JPH01141582A - Gene-introducing device - Google Patents

Gene-introducing device

Info

Publication number
JPH01141582A
JPH01141582A JP62300476A JP30047687A JPH01141582A JP H01141582 A JPH01141582 A JP H01141582A JP 62300476 A JP62300476 A JP 62300476A JP 30047687 A JP30047687 A JP 30047687A JP H01141582 A JPH01141582 A JP H01141582A
Authority
JP
Japan
Prior art keywords
cell
high voltage
electrodes
cells
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62300476A
Other languages
Japanese (ja)
Inventor
Yasuo Nakane
中根 康雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP62300476A priority Critical patent/JPH01141582A/en
Publication of JPH01141582A publication Critical patent/JPH01141582A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/02Separators
    • B03C5/022Non-uniform field separators
    • B03C5/026Non-uniform field separators using open-gradient differential dielectric separation, i.e. using electrodes of special shapes for non-uniform field creation, e.g. Fluid Integrated Circuit [FIC]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion

Abstract

PURPOSE:To contrive improvement of efficiency for introducing gene by applying high voltage pulse to a cell while pushing the cell to small holes of meshes by dielectrophoresis, giving a temporary membrane breakage to a part of cell bringing into contact with the small holes and introducing DNA from the broken part into the cell. CONSTITUTION:Meshes 16 having smaller holes than a cell and consisting of high dielectric substance are provided parallel to electrodes between facing electrodes. Dielectrophoresis is given to the cell by generating alternating current voltage in a generator 22 for generating alternating a current voltage and a cell housed between facing electrodes and cell in suspension 14 of DNA are pressed against small holes of meshes 16. Further, in a high voltage pulse generator 24, high voltage pulse is applied between facing electrodes and temporary membrane breakage is given to only cell membrane bringing into contact with small holes and DNA is introduced from the broken part into the cell. As a result, efficiency for introducing DNA is raised and simultaneously survival rate of the cell can be also raised.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、細胞に電気パルスを与えることによって、細
胞外に浮遊しているDNAを細胞内に取り込ませる装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a device for incorporating DNA floating outside a cell into a cell by applying an electric pulse to the cell.

(従来の技術) 第7図に概略的に示されるように、対向電極2゜4間に
細胞6を置き、電極2,4間に電界Eを印加したとする
。電界Eの方向とJ#胞6の表面上の任意の点Qとのな
す角をθとすると、細胞rM当り、近似的に V= (3/2)rEcosθ −・−−−−(1)な
る電位差Vが生じることが知られている。rは細胞6の
半径である。
(Prior Art) As schematically shown in FIG. 7, it is assumed that a cell 6 is placed between opposing electrodes 2 and 4, and an electric field E is applied between the electrodes 2 and 4. If the angle between the direction of the electric field E and an arbitrary point Q on the surface of the J# cell 6 is θ, then per cell rM, approximately V = (3/2)rEcosθ −・−−−−(1) It is known that a potential difference V occurs. r is the radius of the cell 6.

この電位差Vが0.5〜3ボルトになると、細胞に一過
的膜破壊が生じて細胞膜の透過性が増加し、細胞6外に
浮遊しているDNAが細胞6内に取り込まれる。
When this potential difference V becomes 0.5 to 3 volts, temporary membrane breakdown occurs in the cell, the permeability of the cell membrane increases, and DNA floating outside the cell 6 is taken into the cell 6.

(発明が解決しようとする問題点) DNAの導入確率は、(1)式からも分かるように、D
NAの大きさによって著しく異なる。
(Problem to be solved by the invention) As can be seen from equation (1), the probability of DNA introduction is D
It varies significantly depending on the size of NA.

また、DNAの導入確率を増加させるためには、電界E
を大きくすればよいが、その場合、一過的膜破壊が生じ
る領域が大きくなり、細胞の生存率が低下する。
In addition, in order to increase the probability of DNA introduction, the electric field E
may be increased, but in that case, the area where transient membrane destruction occurs becomes larger and the cell survival rate decreases.

本発明はDNAの導入効率を上げるとともに、細胞の生
存率も上げることのできるDNA導入装百を提供するこ
とを目的とするものである。
An object of the present invention is to provide a DNA introduction device that can increase the efficiency of DNA introduction and also increase the survival rate of cells.

C問題点を解決するための手段) 実施例を示す第1図と第4図を参照して説明すると6本
発明の遺伝子導入装置は、平行対向電極8.10,42
.44と、その対向電極間で電極に平行に設けられて細
胞より小さい孔をもつ高誘電率物質にてなるメツシュ1
6と、対向電極間に収容された細胞とDNAの懸濁液中
の細胞をメツシュの小孔に押しつける手段22,30.
32と、対向電極間に高電圧パルスを印加する高電圧パ
ルス発生器40とを備えている。
Means for Solving Problem C) This will be explained with reference to FIG. 1 and FIG.
.. 44, and a mesh 1 made of a high dielectric constant material and having pores smaller than cells, which are provided parallel to the electrodes between the opposing electrodes.
6, and means 22, 30 for pressing cells in a suspension of cells and DNA contained between opposing electrodes into the small holes of the mesh.
32, and a high voltage pulse generator 40 that applies a high voltage pulse between opposing electrodes.

(作用) 誘電電気泳動や遠心力によってメツシュ16の小孔18
に細胞15を押しつけながら高電圧パルスを印加すると
、電気力線が小孔18に集中し。
(Function) The small holes 18 of the mesh 16 are formed by dielectric electrophoresis and centrifugal force.
When a high voltage pulse is applied while pressing the cell 15 to the cell 15, electric lines of force are concentrated in the small hole 18.

細胞15が小孔18に接している部分で一過的膜破壊が
生じ、その部分からDNAが細胞15内に導入される。
Temporary membrane disruption occurs at the portion where the cell 15 is in contact with the small pore 18, and DNA is introduced into the cell 15 from that portion.

(実施例) 第1図は一実施例を表わす。(Example) FIG. 1 represents one embodiment.

8.10は一対の対向した平行電極であり、ガラス板1
2−にに接着されている。一対の電極8゜10、ガラス
板12及び図には示されていないが電極8,10の両側
部を封止する絶縁部材によって画電極8,10間に細胞
懸濁液14が収容される。細胞懸濁液14中には細胞と
DNAが懸濁している。
8.10 is a pair of parallel electrodes facing each other, and glass plate 1
2- It is glued to the. A cell suspension 14 is accommodated between the picture electrodes 8 and 10 by a pair of electrodes 8 and 10, a glass plate 12, and an insulating member that seals both sides of the electrodes 8 and 10, although not shown. Cells and DNA are suspended in the cell suspension 14.

電極8.lOの間には画電極8.10に平行にメツシュ
16が設けられている。メツシュ16はセラミックスや
樹脂など高誘電率物質にて形成され、第2図に示される
ように細胞よりも小さい孔18が多数設けられている。
Electrode 8. A mesh 16 is provided between the 10 and parallel to the picture electrodes 8.10. The mesh 16 is made of a high dielectric constant material such as ceramics or resin, and is provided with many holes 18 smaller than the cells as shown in FIG.

メツシュ16の孔18の直径は、動物細胞を扱う場合に
は2〜3μm程度が適当であり、植物細胞の場合は20
〜30μm程度が適当である。
The appropriate diameter of the holes 18 of the mesh 16 is about 2 to 3 μm when handling animal cells, and about 20 μm when dealing with plant cells.
Approximately 30 μm or so is appropriate.

電極8,10には細胞懸濁液14に電界を印加するため
に電源装置20が接続されている。電源装置20には細
胞を誘電電気泳動(Dielect、rophores
is)させるための交流電圧を発生する交流電圧発生器
22と、細胞に一過的膜破壊を起こさせるための高電圧
を発生する高電圧パルス発生器24と、交流電圧と高電
圧パルスを重畳して印加する出力回路26とが備えられ
ている。電極8,1゜に交流電圧を印加するのは、細胞
をメツシュ16の小孔に押しつけるためであり、交流電
圧発生器22はその手段を構成する。
A power supply 20 is connected to the electrodes 8 and 10 in order to apply an electric field to the cell suspension 14. The power supply device 20 carries out dielectric electrophoresis (DIELECT, ROPHORES) for cells.
is), and a high voltage pulse generator 24 that generates a high voltage to cause temporary membrane breakdown in the cells. An output circuit 26 for applying the same voltage is provided. The purpose of applying an alternating current voltage to the electrodes 8 and 1° is to press the cells into the small holes of the mesh 16, and the alternating current voltage generator 22 constitutes a means for this purpose.

次に、本実施例の動作について説明する。Next, the operation of this embodiment will be explained.

電極間に細胞懸濁液14を入れ、電極8,1゜間に交流
電圧を印加する。メツシュ16は細胞懸濁液14より誘
電率の高い物質であるので、電気力線28は第2図に示
されるように孔18に集中し、不均一電界が発生する。
A cell suspension 14 is placed between the electrodes, and an alternating current voltage is applied between the electrodes 8 and 1°. Since the mesh 16 is a material with a higher dielectric constant than the cell suspension 14, the electric lines of force 28 are concentrated in the holes 18, as shown in FIG. 2, and a non-uniform electric field is generated.

この電気力線の不均一性により細胞表面の正負の電荷量
にアンバランスが生じ、誘電電気泳動現象によって細胞
はメツシュ16の孔18のほうに引き寄せられる。第3
図は細胞15が孔18に引きつけられて押しつけられた
状態を表わしている。
This non-uniformity of the lines of electric force causes an imbalance in the amount of positive and negative charges on the cell surface, and the cells are drawn toward the pores 18 of the mesh 16 due to the dielectric electrophoresis phenomenon. Third
The figure shows a state in which the cells 15 are attracted to and pressed against the holes 18.

細胞15を孔18に押しつけた状態で高電圧パルスを重
畳して印加する。高電圧も孔18に集中し、孔18と接
する細胞膜のみに一過的膜破壊が生じ、その孔からDN
Aが取り込まれる。
With the cell 15 pressed against the hole 18, high voltage pulses are applied in a superimposed manner. The high voltage also concentrates on the pore 18, causing temporary membrane breakdown only in the cell membrane in contact with the pore 18, and DN from that pore.
A is imported.

第4図は他の実施例を表わす。FIG. 4 represents another embodiment.

本実施例は、遠心分離機にチャンバ36を装着し、遠心
力によってチャンバ36内の細胞懸濁液中の細胞をチャ
ンバ36内のメツシュに押しつけながら高電圧パルスを
印加する実施例である。
In this embodiment, a chamber 36 is attached to a centrifugal separator, and high voltage pulses are applied while cells in a cell suspension in the chamber 36 are pressed against a mesh in the chamber 36 by centrifugal force.

30は遠心分離機の回転シャフトであり、モータ32に
よって回転させられる。34はモータ32の回転を制御
する回転制御器である。回転シャフト30にはDNA導
入チャンバ36が装着され。
30 is a rotating shaft of the centrifuge, which is rotated by a motor 32. 34 is a rotation controller that controls the rotation of the motor 32. A DNA introduction chamber 36 is attached to the rotating shaft 30.

回転させられるようになっている。チャンバ36には一
対の対向した平行電極が設けられているが。
It can be rotated. The chamber 36 is provided with a pair of opposing parallel electrodes.

それらの電極間に高電圧パルスを印加するために回転シ
ャフト30にはスリップリング38が設けられ、チャン
バ36の電極につながる端子がスリップリング38に接
触して電源が供給されるようになっている。スリップリ
ング38には高電圧パルス発生器40が接続されている
。スリップリング38に代えて電磁カップリングによっ
て電源を供給するようにしてもよい。
A slip ring 38 is provided on the rotating shaft 30 to apply a high voltage pulse between these electrodes, and a terminal connected to the electrode of the chamber 36 contacts the slip ring 38 to supply power. . A high voltage pulse generator 40 is connected to the slip ring 38 . Power may be supplied by an electromagnetic coupling instead of the slip ring 38.

チャンバ36は、第5図に示されるように、容器41の
遠心力G方向の先端方向に電極42が設けられ、基端方
向に電極44が設けられている。
As shown in FIG. 5, the chamber 36 is provided with an electrode 42 toward the distal end of the container 41 in the direction of the centrifugal force G, and an electrode 44 toward the proximal end.

電t442.44は対向面が平行であり・、かつ、その
対向面は遠心力G方向に直交している。電極42.44
間にメツシュ16が電極対向面に平行に設けられている
。メツシュ16は第1図の実施例と同様に誘電率の高い
物質で形成され、細胞より小さい孔18があけられてい
る。
The opposing surfaces of the electric currents t442 and 44 are parallel, and the opposing surfaces are orthogonal to the direction of the centrifugal force G. Electrode 42.44
In between, a mesh 16 is provided parallel to the electrode facing surface. The mesh 16 is made of a material with a high dielectric constant, similar to the embodiment shown in FIG. 1, and has holes 18 smaller than the cells.

電極42の先端からは端子46が容器41外に突出し、
電極44の端子48は蓋50を貫通して容器41外に突
出している。端子46.48はリード線を介して遠心分
離機のスリップリング38に接触する端子に接続される
A terminal 46 protrudes outside the container 41 from the tip of the electrode 42,
The terminal 48 of the electrode 44 penetrates the lid 50 and projects outside the container 41. Terminals 46,48 are connected via leads to terminals that contact the slip ring 38 of the centrifuge.

電極44は容器41に挿入されるようになっており、メ
ツシュ16上から細胞とDNAが懸濁した細胞懸濁液1
4を注入した後に、電極44が挿入される。容器41は
取付は容器52に入れられて遠心弁M機に装着される。
The electrode 44 is inserted into the container 41, and the cell suspension 1 in which cells and DNA are suspended is poured onto the mesh 16.
After implanting 4, electrode 44 is inserted. The container 41 is placed in a container 52 and attached to the centrifugal valve M machine.

本実施例の動作について説明する。The operation of this embodiment will be explained.

遠心分離機を回転させると細胞懸濁液14中の細胞に遠
心力が作用し、第6図に示されるように細胞15がメツ
シュ16に押しつけられる。遠心分離機を回転させなが
ら高電圧パルス発生器40から高電圧パルスを印加する
と、メツシュI6の小孔18で電気力線が集中し、小孔
18部分で細胞15の細胞膜に一過的膜破壊が生じ、D
NAが導入される。
When the centrifuge is rotated, centrifugal force acts on the cells in the cell suspension 14, and the cells 15 are pressed against the mesh 16 as shown in FIG. When a high voltage pulse is applied from the high voltage pulse generator 40 while rotating the centrifuge, electric lines of force are concentrated at the small hole 18 of the mesh I6, and the cell membrane of the cell 15 is temporarily destroyed at the small hole 18 part. occurs, D
NA is introduced.

(発明の効果) 本発明では高誘電率物質のメツシュの小孔に細胞を押し
つけた状態で高電圧パルスを印加し、その小孔部分の細
胞膜に一過的膜破壊を生じさせて、DNAの導入を行う
ようにしたので、細胞膜の破損個所が小さく、膜破壊が
確実に起こる強さの高電圧パルスを印加してDNAの導
入効率を上げても細胞が受ける損傷は小さく、細胞の生
存性を高めることができる。
(Effects of the Invention) In the present invention, a high voltage pulse is applied while cells are pressed against the small pores of a mesh made of a high dielectric constant material, and the cell membrane in the pores is temporarily disrupted, thereby destroying the DNA. Since the introduction is carried out, the damage to the cell membrane is small, and even if a high voltage pulse is applied that is strong enough to cause membrane destruction to increase the efficiency of DNA introduction, the damage to the cells is small and the survival of the cells is improved. can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例を示す構成図、第2図は同実施例のメ
ツシュを示す断面図、第3図はメツシュに細胞が押しつ
けられた状態を示す断面図、第4図は他の実施例を示す
構成図、第5図は同実施例におけるチャンバを示す断面
図、第6図は同実施例で細胞がメツシュに押しつけられ
た状態を示す断面図、第7図は細胞と電界との関係を示
す概略図である。 8.10,42.44・・・・・・電極。 14・・・・・・細胞懸濁液、 15・・・・・・細胞、 16・・・・・・メツシュ。 18・・・・・・小孔。 22・・・・・・交流電圧発生器、 24.40・・・・・・高電圧パルス発生器。 特許出願人 株式会社島津製作所
Fig. 1 is a configuration diagram showing one embodiment, Fig. 2 is a sectional view showing a mesh of the same embodiment, Fig. 3 is a sectional view showing a state in which cells are pressed against the mesh, and Fig. 4 is a diagram showing another embodiment. A configuration diagram showing an example, FIG. 5 is a cross-sectional view showing a chamber in the same example, FIG. 6 is a cross-sectional view showing a state in which cells are pressed against a mesh in the same example, and FIG. 7 is a diagram showing the relationship between cells and an electric field. It is a schematic diagram showing a relationship. 8.10, 42.44... Electrode. 14...Cell suspension, 15...Cells, 16...Mesh. 18...Small hole. 22... AC voltage generator, 24.40... High voltage pulse generator. Patent applicant: Shimadzu Corporation

Claims (1)

【特許請求の範囲】[Claims] 平行対向電極と、前記対向電極間で電極に平行に設けら
れて細胞より小さい孔をもつ高誘電率物質にてなるメッ
シュと、前記対向電極間に収容された細胞とDNAの懸
濁液中の細胞を前記メッシュの小孔に押しつける手段と
、前記対向電極間に高電圧パルスを印加する高電圧パル
ス発生器とを備えた遺伝子導入装置。
parallel opposing electrodes, a mesh made of a high permittivity material having pores smaller than cells and provided parallel to the electrodes between the opposing electrodes, and a cell and DNA suspension contained between the opposing electrodes. A gene transfer device comprising means for pressing cells into the small holes of the mesh, and a high voltage pulse generator for applying a high voltage pulse between the opposing electrodes.
JP62300476A 1987-11-27 1987-11-27 Gene-introducing device Pending JPH01141582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62300476A JPH01141582A (en) 1987-11-27 1987-11-27 Gene-introducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62300476A JPH01141582A (en) 1987-11-27 1987-11-27 Gene-introducing device

Publications (1)

Publication Number Publication Date
JPH01141582A true JPH01141582A (en) 1989-06-02

Family

ID=17885257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62300476A Pending JPH01141582A (en) 1987-11-27 1987-11-27 Gene-introducing device

Country Status (1)

Country Link
JP (1) JPH01141582A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283194A (en) * 1991-07-22 1994-02-01 Schmukler Robert E Apparatus and methods for electroporation and electrofusion
US5720921A (en) * 1995-03-10 1998-02-24 Entremed, Inc. Flow electroporation chamber and method
US6074605A (en) * 1995-03-10 2000-06-13 Entremed, Inc. Flow electroporation chamber and method
JP2003511699A (en) * 1999-10-08 2003-03-25 エンエムイー ナトゥヴィッセンシャフトリヘス ウント メディツィニシェス インスティテュート アン デル ウニヴェルシタト ティユービンゲン Method and apparatus for measuring cells in a liquid environment
US6773669B1 (en) 1995-03-10 2004-08-10 Maxcyte, Inc. Flow electroporation chamber and method
US7029916B2 (en) 2001-02-21 2006-04-18 Maxcyte, Inc. Apparatus and method for flow electroporation of biological samples
US7141425B2 (en) 2001-08-22 2006-11-28 Maxcyte, Inc. Apparatus and method for electroporation of biological samples
JP2008054630A (en) * 2006-09-01 2008-03-13 Tosoh Corp Cell fusion device and cell fusion method using the same
US20100112667A1 (en) * 2008-11-03 2010-05-06 Cfd Research Corporation Microfluidic Biological Extraction Chip
US7771984B2 (en) 2004-05-12 2010-08-10 Maxcyte, Inc. Methods and devices related to a regulated flow electroporation chamber
KR20140031943A (en) * 2011-05-13 2014-03-13 더 리전트 오브 더 유니버시티 오브 캘리포니아 Photothermal substrates for selective transfection of cells
US10472651B2 (en) 2014-03-28 2019-11-12 The Regents Of The University Of California Efficient delivery of large cargos into cells on a porous substrate
US10982217B2 (en) 2013-03-15 2021-04-20 The Regents Of The University Of California High-throughput cargo delivery into live cells using photothermal platforms

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283194A (en) * 1991-07-22 1994-02-01 Schmukler Robert E Apparatus and methods for electroporation and electrofusion
US5720921A (en) * 1995-03-10 1998-02-24 Entremed, Inc. Flow electroporation chamber and method
US6074605A (en) * 1995-03-10 2000-06-13 Entremed, Inc. Flow electroporation chamber and method
US6773669B1 (en) 1995-03-10 2004-08-10 Maxcyte, Inc. Flow electroporation chamber and method
JP2003511699A (en) * 1999-10-08 2003-03-25 エンエムイー ナトゥヴィッセンシャフトリヘス ウント メディツィニシェス インスティテュート アン デル ウニヴェルシタト ティユービンゲン Method and apparatus for measuring cells in a liquid environment
US7029916B2 (en) 2001-02-21 2006-04-18 Maxcyte, Inc. Apparatus and method for flow electroporation of biological samples
US7141425B2 (en) 2001-08-22 2006-11-28 Maxcyte, Inc. Apparatus and method for electroporation of biological samples
US7186559B2 (en) 2001-08-22 2007-03-06 Maxcyte, Inc. Apparatus and method for electroporation of biological samples
US7771984B2 (en) 2004-05-12 2010-08-10 Maxcyte, Inc. Methods and devices related to a regulated flow electroporation chamber
JP2008054630A (en) * 2006-09-01 2008-03-13 Tosoh Corp Cell fusion device and cell fusion method using the same
US20100112667A1 (en) * 2008-11-03 2010-05-06 Cfd Research Corporation Microfluidic Biological Extraction Chip
US8435465B2 (en) * 2008-11-03 2013-05-07 Cfd Research Corporation Microfluidic biological extraction chip
KR20140031943A (en) * 2011-05-13 2014-03-13 더 리전트 오브 더 유니버시티 오브 캘리포니아 Photothermal substrates for selective transfection of cells
JP2014513984A (en) * 2011-05-13 2014-06-19 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Photothermal substrate for selective transfection of cells
US10435661B2 (en) 2011-05-13 2019-10-08 The Regents Of The University Of California Photothermal substrates for selective transfection of cells
US10982217B2 (en) 2013-03-15 2021-04-20 The Regents Of The University Of California High-throughput cargo delivery into live cells using photothermal platforms
US10472651B2 (en) 2014-03-28 2019-11-12 The Regents Of The University Of California Efficient delivery of large cargos into cells on a porous substrate

Similar Documents

Publication Publication Date Title
JPH01141582A (en) Gene-introducing device
Tresset et al. A microfluidic device for electrofusion of biological vesicles
US7176018B2 (en) Cell lysis device
EP1195603A3 (en) Electrophoretic device and method of manufacturing it
AU7420091A (en) Method and apparatus for ionizing fluids utilizing a capacitive effect
WO2002054514A8 (en) Gas diffusive electrode, electroconductive ion conductor, their manufacturing method, and electrochemical device
EP1093515B1 (en) Electrofusion chamber
GB2317706B (en) Zeta-potential determining apparatus
KR101598847B1 (en) Device for micro droplet electroporation via direct charging and electrophoresis, apparatus therefor and method therefor
JPH01141583A (en) Cell-treating chamber
KR890006344A (en) Discharge element and its application
JPS62171687A (en) Apparatus for introducing gene for such
US4924138A (en) Device comprising a vacuum ion arc source
JPS6349066A (en) Electrode for electrical cell fusion
GB1144057A (en) Improvements relating to the purification of dielectric polar liquid by electrodialysis
KR20030020072A (en) Unipolar electro-static chuck
JP4763890B2 (en) Electrostatic holding device
JPS6359892A (en) Cell-stimulation chamber
WO2003047011A3 (en) Field generating membrane electrode
JP2005209755A (en) Electrostatic chuck
JPS62171667A (en) Cell fusion apparatus
JPH0248145A (en) Electrostatic chuck
JPS6352871A (en) Cell catching device
EP0729161A3 (en) A process and apparatus for manufacturing an electret article
JPS6349083A (en) Method for electrical cell fusion