から構成される。基体金属(
1)の表面には、少なくともシリコン(Si)のような
還元性金属を含有したニッケル(Ni )からなる粒子
の焼結層(2)を被着形成する。この焼結層(資)は平
均粒径15〜30ミクロンのニッケル粉末をニトロセル
ロースと混合して吹き付は等の方法により、約0.1m
の厚さになるように基体金属(1)の上に被着形成する
。次に、水素雰囲気中で約1000°C110分間の熱
処理を行う事によりニッケル粉末相互およびニッケル粉
末と基体金7i (1)との焼結が起こり焼結層(6)
が構成される。焼結層的の空孔率は30〜60%で、こ
の空孔の中に電子放射物質(5)を充填する。この電子
放射物質(5)は少なくともバリウム(&)を含有し、
他にストロンチウム(Sr)あるいはカルシウム(Ca
)を含むアルカリ土類金属酸化物6υを主成分とし、0
.1〜20重量パーセントの酸化スカンジウム6zを分
散させたものである。この電子放射物質(5)の充填方
法は、有機溶剤に溶解したニトロセルロースの溶液にア
ルカリ土類金属炭酸塩と酸化スカンジウムを所望の重量
パーセント混合して懸濁液とし、ボールミルなどの方法
により粉砕混合し、次に浸漬法、吹き付は法、電着法、
塗布法等により被着形成する。焼結層的よりはみだした
電子放射物質(5)は機械的に削り取って除去する。
FIG. 1 is a schematic structural sectional view showing one embodiment of the electron tube cathode of the present invention, in which a cup-shaped base metal (1) is connected to a cylindrical sleeve (2), and a heater ( 3
) is installed to heat and raise the temperature. The base metal (1) is nickel (Ni) containing at least silicon (Si) as a reducing metal. Sleeve (2)
is composed of nichrome (Ni-Cr). Base metal (
A sintered layer (2) of particles made of nickel (Ni) containing at least a reducing metal such as silicon (Si) is deposited on the surface of 1). This sintered layer (material) is made by mixing nickel powder with an average particle size of 15 to 30 microns with nitrocellulose and spraying it to a length of about 0.1 m.
It is deposited on the base metal (1) to a thickness of . Next, heat treatment is performed at approximately 1000°C for 110 minutes in a hydrogen atmosphere to cause sintering of the nickel powder and the base gold 7i (1), resulting in a sintered layer (6).
is configured. The porosity of the sintered layer is 30 to 60%, and the electron emitting material (5) is filled into the pores. This electron emitting material (5) contains at least barium (&),
In addition, strontium (Sr) or calcium (Ca
), the main component is alkaline earth metal oxide 6υ including 0
.. 1 to 20 weight percent of scandium oxide 6z is dispersed therein. The method for filling this electron-emitting substance (5) is to mix alkaline earth metal carbonate and scandium oxide in a desired weight percentage with a solution of nitrocellulose dissolved in an organic solvent to form a suspension, and then pulverize the suspension using a method such as a ball mill. Mixing, then dipping method, spraying method, electrodeposition method,
Adhesion is formed by a coating method, etc. The electron emitting material (5) protruding from the sintered layer is mechanically scraped off and removed.

以上のような構成で製作した電子管陰極の電子放射源で
あるドナーの生成を行う工程を以下に詳しく説明する。
The process of generating a donor, which is an electron emission source of the electron tube cathode manufactured with the above configuration, will be described in detail below.

この電子管陰極は電子管内に組み込まれ、電子管内を真
空にするための排気工程でヒータ(3)によって約10
00°Cに昇温加熱されて炭酸バリウム(BaCO,)
が次のように熱分解される0BaCO,→BaO+CO
,・=−・・−=<1>この反応で生じた炭酸ガス(C
Oりは電子管外に排出される。同時にニトロセルロース
も熱分解されて気体となり、炭酸ガス(CO,)と共に
電子管外に排出される。この反応によって、電子放射物
質(5)の中の炭酸バリウム(BaCO,)は酸化バリ
ウム(Bad)に変換する。
This electron tube cathode is built into the electron tube, and is heated by a heater (3) during the evacuation process to create a vacuum inside the electron tube.
Barium carbonate (BaCO,) is heated to 00°C.
is thermally decomposed as follows: 0BaCO, →BaO+CO
,・=-・・-=<1> Carbon dioxide gas (C
Oxygen is discharged outside the electron tube. At the same time, nitrocellulose is also thermally decomposed and becomes a gas, which is discharged from the electron tube together with carbon dioxide (CO). Through this reaction, barium carbonate (BaCO,) in the electron emitting material (5) is converted to barium oxide (Bad).

陰極の使用中、陰極は約800’Cに加熱され、(1)
式で生成した酸化バリウム(Bad)は基体金g (1
)および焼結層(2)の中の還元性金属と次のように反
応する。
During use of the cathode, the cathode is heated to about 800'C, (1)
The barium oxide (Bad) produced by the formula is the base gold g (1
) and the reducing metal in the sintered layer (2) as follows.

zBao + Si 4 zBa + 5iO1−−・
−・−−−−(2)この遊離バリウム(Ba)が電子放
射のドナーとなって電子放射を担う。この発明の電子管
陰極では基体金属(1)および焼結層(2)の中に還元
性金属を含むため遊離バリウム(Ba)の生成が活発に
行われるため、高電流密度動作の負荷に対して耐え得る
ことが可能となる。又、電流の一部は抵抗値の低い焼結
層的を通って流れるため、従来の陰極に比べて高電流密
度動作が可能となる。
zBao + Si 4 zBa + 5iO1−-・
-・---(2) This free barium (Ba) becomes a donor for electron emission and is responsible for electron emission. In the electron tube cathode of the present invention, since the base metal (1) and the sintered layer (2) contain a reducing metal, free barium (Ba) is actively generated, so it can withstand the load of high current density operation. It becomes possible to endure. Also, because a portion of the current flows through the sintered layer, which has a low resistance value, higher current density operation is possible compared to conventional cathodes.

一方、長時間の動作中、次式の反応も行われる。On the other hand, during long-term operation, the following reaction also takes place.

Sing + 2BaO−4a、SiO,−・−・−・
・(4)この反応式の生成物である、バリウムシリケイ
ト(Ba!5i04)は基体金属(1)および焼結IQ
(2)の表面に徐々に蓄積され、シリコン(Si)等の
還元性金属の通る障壁(中間層)となり、ドナーなる遊
離バリウムの生成が困難となるが、本発明の電子管陰極
では、電子放射物質(5)の中の酸化スカンジウム(財
)が次式に示すような反応を起こす。
Sing + 2BaO-4a, SiO, -・-・-・
・(4) The product of this reaction formula, barium silicate (Ba!5i04), is a product of the base metal (1) and the sintered IQ
(2) gradually accumulates on the surface of barium and becomes a barrier (intermediate layer) through which reducing metals such as silicon (Si) pass, making it difficult to generate free barium as a donor. However, in the electron tube cathode of the present invention, electron emission Scandium oxide in substance (5) causes a reaction as shown in the following formula.

Sc、O,+1 oNi→zscNi + 30・・・
・・・・・・(5)9Ba、S i04+168d’J
i、→4Ba、5c40.+ 6Ba + 98i +
5oNi・・−・<8)このように、バリウムシリケイ
ト(Ba、Sin、)は酸化スカンジウム(Sc、Oρ
とニッケル(Ni )とにより分解されるので、電子放
射物質(5)と基体金[(1)あるいは焼結ノー(6)
との界面で蓄積されない。
Sc, O, +1 oNi→zscNi + 30...
・・・・・・(5) 9Ba, S i04+168d'J
i, →4Ba, 5c40. + 6Ba + 98i +
5oNi...<8) In this way, barium silicate (Ba, Sin, ) is scandium oxide (Sc, Oρ
and nickel (Ni).
does not accumulate at the interface with

従って、従来の陰極のようにバリウムシリケイトなどの
反応生成物が基体金属や焼結層の表面に蓄積して還元性
金属の通る障壁となり、還元反応が次第に遅くなり、ド
ナーとなる遊離バリウムの生成が困難となることはない
。このように、高抵抗値の中間層がなく、また焼結層に
よる、基体金属と電子放射面間との導電性の向上、更に
、電子放射物質全域での遊離バリウムの生成作用などで
陰極を長時間に渡って高電流密度で作動させることがで
きた。
Therefore, as in conventional cathodes, reaction products such as barium silicate accumulate on the surface of the base metal or sintered layer and act as a barrier for reducing metals to pass through, gradually slowing down the reduction reaction and producing free barium as a donor. is not difficult. In this way, there is no intermediate layer with a high resistance value, the sintered layer improves the conductivity between the base metal and the electron emitting surface, and the generation of free barium in the entire area of the electron emitting material makes it possible to improve the cathode. It was possible to operate at high current densities for long periods of time.

第2図は、電子放射電流の劣化状態を調べるため600
0時間の寿命試験を行った結果である。この寿命試験で
は、電流密度5A/dの高電流密度で動作させた。この
図に於て、■旧よ、この発明の陰極の特性を示すもので
、焼結層の中に、3%の酸化スカンジウムを分散させた
電子放射物質を充填したものである。四は、第5図に示
す従来の陰極で、電子放射物質層に3%の酸化スカンジ
ウムを分散したもの、嬶は、第3図に示す従来の酸化物
陰極の特性を示す。この図から明らかなように、本発明
の電子管陰極は6000時間後、初期値の80%に特性
が保たれ、寿命時間で表せば従来の陰極に比べて3〜6
倍の長寿命が得られた。
Figure 2 shows the 600mm
These are the results of a 0 hour life test. In this life test, the device was operated at a high current density of 5 A/d. This figure shows the characteristics of the cathode of the present invention, in which a sintered layer is filled with an electron-emitting material in which 3% scandium oxide is dispersed. 4 is the conventional cathode shown in FIG. 5, in which 3% scandium oxide is dispersed in the electron emitting material layer; 4 shows the characteristics of the conventional oxide cathode shown in FIG. 3; As is clear from this figure, the characteristics of the electron tube cathode of the present invention were maintained at 80% of the initial value after 6000 hours, and in terms of life time, compared to the conventional cathode, the characteristics were maintained at 80% of the initial value.
A lifespan twice as long was obtained.

尚、実施例では、酸化スカンジウムの電子放射物質中へ
の分散量が3%のもので説明したが、分散量は0.1%
〜20%の間であれば効果があった。
In the example, the amount of dispersion of scandium oxide in the electron emitting material was 3%, but the amount of dispersion was 0.1%.
It was effective if it was between ~20%.

0.1%以下の場合は寿命特性の向上が得られず、又、
20%以上にすると初期の電子放射特性が劣化した。
If it is less than 0.1%, no improvement in life characteristics can be obtained;
When the amount exceeded 20%, the initial electron emission characteristics deteriorated.

〔発明の効果〕〔Effect of the invention〕

この発明は以上も述べたように、少なくともシリコンを
還元性金属として含有する基体金属の上に、更に、シリ
コンを少なくとも還元性金属として含有する焼結金属層
を設け、この焼結層の中に酸化スカンジウムを分散させ
た電子放射物質を充填させた構成で、長時間(こ渡って
高電流密度動作させても寿命が長いという効果を奏する
As described above, the present invention further provides a sintered metal layer containing at least silicon as a reducing metal on a base metal containing at least silicon as a reducing metal, and in this sintered layer. The structure is filled with an electron-emitting material in which scandium oxide is dispersed, and it has a long lifespan even when operated at high current density for long periods of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の電子管陰極の一実施例を示す概略断
面図、第2図は電子放射特性の比較図、第3図は酸化物
陰極の構成を説明するための概略断面図、第4図は酸化
物陰極の作用を説明するための部分拡大断面図、第5図
、第6図は従来の電子管陰極の一例を示す概略断面図で
ある。 図に於て、(1)は基体金属、(6)は焼結層、Q5]
)はアルカリ土類金属酸化物、←4は酸化スカンジウム
、(5)は電子放射物質である。 なお、各図中、同一符号は同一または相当部分を示゛す
FIG. 1 is a schematic sectional view showing one embodiment of an electron tube cathode of the present invention, FIG. 2 is a comparison diagram of electron emission characteristics, FIG. 3 is a schematic sectional view for explaining the structure of an oxide cathode, The figure is a partially enlarged sectional view for explaining the action of an oxide cathode, and FIGS. 5 and 6 are schematic sectional views showing an example of a conventional electron tube cathode. In the figure, (1) is the base metal, (6) is the sintered layer, Q5]
) is an alkaline earth metal oxide, ←4 is scandium oxide, and (5) is an electron emitting substance. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] ニッケルを主成分とし、少なくともシリコンを含有する
基体に、少なくともシリコンを含有し、主成分がニッケ
ルからなる粒子の焼結層を被着形成しこの焼結層の中に
バリウムを含むアルカリ土類金属酸化物と0.1〜20
重量%の酸化スカンジウムを分散した電子放射物質を充
填したことを特徴とする電子管陰極。
An alkaline earth metal whose main component is nickel and which forms a sintered layer of particles whose main component is nickel on a substrate which contains at least silicon and which contains barium in the sintered layer. Oxide and 0.1-20
An electron tube cathode characterized in that it is filled with an electron emitting material in which a weight percent of scandium oxide is dispersed.
JP62300667A 1987-11-27 1987-11-27 Electronic tube cathode Pending JPH01143116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62300667A JPH01143116A (en) 1987-11-27 1987-11-27 Electronic tube cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62300667A JPH01143116A (en) 1987-11-27 1987-11-27 Electronic tube cathode

Publications (1)

Publication Number Publication Date
JPH01143116A true JPH01143116A (en) 1989-06-05

Family

ID=17887621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62300667A Pending JPH01143116A (en) 1987-11-27 1987-11-27 Electronic tube cathode

Country Status (1)

Country Link
JP (1) JPH01143116A (en)

Similar Documents

Publication Publication Date Title
US5122707A (en) Cathode in a cathode ray tube
JPS645417B2 (en)
JPH01143116A (en) Electronic tube cathode
JPH0778550A (en) Oxide cathode
US5982083A (en) Cathode for electron tube
US6181058B1 (en) Cathode in electron tube with actinoid metal(s) or compound(s) thereof
JPH0318287B2 (en)
JPH01307134A (en) Impregnated cathode
JPH0690906B2 (en) Electron tube cathode
JP2730260B2 (en) Cathode for electron tube
JPS62198029A (en) Electron tube cathode
KR100269360B1 (en) Cathode Structure for Cathode Ray Tube
JPH05250981A (en) Impregnation type cathode and its manufacturing thereof
JPS5949131A (en) Electron tube cathode
JPH07169384A (en) Impregnated type cathode for cathoe-ray tube
JPH0821308B2 (en) Electron tube cathode
JPH03127427A (en) Electron tube cathode
JPS6290821A (en) Cathode for electron tube
US6641450B2 (en) Method of making a cathode for an electron tube
JPS6290819A (en) Cathode for electron tube
KR20000073263A (en) cathode for CRT
JPH0787069B2 (en) Electron tube cathode
JPS63285839A (en) Electron tube cathode
KR19990050870A (en) Cathode Structure for Cathode Ray Tube
JPH0734345B2 (en) Method of manufacturing cathode for electron tube