JPH01142079A - Production of rare earth metal alloy target - Google Patents

Production of rare earth metal alloy target

Info

Publication number
JPH01142079A
JPH01142079A JP30388787A JP30388787A JPH01142079A JP H01142079 A JPH01142079 A JP H01142079A JP 30388787 A JP30388787 A JP 30388787A JP 30388787 A JP30388787 A JP 30388787A JP H01142079 A JPH01142079 A JP H01142079A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
casting
earth metal
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30388787A
Other languages
Japanese (ja)
Inventor
Akio Kiyama
木山 晃男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP30388787A priority Critical patent/JPH01142079A/en
Publication of JPH01142079A publication Critical patent/JPH01142079A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the occurrence of casting defects such as cracks, cavities and holes, to suppress contamination and to reduce the concn. of oxygen in an alloy by casting a molten transition metal-rare earth metal alloy in a casting mold lined with iron foil. CONSTITUTION:A transition metal-rare earth metal alloy for forming a thin film is melted and cast in a casting mold lined with iron foil. This iron foil prevents the generation of gas which causes casting defects by the contact of the molten alloy with the mold and shrinks together with the molten alloy at the time of solidification to prevent cracking.

Description

【発明の詳細な説明】 (1)産業上の利用分野 本発明は、光磁気記録ディスク用の磁性薄膜をPVD法
によって形成する際に使用される希土類合金ターゲット
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of Industrial Application The present invention relates to a method for manufacturing a rare earth alloy target used when forming a magnetic thin film for a magneto-optical recording disk by a PVD method.

(2)従来の技術 近年、光磁気記録に対する関心が著しく高まって来てい
るが、光磁気記録は磁性材料に、光と磁場を当てる事に
よシ記録を行うものであシ、ディスク面上に形成された
、磁性薄膜が利用される。
(2) Conventional technology In recent years, interest in magneto-optical recording has increased significantly. Magneto-optical recording is a method of recording by exposing a magnetic material to light and a magnetic field. A magnetic thin film formed in

このよう左、磁性薄膜の材料としては遷移金属−希土類
系、たとえばFe −Gd 、 Fe −Tb等の二元
系、Fe −Co −Tb 、 Fe −Gd −Tb
等の三元系が有望とされている。
As shown on the left, materials for magnetic thin films include transition metal-rare earth systems, such as binary systems such as Fe-Gd and Fe-Tb, Fe-Co-Tb and Fe-Gd-Tb.
The ternary system is considered to be promising.

光磁気ディスクの製造は、合成樹脂などの円形基盤の表
面に上記の磁性薄膜材料をPVD法によ多形成させる。
To manufacture a magneto-optical disk, the above-mentioned magnetic thin film material is formed on the surface of a circular base made of synthetic resin or the like using a PVD method.

PVD法としては、スパッター装置によシ成膜するのが
一般的であり、これは、真空容器中に磁成薄膜の組成に
ほぼ等しい組成の合金ターゲットを設置し、このターゲ
ットと対向させて前記の円形基盤を設置する。
In the PVD method, it is common to form a film using a sputtering device, in which an alloy target with a composition approximately equal to that of the magnetic thin film is placed in a vacuum container, and the above-mentioned film is placed opposite to this target. A circular base will be installed.

そして、真空容器内にアルゴンガスを1O−2Torr
程度加え、高周波電流を流して放電させる。
Then, argon gas was introduced into the vacuum container at 1O-2 Torr.
In addition, a high frequency current is applied to discharge the battery.

放電によって生じたプラズマ中のアルゴンイオンを前記
合金ターゲットに衝突させ、この衝突エネルギーで遷移
金属と希土類をたたき出し、前記の円形基板に付着させ
る。この様に、PVD法を利用して磁性薄膜を基盤上に
形成するには合金ターゲットが必要である。
Argon ions in the plasma generated by the discharge collide with the alloy target, and the collision energy knocks out transition metals and rare earths, which are then deposited on the circular substrate. As described above, an alloy target is required to form a magnetic thin film on a substrate using the PVD method.

合金ターゲットはその製造法から鋳造ターゲットと焼結
ターゲットに分けられる。
Alloy targets can be divided into cast targets and sintered targets based on their manufacturing method.

(3)発明が解決するための問題点 従来、遷移金属−希土類系の合金は非常に脆く、量産に
適した大面積のターゲットを作る事は困難であシ、−度
鋳造した合金を粉末にして、成形焼結するという粉末冶
金法によシ、合金ターゲットを製造するのが一般的であ
った。
(3) Problems to be solved by the invention Conventionally, transition metal-rare earth alloys have been extremely brittle, and it has been difficult to make large-area targets suitable for mass production. It was common to manufacture alloy targets using the powder metallurgy method of shaping and sintering.

しかしながら、この粉末冶金法は希土類元素が著しく活
性であるため、汚染が大きく、不純物の少い良質のター
ゲットを得るのは困難であシ、工程が多いため、高コス
トであるという欠点があった。
However, this powder metallurgy method has the disadvantages of high contamination due to the extremely active rare earth elements, difficulty in obtaining a high-quality target with few impurities, and high cost due to the large number of steps. .

本発明は上述した様な従来の問題法゛に着目して行われ
たものであシ、鋳造法によシ割れのない汚染の少いしか
も鋳造欠陥のない遷移金属−希土類系合金ターグツトを
作る事を目的としている。
The present invention has been carried out by focusing on the above-mentioned conventional problem method, and uses a casting method to produce transition metal-rare earth alloy targants that are free from cracks, have little contamination, and are free from casting defects. is aimed at something.

(4)問題点を解決するだめの手段 この発明は、遷移金属−希土類系の薄膜形成用合金ター
ゲツト材ターケ゛ツトするに際して、鋳型の内側に鉄箔
を張ったものを使う事を特徴とする。
(4) Means for Solving the Problems The present invention is characterized by using a mold lined with iron foil when targeting a transition metal-rare earth alloy target material for forming thin films.

一般に遷移金属−希土類系合金は非常に脆く、通常の金
型や砂型に鋳込むと冷却時の熱応力で割れてしまい、割
れのない成形体を得るのは不可能であった。
In general, transition metal-rare earth alloys are very brittle, and when cast into a normal mold or sand mold, they crack due to thermal stress during cooling, making it impossible to obtain a crack-free molded product.

また、この種の合金は、活性が高く、かつ鋳造温度も高
いので、侵食に耐えられる鋳型材料は窒化ホウ素等、特
殊なものに限られている。
Furthermore, since this type of alloy has high activity and a high casting temperature, mold materials that can withstand corrosion are limited to special materials such as boron nitride.

本発明者らは、耐火断熱材の内側に鉄箔を張った鋳型を
作シ、これに遷移金属−希土類系合金を鋳込み割れ及び
鋳造欠陥がなく、しかも汚染の少い合金ターゲットを作
るのに成功した。本発明で言う耐火断熱材は、耐火温度
が合金の融点以上であれば何でも良いが、加工性の点か
ら、アルミナ繊維系が好ましい。耐火断熱材の厚さは、
厚過ぎると保温効果が犬きくなシ過ぎ、内側に張った金
属箔が溶解してしまい、金属箔を張った効果が無くなる
The present inventors created a mold with iron foil on the inside of a fireproof insulation material, and cast a transition metal-rare earth alloy into the mold to create an alloy target with no cracks or casting defects, and with less contamination. Successful. The refractory heat insulating material referred to in the present invention may be any material as long as its refractory temperature is equal to or higher than the melting point of the alloy, but from the viewpoint of workability, alumina fiber-based materials are preferred. The thickness of fireproof insulation is
If it is too thick, the insulation effect will be too weak, and the metal foil placed on the inside will melt, making the metal foil ineffective.

また本発明で使用する箔は、合金の成分金属で構成され
る金属又は合金が好ましく、入手し易さの点から鉄箔が
最適である。箔の厚さは、厚過ぎれば、強度が大で鋳造
後の冷却時の応力を緩和する事が出来ず、割れにっなが
シ、薄過ぎれば溶解して、溶湯が直接、断熱材に触れ、
箔を張った効果がなくなる。
Further, the foil used in the present invention is preferably a metal or an alloy composed of component metals of an alloy, and iron foil is most suitable from the viewpoint of easy availability. If the foil is too thick, the strength will be too high and it will not be able to alleviate the stress during cooling after casting, causing it to crack, while if it is too thin, it will melt and the molten metal will directly be applied to the insulation material. touch,
The effect of applying foil disappears.

(5)作 用 断熱材で出来た鋳型は、注湯した合金を徐冷し、割れを
防ぐ効果がある。しかし、断熱材の厚さが厚過ぎると保
温効果が大となって内側の金属箔を溶解してしまう。合
金の種類、ターゲツト材の大きさと形状、および注湯温
度にょシ、適当な厚さがちシ、実験的に決定する。
(5) Function A mold made of heat insulating material has the effect of slowly cooling the poured alloy and preventing cracking. However, if the thickness of the insulation material is too thick, the heat retention effect will be so great that it will melt the metal foil inside. The type of alloy, the size and shape of the target material, the pouring temperature, and the appropriate thickness are determined experimentally.

鉄箔は、溶湯と鋳型が接触してガスを発生し、鋳造欠陥
となるのを防ぐと共に、凝固時の収縮に追随して、割れ
の発生を防ぐ。
Iron foil prevents the molten metal from coming into contact with the mold and generating gas, which would cause casting defects, and also prevents cracks from occurring due to shrinkage during solidification.

(6)実施例 Fe −50’ wt% Gd合金600gを高周波溶
解炉でAr雰囲気中で溶解し、第1図に示す様な内径1
06瓢高さ20Wan肉厚3閣のアルミナ繊維系耐熱材
でできた型内に、0.5+mnの鉄箔を内張した鋳型に
鋳造した。鋳造温度は1450℃である。凝固後、合金
を取シ出してみると、鋳型内部に張った鉄箔は、合金の
表面に付着していたが溶解してはいなかった。
(6) Example 600 g of Fe-50' wt% Gd alloy was melted in an Ar atmosphere in a high-frequency melting furnace, and the inner diameter was 1 as shown in Fig. 1.
06 It was cast in a mold made of alumina fiber-based heat-resistant material with a height of 20W and a wall thickness of 3 mm and lined with 0.5+mm iron foil. The casting temperature is 1450°C. When the alloy was taken out after solidification, the iron foil that had been placed inside the mold had adhered to the surface of the alloy, but had not melted.

また、割れは見られず、巣、孔1等の鋳造欠陥も見られ
なかった。なお、鋳造後の合金の酸素濃度は600 p
pmであった。
Further, no cracks were observed, and no casting defects such as cavities or holes 1 were observed. The oxygen concentration of the alloy after casting was 600 p.
It was pm.

(7)効 果 本発明によれば、鋳造法で遷移金属−希土類系合金ター
グツトを製造する事が出来、このターゲットには、割れ
や巣、孔等の鋳造欠陥は見られない。また、汚染も少く
、合金中の酸素濃度も低い。
(7) Effects According to the present invention, a transition metal-rare earth alloy target can be manufactured by a casting method, and casting defects such as cracks, cavities, and holes are not observed in this target. Also, there is less contamination and the oxygen concentration in the alloy is low.

さらに、この発明は、反応性が大で、割れ易い金属又は
合金の鋳造には全て利用できる。
Furthermore, the present invention can be used for casting any metal or alloy that is highly reactive and easily cracked.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用する鋳型の一例を示す図である。 特許出願人  昭和電工株式会社 代理人弁理士  菊  地  精  −矢  口   
   平
FIG. 1 is a diagram showing an example of a mold used in the present invention. Patent Applicant Showa Denko K.K. Representative Patent Attorney Sei Kikuchi - Yaguchi
flat

Claims (1)

【特許請求の範囲】[Claims] 1、遷移金属−希土類系の薄膜形成用合金ターゲットを
製造するに際し、溶解した合金を、内側に鉄箔を張った
鋳型に鋳造する事を特徴とする希土類合金ターゲットの
製造方法
1. A method for producing a rare earth alloy target, which is characterized in that when producing a transition metal-rare earth alloy target for forming a thin film, a molten alloy is cast into a mold with iron foil lined inside.
JP30388787A 1987-11-30 1987-11-30 Production of rare earth metal alloy target Pending JPH01142079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30388787A JPH01142079A (en) 1987-11-30 1987-11-30 Production of rare earth metal alloy target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30388787A JPH01142079A (en) 1987-11-30 1987-11-30 Production of rare earth metal alloy target

Publications (1)

Publication Number Publication Date
JPH01142079A true JPH01142079A (en) 1989-06-02

Family

ID=17926466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30388787A Pending JPH01142079A (en) 1987-11-30 1987-11-30 Production of rare earth metal alloy target

Country Status (1)

Country Link
JP (1) JPH01142079A (en)

Similar Documents

Publication Publication Date Title
JPH0539566A (en) Sputtering target and its production
US4824481A (en) Sputtering targets for magneto-optic films and a method for making
KR100853743B1 (en) Sputtering Targets, Sputter Reactors, Methods of Forming Cast Ingots, and Methods of Forming Metallic Articles
CN103691912A (en) Gold base alloy casting blank melting and casting integrated device and utilization method thereof
CN108796304A (en) A kind of γ-TiAl prealloys gas-atomized powder electrode bar and preparation method thereof
JPS61139637A (en) Target for sputter and its manufacture
JP2004162179A (en) METHOD FOR MANUFACTURING SPUTTER TARGET CONSISTING OF Si-BASED ALLOY, SPUTTER TARGET OF THIS KIND, AND ITS USE
CN106011757B (en) A kind of casting method for preventing the brittle alloy as sputtering target material from cracking
JPH06142822A (en) Production of casting mold for casting high melting active metal
JPH01142079A (en) Production of rare earth metal alloy target
US20030168333A1 (en) Metal or metal alloy based sputter target and method for the production thereof
JP2008111163A (en) Sintering holder for rare-earth magnet, method for manufacturing sintering holder for rare-earth magnet, and method for producing rare-earth magnet
CN106011758A (en) Rare earth-transition metal rotation target for optical communication and magnetic storage coating and preparing method of rare earth-transition metal rotation target
JPS62274033A (en) Manufacture of rare earth-transition metal alloy target
JP4026767B2 (en) Co-Cr-Pt-B alloy sputtering target and method for producing the same
JPS6320153A (en) Production of alloy target
JPH0254760A (en) Manufacture of target
JP2568826B2 (en) Method of producing target for spattering
JPH0768611B2 (en) Method for manufacturing alloy target for sputtering
RU2103393C1 (en) Method of manufacturing targets from chromium and chromium-based alloys
JPS60244013A (en) Manufacture of magnetic material
JPS63130769A (en) Target material for base alloy for vapor deposition
CN116288196A (en) CoFeB target material and preparation method thereof
JP4614479B2 (en) Production of high purity alloy sputtering target
JPH01283303A (en) Production of target for magneto-optical recording medium