JPH01142419A - Flame detecting method - Google Patents

Flame detecting method

Info

Publication number
JPH01142419A
JPH01142419A JP29971787A JP29971787A JPH01142419A JP H01142419 A JPH01142419 A JP H01142419A JP 29971787 A JP29971787 A JP 29971787A JP 29971787 A JP29971787 A JP 29971787A JP H01142419 A JPH01142419 A JP H01142419A
Authority
JP
Japan
Prior art keywords
flame
absence
flickering
ratio
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29971787A
Other languages
Japanese (ja)
Other versions
JPH076838B2 (en
Inventor
Ichizo Tagami
田上 市造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP62299717A priority Critical patent/JPH076838B2/en
Publication of JPH01142419A publication Critical patent/JPH01142419A/en
Publication of JPH076838B2 publication Critical patent/JPH076838B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Control Of Combustion (AREA)

Abstract

PURPOSE:To ensure the detection of the presence or absence of a flame, by obtaining the high frequency component of the flickering of first burning zone of the flame and the low frequency component of the flickering at the tip of the flame. CONSTITUTION:The flickering of light emitted from a first burning zone 3 in an own flame 2 of a burner 1 is detected with a high-pass filter 10. The flickering of light emitted from a tip part 4 of the same flame is detected with a low-pass filter 12. The ratio between the detected component is obtained with a divider 14. Thus a flicker ratio R15, at which the effects of a counter flame and a black skirt are hard to receive, is obtained. A microcomputer 6 judges the presence or absence of the flame based on the flicker ratio R15. Thus, the effects of the counter flame, a neighboring flame, the black skirt of the own flame and the like, which easily cause erroneous detection, can be prevented. Therefore, the presence or absence of the flame can be positively detected.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、火力発電設備や工業炉設備に使われるバーナ
の火炎などを検知する火炎検知方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a flame detection method for detecting burner flames used in thermal power generation equipment and industrial furnace equipment.

[従来の技術] 火力発電設備などにおける火炉には多数のバーナが設け
られており、バーナの点火の確認を運転者が目視によっ
て行っている。しかし、多数のバーナがある場合、炉壁
の小さな窓から覗いても、目視による火炎のちらつきの
識別限界は16H2で炎の特徴を識別する能力がないの
で、観測しているバ=すの自交なのか、対向炎なのか、
あるいは隣接炎なのか区別がつかないことが多い。この
ため、バーナの1本1本について点火・消火動作により
火炎を目視で確認し、不具合がなければ全てのバーナを
一斉に点火し、その際には目視による確認をしないよう
にしている。しかし、このような方法では、非常な手間
と時間と無駄な燃料を要するばかりでなく、最終状態の
火炎の有無の確認ができない。
[Prior Art] A furnace in a thermal power generation facility or the like is provided with a large number of burners, and an operator visually checks whether the burners are ignited. However, when there are many burners, even if you look through a small window in the furnace wall, the limit for visual recognition of flame flickering is 16H2, so there is no ability to discern the characteristics of the flame, so the observation Is it an intersection or an opposing flame?
It is often difficult to tell whether it is an adjacent inflammation or an adjacent inflammation. For this reason, the flame is visually checked by igniting and extinguishing each burner, and if there is no problem, all burners are ignited at the same time, without visual confirmation. However, such a method not only requires a great deal of effort, time, and wasted fuel, but also makes it impossible to confirm the presence or absence of flame in the final state.

そこで、従来、火炎からの可視・近赤外光を測定して火
炎の有無を検知する火炎検知器が提案されている。この
可視・近赤外型の火炎検知器では、火炎の一次燃焼帯の
ちらつきの高周波数成分を抽出し、−次燃焼帯の高周波
数成分を火炎有無の判別指標としている。
Therefore, flame detectors have been proposed that detect the presence or absence of flame by measuring visible and near-infrared light from flame. This visible/near-infrared flame detector extracts the high frequency component of flickering in the primary combustion zone of the flame, and uses the high frequency component of the -order combustion zone as an indicator for determining the presence or absence of a flame.

[発明が解決しようとする問題点] ところが、ボイラなどのように多数のバーナが存在する
場合、火炎検知器を設置して炉内を見るときにバーナ部
から火炎先端部を見る配置しか許されないことが多く、
視野内にはそのバーナの自失のブラックスカート(バー
ナから一次燃焼帯までの未燃域)や対向炎や隣接炎も入
る。しかし、対向炎からの光が入ったり、ブラックスカ
ートがあると、指標となる一次燃焼帯のちらつきの検知
信号量が変わってしまう。しかも、対向炎や隣接炎の影
響はボイラの負荷状態により時々刻々に変わるものであ
り、ブラックスカートの発生状態も1ケ月に数回実施す
るバーナの潰砕によって周期的に変化する。このように
、判別指標が不安定であるため、確実な火炎検知は困難
であると共に1、判定基準の採り方をその都度調整しな
ければならず煩わしい。また、隣接炎が視野内にちらつ
くと、判定基準を決めるための高周波数成分の統計デー
タを著しくばらつかせるので、判定精度が落ちてしまう
[Problems to be solved by the invention] However, in cases where there are many burners such as in a boiler, the only arrangement that is permissible is to install a flame detector so that the tip of the flame can be seen from the burner part when looking inside the furnace. Often,
The burner's unburned black skirt (unburned area from the burner to the primary combustion zone), opposing flames, and adjacent flames are also included in the field of view. However, if light from an opposing flame enters or there is a black skirt, the amount of the detection signal for flickering in the primary combustion zone, which serves as an indicator, will change. Furthermore, the influence of opposing flames and adjacent flames changes from moment to moment depending on the load condition of the boiler, and the state of black skirt occurrence also changes periodically due to burner crushing, which is carried out several times a month. As described above, since the discrimination index is unstable, it is difficult to reliably detect a flame, and the determination criteria must be adjusted each time, which is cumbersome. Further, if adjacent flames flicker within the field of view, the statistical data of high frequency components used to determine the determination criteria will vary significantly, resulting in a decrease in determination accuracy.

本発明の目的は、上記の従来技術の問題点を解消し、誤
検知の原因となる対向炎、隣接炎、自交のブラックスカ
ート、自失の大きさの影響を排除して、火炎の有無を確
実に検知することができる火炎検知方法を提供すること
にある。
The purpose of the present invention is to solve the above-mentioned problems of the prior art, eliminate the effects of opposing flames, adjacent flames, self-intersecting black skirts, and the size of self-loss that cause false detection, and detect the presence or absence of flames. An object of the present invention is to provide a flame detection method that can reliably detect flames.

[問題点を解決するための手段] 本発明の火炎検知方法は、火炎の一次燃焼帯のちらつき
の高周波数成分を検出すると共に、火炎の先端部のちら
つきの低周波数成分を検出し、これら周波数成分の比に
基づいて火炎の有無を判別する。
[Means for Solving the Problems] The flame detection method of the present invention detects high-frequency components of flickering in the primary combustion zone of the flame, detects low-frequency components of flickering at the tip of the flame, and detects these high-frequency components of flickering at the tip of the flame. The presence or absence of flame is determined based on the ratio of the components.

本発明を実施するための装置例の基本構成を第1図の実
線で示す。
The basic configuration of an example of an apparatus for carrying out the present invention is shown by solid lines in FIG.

バーナ1の自失2は一次燃焼帯3と先端部4とからなり
、火炎検知器の集光器5はバーナ1の付近に、その光軸
6が一次燃焼帯3を介して先端部4を見るように設置さ
れる。集光器5が集光した光は光ファイバ7を介して光
電変換器8に導かれ、光電流9に変換される。光電流9
は高域フィルタ10、低域フィルタ12に導かれる。高
域フィルタ10を通過した光電流9の高周波数成分11
と低域フィルタ12を通過した光電流9の低周波数成分
13とは除算器14で除算され、高・低周波数成分の比
15がマイコン16に入力される。マイコン16ではこ
の比15に基づき自失2の有無を判別する。
The burner 1's self-distortion 2 consists of a primary combustion zone 3 and a tip 4, and a flame detector concentrator 5 is located near the burner 1, with its optical axis 6 looking through the primary combustion zone 3 and the tip 4. It will be installed like this. The light collected by the condenser 5 is guided to a photoelectric converter 8 via an optical fiber 7 and converted into a photocurrent 9. photocurrent 9
is guided to a high-pass filter 10 and a low-pass filter 12. High frequency component 11 of photocurrent 9 passed through high-pass filter 10
and the low frequency component 13 of the photocurrent 9 that has passed through the low pass filter 12 are divided by a divider 14, and the ratio 15 of the high and low frequency components is input to the microcomputer 16. Based on this ratio 15, the microcomputer 16 determines the presence or absence of self-destruction 2.

[作 用] バーナ1の自失2の前方には、第2図に示すように、対
向バーナ23の対向炎24が、また自失2の上下ないし
左右には隣接バーナ25の隣接炎26がある。従って、
光電流9は、集光器5に入射する自失2.対向炎24.
隣接炎26からの光を全て重畳したものである。
[Function] As shown in FIG. 2, in front of the self-destruction 2 of the burner 1, there are opposing flames 24 of the opposing burners 23, and above and below or on the left and right of the self-destruction 2 there are adjacent flames 26 of adjacent burners 25. Therefore,
The photocurrent 9 is incident on the condenser 5 due to the self-loss 2. Opposing flame 24.
All the lights from the adjacent flames 26 are superimposed.

自失と対向炎の特性を第3図に示す。横軸は周波数、縦
軸はちらつき割合である。ちらつき割合は、各周波数に
おけるちらつき強度を明るさの平均で割ったものである
。線29は一次燃焼帯の特性を示し、高周波域において
ちらつき割合が大きく、例えば150112においても
OH7のときの174程度のちらつきがある。このよう
に、高周波においてもちらつき割合が大きいのは、−次
燃焼帯では燃焼物質が分子レベルの大きさであり、物質
の生成・消滅が微妙なバランスを保って激しく変化して
いるためである。
Figure 3 shows the characteristics of self-destruction and opposing flames. The horizontal axis is the frequency, and the vertical axis is the flicker rate. The flicker rate is the flicker intensity at each frequency divided by the average brightness. Line 29 shows the characteristics of the primary combustion zone, and the flickering rate is large in the high frequency range, for example, even in 150112, there is a flicker of about 174 when OH7. The reason why the flickering rate is large even at high frequencies is that in the -order combustion zone, the size of the combustion substances is at the molecular level, and the creation and disappearance of substances changes rapidly while maintaining a delicate balance. .

これに対し、線30は火炎先端部の特性で、25H2程
度から急速にちらつき割合が小さくなり、150112
ではほとんど0になっている。これは、火炎先端部の燃
焼物質が炭酸ガスが還元されてできた炭素粒子であって
質量が大きく、敏速な状態変化が生じないためである。
On the other hand, line 30 shows the characteristics of the flame tip, and the flickering rate decreases rapidly from about 25H2, and
It's almost 0. This is because the combustion material at the tip of the flame is carbon particles produced by reducing carbon dioxide gas, has a large mass, and does not undergo rapid state changes.

線31は対向炎の特性であり、はとんど低周波域に限定
されている。これは、集光器より遠い対向発側では集光
器5の視野が広がり、局所的な変化をとらえることがで
きず平均的な明るさを検出することになると共に、化学
反応的にも不活発な対向炎の先端部を見るためである。
Line 31 is a characteristic of the opposing flame, and is mostly limited to the low frequency range. This is because the field of view of the condenser 5 widens on the opposite emission side that is far from the condenser, making it impossible to detect local changes and detecting average brightness. This is to see the leading edge of the active opposing flame.

ta32は0炎と対向炎とを合わせた総合特性であり、
縦軸近傍で急激に変化するが、そこから少し離れると一
定の傾向を示す。縦軸近傍の急激な変化部分は、平均輝
度であり、0炎の大きさ、対向炎の有無、ブラックスカ
ートの状態などで多様に変化し、火炎検知の判定指標と
はできない。しかし、一定の傾向部分、すなわち光電流
の直流信号を除いた領域から二つの周波数成分の比をと
ると、後述するように、検知妨害要因を排除できる。
ta32 is a comprehensive characteristic that combines 0 flame and opposing flame,
It changes rapidly near the vertical axis, but shows a constant trend a little further away from it. The sharply changing portion near the vertical axis is the average brightness, which varies variously depending on the size of the zero flame, the presence or absence of an opposing flame, the state of the black skirt, etc., and cannot be used as a judgment index for flame detection. However, by taking the ratio of the two frequency components from a certain trend area, that is, from a region excluding the DC signal of the photocurrent, detection interference factors can be eliminated, as will be described later.

第4図は集光器5前方の0炎などからなる光源33を枠
で表わし、そこから出て来る光の状況を模式図にしたも
のである。光源33を対向発成37と0炎の先端部域3
4と一次燃焼帯域35とブラックスカート域36との4
つの層ないし領域に分け、対向発成37の発光をLc、
0炎の先端部域34の発光を直流分Loと先端部ちらつ
き量L L 、−次燃焼帯域35の発光を一次燃焼帯ち
らつきILH、ブラックスカート域36の透過率をτと
する。集光器5に入る光電は対向炎集光量40と先端部
集光量38と一次燃焼帯集光ff139とからなり、こ
れらの集光口の合計りが光電流9に変換される。
FIG. 4 shows the light source 33 consisting of a zero flame in front of the condenser 5 as a frame, and is a schematic diagram of the state of the light emitted from the light source 33. The light source 33 emits an opposing light source 37 and the tip of the flame 3
4, the primary combustion zone 35, and the black skirt region 36.
The light emitted from the facing light emitting device 37 is divided into two layers or regions, Lc,
The light emission from the tip region 34 of the zero flame is the DC component Lo and the tip flickering amount L L , the light emission from the -order combustion zone 35 is the primary combustion zone flicker ILH, and the transmittance of the black skirt region 36 is τ. The photoelectric current entering the condenser 5 is composed of an opposing flame condensing amount 40, a tip condensing amount 38, and a primary combustion zone condensing ff139, and the sum of these condensing ports is converted into a photocurrent 9.

L=τ(Lc +LO+LL +LH)集光量の合計に
比例するような光電変換器8を用い、その光電流■9を
高域フィルタ10で抽出すると、高周波数成分の一次燃
焼帯ちらつき凹1、、11は、 IHl =τL+          ・・・(りとな
る。また、同様に低域フィルタ12で抽出される低周波
数成分の火炎先端部ちらつきflIL+13は、 ILI ”’τLL         ・・・(3)と
なる。IHI 、  ILIはいずれもブラックスカー
トの影響τおよび火炎の大きさの影WL+、LLを受け
るが、ちらつきがほとんどない対向炎の影響は受けない
。これらの比(フリッカレシオ)R15は、 となり、ブラックスカートの影響τが消え、更に火炎の
大きさの大小に応じてLH、LLも増減するという相似
関係があることから、比例L+/LLをとることにより
火炎の大きさの影響も消える。従って、フリッカレシオ
Rにはブラックスカート、火炎の大きさ、対向炎の影響
が取り除かれている。
L = τ (Lc + LO + LL + LH) Using a photoelectric converter 8 that is proportional to the total amount of light condensed, and extracting the photocurrent ■9 with a high-pass filter 10, the primary combustion zone flickering concavity 1 of the high frequency component, 11 is IHl = τL+ (3).Furthermore, the flame tip flicker flIL+13 of the low frequency component extracted by the low-pass filter 12 is ILI'''τLL (3). Both IHI and ILI are affected by the influence τ of the black skirt and the shadows WL+ and LL of the flame size, but they are not affected by the opposing flame, which has almost no flicker.The ratio of these (flicker ratio) R15 is: The influence of the skirt τ disappears, and since there is a similar relationship in which LH and LL also increase or decrease depending on the size of the flame, the influence of the flame size also disappears by taking the proportionality L+/LL.Therefore, The effects of black skirt, flame size, and opposing flames are removed from the flicker ratio R.

LHやLLはLoに比べてはるかに小さい値であるので
、光電変換器8を対数特性とすると、近火的に次の(5
)式の光電流■9が得られる。
Since LH and LL are much smaller values than Lo, if the photoelectric converter 8 has logarithmic characteristics, the following (5
) photocurrent (2) is obtained.

従って、−次燃焼帯ちらつき!t I+z 11はとな
り、火炎先端部ちらつきff1l  13はとなる。
Therefore, -th combustion zone flicker! t I+z 11 becomes, and the flame tip flickering ff1l 13 becomes.

IH2+  ILHのいずれも対向炎の彰WLCを受け
るが、Loで割っていることから火炎の大きさの影響は
少なくなる。この場合もフリッカレシオR15は(4)
式と同じになり、対向炎の彰Ml L cが消える。
Both IH2+ and ILH receive Akira WLC from opposing flames, but since they are divided by Lo, the influence of the flame size is reduced. In this case as well, the flicker ratio R15 is (4)
It becomes the same as the formula, and the opposing flame Akira Ml L c disappears.

なお、−次燃焼帯の周波数に合わせた1個のバンドパス
フィルタで信号処理する従来の方法では、(2)式また
は[F])式までの処理が限界であり、(2)式ではブ
ラックスカートの影響τが、また[F])式では対向炎
の影?n L cが残っていることがわかる。
In addition, in the conventional method of signal processing using one band-pass filter matched to the frequency of the -th order combustion zone, processing up to equation (2) or [F]) is the limit; The effect of the skirt τ is also the shadow of the opposing flame in the [F]) equation? It can be seen that n L c remains.

次に、マイコン16においてフリッカレシオR15から
火炎有無の検知を判別する方法を第6図を用いて説明す
る。第6図はフリッカレシオRの値の分布の時々朗々の
変化を示している。
Next, a method for determining the presence or absence of flame from the flicker ratio R15 in the microcomputer 16 will be described with reference to FIG. FIG. 6 shows the sometimes dramatic changes in the distribution of flicker ratio R values.

分布46は自交のない状態のときのものであり、分布4
8.49は自交のある状態のときのものである。実線5
0は分布の平均値を示し、点線47は自交がない場合の
分布46の平均値である。
Distribution 46 is for a state without self-intersection, and distribution 4
8.49 is for a state with self-intersection. solid line 5
0 indicates the average value of the distribution, and the dotted line 47 is the average value of the distribution 46 when there is no intersection.

時刻51において自交が点火されると、分布46から分
布48へとフリッカレシオRの分布は明確に変化する。
When the autocross is fired at time 51, the distribution of flicker ratio R clearly changes from distribution 46 to distribution 48.

その後も炉の負荷変動や対向炎の点火・消火等によって
フリッカレシオRの分布は変化し続け、分布49に至っ
ている。フリッカレシオRの新しいサンプル値が分布4
6に近いのか、分布49に近いのかを確率計算して、現
在、火炎が有るのか無いのか判定する。
After that, the distribution of the flicker ratio R continues to change due to changes in the furnace load, ignition/extinguishing of the opposing flame, etc., and reaches a distribution of 49. The new sample value of flicker ratio R is distributed 4
The probability is calculated as to whether the distribution is close to 6 or 49, and it is determined whether there is currently a flame or not.

[実施例] 以下に本発明の実施例を図面を用いて説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明を実施するための装置例を示す。FIG. 1 shows an example of an apparatus for carrying out the invention.

図中、実線で示す基本構成では、上述したように、−次
燃焼帯3の発光のちらつきを例えば150 Hzバンド
パスに設定した高域フィルタ10で検知し、火炎先端部
4の発光のちらつきを例えば25 II Zバンドパス
に設定した低域フィルタ12で検知して、両ちらつきの
比をとり、対向炎やブラックスカートの影響を受けにく
いフリッカレシオR15を得て、第6図に示すような統
計的分布の推移から火炎の有無を検知する判定精度の高
い検知方法を採用している。以下では、より確実な火炎
検知を行なうための補助構成(破線で示す)について説
明する。
In the basic configuration shown by the solid line in the figure, as described above, the flicker of the light emitted from the -order combustion zone 3 is detected by the high-pass filter 10 set to, for example, a 150 Hz bandpass, and the flicker of the light emitted from the flame tip 4 is detected. For example, it is detected by the low-pass filter 12 set to 25 II Z bandpass, and the ratio of both flickers is calculated to obtain the flicker ratio R15, which is less susceptible to the effects of opposing flames and black skirts, and the statistics shown in Figure 6 are calculated. A highly accurate detection method is used to detect the presence or absence of flame based on changes in the distribution of flames. Below, an auxiliary configuration (indicated by a broken line) for more reliable flame detection will be described.

空気を過剰に送入する燃焼では、ブラックスカートは発
生せず、透明度の高い火炎となるので、対向炎だけが検
知の防害になる。このような火炎には、主バーナに火を
つけるための点火トーナの火炎がある。一方、空気を不
足気味に送入する燃焼では、火炎が大きく伸びて透明度
が悪く、対向炎は問題とならないが、ブラックスカート
が発生しやすい。このような火炎は主バーナの火炎であ
る。
Combustion that introduces too much air does not produce a black skirt and produces a highly transparent flame, so only opposing flames can be detected. Such flames include the ignition toner flame for igniting the main burner. On the other hand, in combustion where insufficient air is supplied, the flame is elongated greatly and transparency is poor, and although facing flames are not a problem, black skirts are likely to occur. Such a flame is the main burner flame.

第1図に示すように、−次燃焼帯のちらつき恒11が分
岐径路22を介してマイコン16に、また光電流9が分
岐径路17を介してマイコン16にそれぞれ入力される
。マイコン16ではこれら入力より(2)式のIl、I
lと6ン式のIf−12を算出して火炎有無の補助的な
判別指標とする。即ち、(4)式のフリッカレシオRの
指標と合わせて三つの指標により火炎を判別分析するこ
とで、より正確な判断ができる。例えば、空気過剰の燃
焼では、対向炎の発光Lcが問題となりrH2が影響を
受けやすく、空気不足の燃焼ではブラックスカートの透
過率τが問題となり1stが影響を受けやすい。
As shown in FIG. 1, the flicker constant 11 of the negative combustion zone is input to the microcomputer 16 via a branch path 22, and the photocurrent 9 is input to the microcomputer 16 via a branch path 17. The microcomputer 16 uses these inputs to calculate Il and I in equation (2).
1 and 6-type If-12 are calculated and used as an auxiliary discrimination index for the presence or absence of flame. That is, more accurate judgment can be made by discriminating and analyzing the flame using the three indicators together with the flicker ratio R indicator in equation (4). For example, in combustion with excess air, the light emission Lc of the opposing flame becomes a problem and rH2 is likely to be affected, and in combustion with insufficient air, the transmittance τ of the black skirt becomes a problem and the 1st is likely to be affected.

隣接炎26が集光器5の視野に入ったりすると、光電流
9が乱れる。自交2がある場合は、この乱れは小さいが
、自交2がない場合は大きい。第5図は自交がない場合
の明るさLの変化の状況を示す。明るさLの長時間平均
値の変化は線19のようになり、明るさLの瞬時値は線
17のようになる。瞬時値が平均値を下わる状態をハツ
チング43で示す。ハツチング43で示す期間が全期間
の50%程度になるのが隣接炎の特徴であり、これを検
知することで自交2がないのを判定することができる。
If an adjacent flame 26 enters the field of view of the condenser 5, the photocurrent 9 will be disturbed. This disturbance is small when there is a self-intersection 2, but large when there is no self-intersection 2. FIG. 5 shows how the brightness L changes when there is no self-intersection. The long-term average value of brightness L changes as shown by line 19, and the instantaneous value of brightness L changes as shown by line 17. A hatching 43 indicates a state in which the instantaneous value is below the average value. It is a characteristic of adjacent flames that the period indicated by hatching 43 is about 50% of the total period, and by detecting this, it can be determined that there is no self-intersection 2.

第1図において、平滑フィルタ18によって光電流9の
長時間平均fU19を得ると共に、比較器20で瞬時値
である光電流9と長時間平均値19が比較され、光電流
9が長時間平均値19より下まわると信号(途切れ信号
21)がマイコン16に入力される。マイコン16では
途切れ信号21の発生期間と全計測時間の比を算出して
所定のしきい値と比較する。これにより自交のないこと
が確認できるが、自交があることは確認できず、前述の
フリッカレシオRによる判定を必要とする。
In FIG. 1, the smoothing filter 18 obtains the long-term average fU19 of the photocurrent 9, and the comparator 20 compares the instantaneous value of the photocurrent 9 with the long-term average value 19. When the value falls below 19, a signal (interruption signal 21) is input to the microcomputer 16. The microcomputer 16 calculates the ratio between the generation period of the discontinuous signal 21 and the total measurement time and compares it with a predetermined threshold. Although it is possible to confirm that there is no self-crossing by this, it is not possible to confirm that there is self-crossing, and a determination based on the above-mentioned flicker ratio R is required.

第6図における分布46.48.49は時々刻々の統計
であると共に判定基準でもある。従って、統計に採用す
るデータは良質なものである必要がある。径路17から
得られる光電流9が異常に低下したり、途切れ信号21
により隣接炎が確認された場合には、自交がないことが
明らかであり、このような場合のサンプリングデータは
ばらつきが大きく、統計に算入すると微妙な判定を行な
うための基準の精度を落す。そこで、そのような場合の
サンプリングデータは統計に入れないようにする。
The distributions 46, 48, and 49 in FIG. 6 are not only momentary statistics but also judgment criteria. Therefore, the data used for statistics needs to be of high quality. If the photocurrent 9 obtained from the path 17 decreases abnormally or if the signal 21
When adjacent flames are confirmed, it is clear that there is no self-intersection, and the sampling data in such a case has large variations, and when included in statistics, the accuracy of the standard for making delicate judgments will be reduced. Therefore, sampling data in such cases should not be included in statistics.

[発明の効果] 本発明によれば次の効果がある。[Effect of the invention] According to the present invention, there are the following effects.

(1)  −次燃焼帯のちらつきの高周波数成分と火炎
先端部のちらつきの低周波数成分との比から火炎有無の
判別を行なうようにしているため、対向炎、隣接炎、自
交のブラックスカート自発の大きさなどの誤検知の原因
となる影響を排除するこ−とができ、火炎の有無を確実
に検知できる。従って、点火の確認を完全自動化するこ
とができ、運転者による点火の目視確認による不具合を
解消できると共に、ボイラや工業炉における安全運転の
ための燃焼監視の信頼性を向上できる。
(1) - Since the presence or absence of a flame is determined from the ratio of the high frequency component of the flicker in the secondary combustion zone to the low frequency component of the flicker at the flame tip, it is possible to determine whether there is a flame or not, so the presence or absence of a flame is determined based on the ratio of the high frequency component of the flicker in the secondary combustion zone to the low frequency component of the flicker at the flame tip. It is possible to eliminate influences that cause false detection, such as the size of spontaneous combustion, and to reliably detect the presence or absence of flame. Therefore, ignition confirmation can be completely automated, problems caused by visual confirmation of ignition by an operator can be eliminated, and the reliability of combustion monitoring for safe operation in boilers and industrial furnaces can be improved.

(b また、集光器で集光した光の信号処理の改良によ
り従来の火炎検知器の欠点を除去しているため、本発明
方法を実施する装置の製造は容易であり、また既存の火
炎検知器にわずかな改造を加えるだけで本発明を実現で
きる。
(b) Furthermore, since the drawbacks of conventional flame detectors have been eliminated by improving the signal processing of the light focused by the condenser, it is easy to manufacture a device that implements the method of the present invention, and The present invention can be implemented with only slight modifications to the detector.

【図面の簡単な説明】 第1図は本発明の火炎検知方法を実施するための装置の
一例を示す構成図、第2図は集光器の視野に見える火炎
の状態を示す図、第3図、第4図、第5図は火炎の光学
特性を示す図、第6図は火炎有無の判別方法を説明する
ための説明図である。 図中、1はバーナ、2は0炎、3は一次燃焼帯、4は先
端部、5は集光器、6は光電変換器、10は高域フィル
タ、12は低域フィルタ、14は除算器、16はマイコ
ン、24は対向炎、26は隣接炎である。 特許出願人 石川島播磨重工業株式会社代理人弁理士 
絹  谷  信  雄 第1図 第2図 第3図 第4図
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a configuration diagram showing an example of an apparatus for carrying out the flame detection method of the present invention, Fig. 2 is a diagram showing the state of flame visible in the field of view of the condenser, and Fig. 3 is a diagram showing the state of the flame as seen in the field of view of the condenser. 4 and 5 are diagrams showing the optical characteristics of a flame, and FIG. 6 is an explanatory diagram for explaining a method for determining the presence or absence of a flame. In the figure, 1 is the burner, 2 is the zero flame, 3 is the primary combustion zone, 4 is the tip, 5 is the condenser, 6 is the photoelectric converter, 10 is the high-pass filter, 12 is the low-pass filter, and 14 is the division 16 is a microcomputer, 24 is an opposing flame, and 26 is an adjacent flame. Patent applicant: Patent attorney representing Ishikawajima-Harima Heavy Industries Co., Ltd.
Nobuo KinuyaFigure 1Figure 2Figure 3Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)火炎の一次燃焼帯のちらつきの高周波数成分を検
出すると共に、火炎の先端部のちらつきの低周波数成分
を検出し、これら周波数成分の比に基づいて火炎の有無
を判別するようにしたことを特徴とする火炎検知方法。
(1) The high frequency component of flickering in the primary combustion zone of the flame is detected, as well as the low frequency component of flickering at the tip of the flame, and the presence or absence of flame is determined based on the ratio of these frequency components. A flame detection method characterized by:
(2)上記周波数成分の比に基づき火炎の有無を判別す
るに際して、火炎有無の補助的な判別指標として、火炎
の一次燃焼帯および先端部からの光量の対数に比例する
信号の高周波数成分と、上記光量に比例する信号の高周
波数成分とを用いるようにした特許請求の範囲第1項記
載の火炎検知方法。
(2) When determining the presence or absence of a flame based on the ratio of the frequency components mentioned above, the high frequency component of the signal proportional to the logarithm of the amount of light from the primary combustion zone and the tip of the flame is used as an auxiliary indicator for determining the presence or absence of a flame. , and a high frequency component of the signal proportional to the amount of light.
(3)上記周波数成分の比に基づき火炎の有無を判別す
るに際して、火炎有無の補助的な判別指標として、火炎
の一次燃焼帯および先端部からの光量の瞬間値が光量の
長周期変化値より下まわる時間の割合を用いるようにし
た特許請求の範囲第1項または第2項記載の火炎検知方
法。
(3) When determining the presence or absence of a flame based on the ratio of the frequency components mentioned above, the instantaneous value of the amount of light from the primary combustion zone and tip of the flame is compared with the long-term change value of the amount of light as an auxiliary indicator for determining the presence or absence of a flame. 3. The flame detection method according to claim 1, wherein the flame detection method uses the proportion of time during which the flame is detected.
JP62299717A 1987-11-30 1987-11-30 Flame detection method Expired - Lifetime JPH076838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62299717A JPH076838B2 (en) 1987-11-30 1987-11-30 Flame detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299717A JPH076838B2 (en) 1987-11-30 1987-11-30 Flame detection method

Publications (2)

Publication Number Publication Date
JPH01142419A true JPH01142419A (en) 1989-06-05
JPH076838B2 JPH076838B2 (en) 1995-01-30

Family

ID=17876119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299717A Expired - Lifetime JPH076838B2 (en) 1987-11-30 1987-11-30 Flame detection method

Country Status (1)

Country Link
JP (1) JPH076838B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2338061A (en) * 1998-06-02 1999-12-08 Hochiki Co Fire detection device
CN113340412A (en) * 2020-02-18 2021-09-03 阿自倍尔株式会社 Light detection system and discharge probability calculation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2338061A (en) * 1998-06-02 1999-12-08 Hochiki Co Fire detection device
GB2338061B (en) * 1998-06-02 2003-07-16 Hochiki Co Flame detection device and flame detection method
CN113340412A (en) * 2020-02-18 2021-09-03 阿自倍尔株式会社 Light detection system and discharge probability calculation method

Also Published As

Publication number Publication date
JPH076838B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
JP3143500B2 (en) Flame analyzer and method for determining flame characteristics
CN103256620B (en) Multi-information-fusion intelligent flame detecting device and detecting method thereof
US3824391A (en) Methods of and apparatus for flame monitoring
US4866420A (en) Method of detecting a fire of open uncontrolled flames
JPS5944519A (en) Diagnostics of combustion state
DE2611763C2 (en) Flame supervision circuit
US4051375A (en) Discriminating flame detector
US5191220A (en) Flame monitoring apparatus and method having a second signal processing means for detecting a frequency higher in range than the previously detected frequencies
US3936648A (en) Flame monitoring apparatus
JPH01142419A (en) Flame detecting method
CN206292939U (en) A kind of spectrum flame detector based on flicker frequency
JPH0979571A (en) Combustion monitor sensor and air ratio control method of combustor using the sensor
JP3524412B2 (en) Burner combustion diagnostic device
JP2622382B2 (en) Flame detector
CN2411479Y (en) Device for detecting boiler flame using infrared light
JP3059229B2 (en) Combustion diagnostic device
Willson et al. Pulverised fuel flame monitoring in utility boilers
CN214370354U (en) Flame detector
GB2132342A (en) Discrimination between flames of different fuels
KR100919426B1 (en) Apparatus for detecting onset of slag entrainment in a molten metal stream and method thereof
GB2261944A (en) Flame monitoring apparatus and method
JPS61240027A (en) Flame detector
JP3083623B2 (en) Burner tip nozzle blockage detection device and detection method
JP3140540B2 (en) Boiler flame detector
JPH0472126B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term