JPH01140927A - Manufacture of indirect type heat-exchanger - Google Patents

Manufacture of indirect type heat-exchanger

Info

Publication number
JPH01140927A
JPH01140927A JP29504587A JP29504587A JPH01140927A JP H01140927 A JPH01140927 A JP H01140927A JP 29504587 A JP29504587 A JP 29504587A JP 29504587 A JP29504587 A JP 29504587A JP H01140927 A JPH01140927 A JP H01140927A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat exchange
partition plates
liquid flow
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29504587A
Other languages
Japanese (ja)
Other versions
JP2660207B2 (en
Inventor
Takeshi Kashiwada
健 柏田
Tadanobu Muto
忠信 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinwa Sangyo Co Ltd
Original Assignee
Shinwa Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP62295045A priority Critical patent/JP2660207B2/en
Application filed by Shinwa Sangyo Co Ltd filed Critical Shinwa Sangyo Co Ltd
Priority to DE88107336T priority patent/DE3883161T2/en
Priority to DE3852552T priority patent/DE3852552T2/en
Priority to EP88107336A priority patent/EP0316510B1/en
Priority to EP91116137A priority patent/EP0464874B1/en
Priority to DE3855049T priority patent/DE3855049T2/en
Priority to EP91116138A priority patent/EP0464875B1/en
Priority to US07/233,265 priority patent/US4874035A/en
Priority to US07/337,062 priority patent/US4997031A/en
Publication of JPH01140927A publication Critical patent/JPH01140927A/en
Application granted granted Critical
Publication of JP2660207B2 publication Critical patent/JP2660207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To facilitate the rate of heat-exchange of an indirect type heat-exchanger for an air-condition cooling tower, by forming a predetermined number of synthetic resin heat-exchange partition plates with the use of a vacuum molding process, and by grouping them into several sets each having two partition plates constituting a single heat-exchange unit. CONSTITUTION:A predetermined number of synthetic resin heat-exchanger partition plates are formed by a vacuum molding process, having several expansion parts 13 and longitudinal concave and convex ridges 15. They are grouped into a plurality of sets having two partition plates whose front and rear surfaces are reversed with respect to each other and whose upper end edges are coupled together so as to form a single heat-exchanger unit B. Further, the expansion parts 13 of the partition plates facing each other in each set are made to abut against each other so as to form tunnel-like horizontal air-passages 11. Further, these heat-exchanger units B are arranged in series, standing upright, in a casing C, and the concave and convex ridges 15 are engaged with each other to form liquid flow-down passages 10 so as to shape a complete heat-exchanger A. Further, baffle plates 14 are arranged being positionally shifted from each other, and accordingly, the liquid flow-down passages 10 meander. Thus, it is possible to facilitate the rate of heat-exchange by changing the number of heat-exchanger units to be used.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は空調装置、冷凍装置等に用いる冷却塔におけ
る間接型熱交換器の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing an indirect heat exchanger in a cooling tower used in an air conditioner, a refrigeration system, or the like.

(従来技術及び問題点) この種の熱交換器として特開昭51−100370号公
報には、扁平な垂直な垂直方向の相互に平行な数個の液
体流下通路と、これらの各液体流下通路間にそれぞれ形
成された垂直方向の面をもつ篇平で気流の流れる空気通
路を有し、これらの2つの流体通路が相互の流体を非接
触とする複枚数の合成樹脂板よりなる熱交換隔壁板によ
って仕切られている冷却塔用熱交換器が記載されている
(Prior Art and Problems) As a heat exchanger of this type, Japanese Patent Application Laid-open No. 100370/1987 discloses several flat, vertical, mutually parallel liquid flow passages, and each of these liquid flow passages. A heat exchange partition wall made of a plurality of synthetic resin plates, each having a flat air passage with a vertical surface formed between them, through which air flows, and these two fluid passages do not allow fluid to come into contact with each other. A cooling tower heat exchanger is described that is partitioned by plates.

前記公報の熱交換器においては各空気通路の両壁がU字
状部材で形成され、隣接するU字状部材の鼓形側壁は突
出して設けたリブ部分で相互に接着されていると共に、
その側縁において連結パネルより相互に連結されて前記
液体流下通路を形成している。
In the heat exchanger of the above-mentioned publication, both walls of each air passage are formed of U-shaped members, and the drum-shaped side walls of adjacent U-shaped members are bonded to each other by protruding rib portions.
They are interconnected at their side edges by connecting panels to form the liquid flow passage.

前記の先行技術のものにおいては、液体の流下速度を緩
くするため狭く、かつ屈曲させた液体通路は長期間使用
する間には塵埃や微生物がそれらの壁面に付着し、液体
通路の断面積を実質的に狭くし、所定の流量流下出来ず
、これらの熱交換器の供給側において溢水し、これらの
周辺をむやみに濡らすだけでなく、循環冷媒の損失とな
っている。
In the above-mentioned prior art, the liquid passage is narrow and curved in order to slow down the flow rate of the liquid, and during long-term use, dust and microorganisms adhere to the walls, reducing the cross-sectional area of the liquid passage. They are substantially narrow, unable to flow at the desired flow rate, and water overflows on the supply side of these heat exchangers, unnecessarily wetting the area around them as well as causing loss of circulating refrigerant.

更に、前記の通り隣接するU字状部材の波形側壁は突出
して設けたリブ部分で相互に付着されている為、前記液
体流下通路内に付着し滞留した塵埃や微生物を外部から
清掃するのは至難の技であり、不可能に近く、更にこれ
らU字状部材を一体に相互接着し所望の熱交換器とする
ことは手間の係ることであり構造を複雑にしている。
Furthermore, as mentioned above, since the corrugated side walls of adjacent U-shaped members are attached to each other by the protruding rib portions, it is difficult to clean the dust and microorganisms that have adhered and accumulated in the liquid flow passage from the outside. This is an extremely difficult technique, almost impossible, and furthermore, bonding these U-shaped members together to form the desired heat exchanger is time-consuming and complicates the structure.

またこの種の熱交換器が充填材の上部に設けてあり、熱
交換器よりの吐出液を前記充填材に散布しているものに
おいては、散布液(水)量が不足し冷却塔全体としての
流量不足を招来する欠点を有している。
In addition, in the case where this type of heat exchanger is installed above the packing material and the liquid discharged from the heat exchanger is sprayed onto the packing material, the amount of sprayed liquid (water) is insufficient and the cooling tower as a whole It has the disadvantage of causing insufficient flow rate.

(解決しようとする問題点) この発明は気液非接触型(間接型)の熱交換器の熱交換
を行う主要部分における液体通路を分離自在としてこの
流体通路の目詰まりを迅速に直すことができ、更に製造
組立を容易化し、その構造を簡素化した間接型熱交換器
を製造することであり、かNる熱交換器の製造方法を市
場に提供することを目的とする。
(Problems to be Solved) This invention makes it possible to freely separate the liquid passage in the main part that performs heat exchange in a gas-liquid non-contact type (indirect type) heat exchanger, so that clogging of this fluid passage can be quickly corrected. The object of the present invention is to manufacture an indirect heat exchanger that can be easily manufactured and assembled, and has a simplified structure, and to provide the market with a method for manufacturing such a heat exchanger.

(問題点を解決する手段) この発明は篇平な垂直方向の相互に平行な数個の液体流
下通路と、これらの各液体流下通路間にそれぞれ形成さ
れた垂直方向の面をもつ扁平で。
(Means for Solving the Problems) The present invention is a flat device having several parallel liquid flow passages in a flat vertical direction and a vertical surface formed between each of these liquid flow passages.

気流の流れる水平な空気通路を有し、これらの2つの液
体通路が相互の流体を非接触とする複数枚の合成樹脂板
よりなる熱交換隔壁板によって仕切られている間接型熱
交換器の製造方法において。
Manufacture of an indirect heat exchanger that has a horizontal air passage through which air flows, and these two liquid passages are partitioned by a heat exchange partition plate made of a plurality of synthetic resin plates that prevent mutual fluid from contacting each other. In the method.

a)真空成形法によって所定枚数、同大同一形状の合成
樹脂製熱交換隔壁板をそれぞれ一枚の合成樹脂板から真
空成形加工し、各熱交換隔壁板の中間で多数の膨出部を
同一側へ突出成形し、更に各隔壁板の両側辺に沿い相互
掛合自在な縦方向の凹凸条を形成すると共に、その上端
縁部をこの膨出部の高さと同一寸法、L字状に前記膨出
部と同一側へ屈曲成形する工程。
a) A predetermined number of synthetic resin heat exchange partition plates of the same size and shape are vacuum formed from one synthetic resin plate using the vacuum forming method, and a large number of bulges are formed in the middle of each heat exchange partition plate to be the same. In addition, along both sides of each partition plate, vertical uneven strips are formed that can be freely engaged with each other, and the upper edge thereof is formed into an L-shape with the same dimension as the height of the bulge. The process of bending to the same side as the exit part.

b)前記熱交換隔壁板を2枚一組として相互に表裏を反
転してその屈曲成形した上端縁部同士をその全幅に亘り
相互に結合し一体化し単一の熱交換器ユニットとすると
共に、相対峙する内向きの前記膨出部同士を突合せ、こ
の2枚の熱交換隔壁板の中間部を相互離間させ、少なく
とも上端が閉止され左右が開口しているトンネル状の一
つの空気通路を形成する工程。
b) forming a set of two of the heat exchange partition plates, reversing the front and back of each other, and connecting the bent upper edges thereof to each other over the entire width to form a single heat exchanger unit; The opposing inward bulging portions are butted against each other, and the middle portions of the two heat exchange partition plates are separated from each other to form one tunnel-shaped air passageway with at least the upper end closed and the left and right sides open. The process of doing.

C)このように製造した熱交換器ユニットを複数個ケー
ス内に順次起立して並列配置し、隣接する熱交換器ユニ
ットにおける熱交換隔壁板に設けた縦方向の前記凹凸条
を相互に掛け合わせ両側辺においてほゞ水密とした流体
流下通路を、隣接する熱交換器ユニットの熱交換隔壁板
間に形成すると共にこの隣接する熱交換器ユニットの熱
交換隔壁板の上端縁間に前記液体流体流下通路に通じる
液体入口を成形し、各流体流下通路形成面で相互掛合分
離自在にこれら熱交換器ユニット同士を連結する工程。
C) A plurality of heat exchanger units manufactured in this manner are sequentially arranged in parallel in a case, and the longitudinal uneven stripes provided on the heat exchange partition plates of adjacent heat exchanger units are crossed with each other. A fluid flow passage that is substantially watertight on both sides is formed between the heat exchange partition plates of adjacent heat exchanger units, and the liquid fluid flow passage is formed between the upper edges of the heat exchange partition plates of the adjacent heat exchanger units. A step of forming a liquid inlet leading to a passage and connecting these heat exchanger units so that they can be engaged and separated from each other at each fluid flow passage forming surface.

以上a)乃至C)からなることを特徴とする間接型熱交
換器の製造方法である。
This is a method for manufacturing an indirect heat exchanger characterized by comprising the steps a) to C) above.

(発明の使用方法) 前記のように構成したこの発明によって製造されたもの
の使用方法を次に説明する。
(How to use the invention) A method of using the product manufactured according to the invention configured as described above will be explained below.

この熱交換器を直交流式冷却塔に組み込んだ際の熱交換
作用は次の通りである。
The heat exchange action when this heat exchanger is installed in a cross-flow cooling tower is as follows.

前記冷却塔の上部水槽から流下した循環水は前記複数個
の液体流下通路内に流入し上部水槽に向は流下していく
。一方、外気取入口から取り込まれた空気は循環水の流
れと直交して前記複数の空気通路内を流れ、この通過中
に熱交換隔壁板を介して間接的に、即ち非接触で循環水
を冷却し、自身昇温した空気は通風室を通って排気口か
ら外部へ排気される。
The circulating water flowing down from the upper water tank of the cooling tower flows into the plurality of liquid flow passages and flows downward into the upper water tank. On the other hand, the air taken in from the outside air intake flows through the plurality of air passages orthogonally to the flow of the circulating water, and during this passage, the circulating water is indirectly passed through the heat exchange partition plate, that is, without contact. The cooled and heated air passes through the ventilation chamber and is exhausted to the outside from the exhaust port.

長期間の使用乃至循環水の水質などにより前記幅の狭い
複数ある液体流下通路のうち、数箇所の液体流下通路で
塵埃や微生物などがそれらの壁面に付着し循環水の流れ
に支障を来すほどに目詰まりした場合には、その目詰ま
りを生じた液体流下通路の−において、若しくはすべて
の隣接する熱交換器ユニットを相互に分離し、液体流下
通路の内面を形成していた隣接する熱交換器ユニットの
熱交換隔壁板における凹凸面を外部に露出させて、熱交
換隔壁板の外面、即ち、液体流下通路を形成する凹凸面
に付着する付着物を循環水の一部乃至洗浄水で除去し清
浄化する。
Due to long-term use or the quality of the circulating water, dust, microorganisms, etc. may adhere to the walls of several of the plurality of narrow liquid flow passages, interfering with the flow of the circulating water. If the blockage is severe enough, it is necessary to separate all adjacent heat exchanger units from each other at the bottom of the clogged liquid flow passage or from adjacent heat exchanger units that formed the inner surface of the liquid flow passage. The uneven surface of the heat exchange partition plate of the exchanger unit is exposed to the outside, and deposits adhering to the outer surface of the heat exchange partition plate, that is, the uneven surface forming the liquid flow passage, are removed with some of the circulating water or cleaning water. Remove and clean.

このようにして液体流下面を清掃した後は、再び隣接す
る熱交換器ユニットの熱交換隔壁板同士を掛合して目詰
まりのない元の液体流下通路を再度成形して前記冷却塔
の運転を開始する。
After cleaning the liquid flow surface in this way, the heat exchange partition plates of adjacent heat exchanger units are connected again to form the original liquid flow passage without clogging, and the operation of the cooling tower is resumed. Start.

(発明の効果) 前記のように構成しその方法によって、製造された製品
は前記のように使用することができるこの発明の間接型
熱交換器の製造方法は次の効果を奏する。
(Effects of the Invention) The method for manufacturing an indirect heat exchanger of the present invention, which is configured as described above and manufactured by the method, can be used as described above, has the following effects.

真空成形法によって所定枚数、同大同一形状の合成樹脂
製熱交換隔壁板を一枚の合成樹脂板から真空成形加工し
、前記熱交換隔壁板を2枚一組として相互に表裏を反転
してその屈曲成形した上端縁部同士をその全幅に亘り相
互に結合し一体化し単一の熱交換器ユニットとすると共
に、相対峙する内向きの前記膨出部同士を突合せ、この
2枚の熱交換隔壁板の中間部を相互離間させ、少なくと
も上端が閉止され左右が開口しているトンネル状の一つ
の空気通路を形成する工程を採用しているため、熱交換
に必要な枚数の熱交換隔壁板を共通の金型加工ができ、
金型及び成形加工機全体の構造、価格を低く出来る上、
相互に嵩張らずに積み重ね平置でき保管し易く、保管に
場所とらないで済む。また熱交換隔壁板を2枚一組とし
て相互に表裏を反転してその屈曲成形した上端縁同士を
その全幅に亘り相互に結合し一体化し単一の熱交換器ユ
ニットとすることにより、これらを隣接し並列配置する
のみで、所望の熱交換率を奏する間接型の熱交換器を製
造することができると共に、熱交換率の変更時に、熱交
換器ユニットの数を増減することで容易に対応できる。
Using a vacuum forming method, a predetermined number of synthetic resin heat exchange partition plates of the same size and shape are vacuum formed from a single synthetic resin plate, and the heat exchange partition plates are made into a set of two and turned upside down. The bent upper edges are joined together over the entire width to form a single heat exchanger unit, and the opposing inward bulges are abutted to form a heat exchanger unit. The process of separating the middle parts of the partition plates from each other to form a single tunnel-shaped air passage with at least the top end closed and the left and right sides open allows for the required number of heat exchange partition plates to be used for heat exchange. A common mold can be processed,
In addition to being able to lower the structure and price of the entire mold and molding machine,
They can be stacked and laid flat without adding bulk to each other, making them easy to store and do not take up much space. In addition, by making a set of two heat exchange partition plates, turning them upside down, and connecting their bent upper edges to each other over their entire width to form a single heat exchanger unit. It is possible to manufacture indirect heat exchangers that achieve the desired heat exchange rate simply by arranging them adjacent to each other in parallel, and when changing the heat exchange rate, it can be easily handled by increasing or decreasing the number of heat exchanger units. can.

また、隣接する前記熱交換器ユニット間に前記液体流下
通路を一つ宛形成すると共に、この液体流下通路形成面
において隣接する前記熱交換器ユニット同士を掛合、分
離自在に連結配備するため。
Further, one of the liquid flow passages is formed between the adjacent heat exchanger units, and the adjacent heat exchanger units are connected and arranged so as to be able to engage and separate from each other at this liquid flow passage forming surface.

液体流下通路内で塵埃や微生物がそれらの壁面に付着し
循環水の流れに支障を来すほどに目詰まりが生じても、
隣接している熱交換器ユニット同士の掛け合いを外すこ
とで、これら熱交換器ユニットの連結を解き、液体流下
通路の内面を形成していた隣接する熱交換器ユニットの
熱交換隔壁板における凹凸面を外部に露出させて清掃す
ることによって、容易に液体流下通路の目詰まりを解消
できる。
Even if dust and microorganisms adhere to the walls of the liquid flow passages and become clogged to the extent that they impede the flow of circulating water,
By removing the connection between adjacent heat exchanger units, the connection between these heat exchanger units is released, and the uneven surface of the heat exchange partition plate of the adjacent heat exchanger unit, which forms the inner surface of the liquid flow passage, is removed. By exposing the liquid to the outside and cleaning it, clogging of the liquid flow passage can be easily eliminated.

更に前記熱交換隔壁板の両側縁全高さにわたり凹凸条を
形成することにより、隣接する前記熱交換器ユニットの
熱交換隔壁板に設けた凹凸条同士の掛け合いに伴い前記
ジグザグに蛇行した液体流下通路の両側縁を密閉状にそ
の全高さにわたり簡易に成形することが出来る。
Further, by forming uneven stripes over the entire height of both side edges of the heat exchange partition plate, the liquid flow passage meandering in a zigzag manner due to the interaction of the uneven stripes provided on the heat exchange partition plates of the adjacent heat exchanger units. It is possible to easily form the both side edges of the mold into a sealed shape over its entire height.

(実施例) 次にこの発明の代表的な実施例を説明する。(Example) Next, typical embodiments of the invention will be described.

1) 第1実施例 第1図に示す篇平な垂直方向の相互に平行な数個の液体
流下通路10と、これらの各液体流下通路10間にそれ
ぞれ形成された垂直方向の面をもつ肩平で、気流の流れ
る水平な空気通路11を有し、これらの2つの液体通路
10,11が相互の液体を非接触とする複数枚の合成樹
脂板よりなる熱交換隔壁板12によって仕切られている
冷却塔用熱交換器Aは次の要領で製造される。
1) First Embodiment As shown in FIG. 1, several flat, vertical, mutually parallel liquid flow passages 10 and shoulders each having a vertical surface formed between these liquid flow passages 10, respectively. It is flat and has a horizontal air passage 11 through which air flows, and these two liquid passages 10 and 11 are partitioned by a heat exchange partition plate 12 made of a plurality of synthetic resin plates that keep the liquids out of contact with each other. Cooling tower heat exchanger A is manufactured in the following manner.

先ず、真空成形法により所定枚数、同大同一形状の合成
樹脂製熱交換隔壁板12を、−枚の合成樹脂板から真空
成形加工する。この際、各熱交換隔壁板12の中間で多
数の膨出部13を同一側へ突出成形し、更に、各熱交換
隔壁板12の両側辺に沿い相互掛合自在な縦方行の凹凸
条15を形成すると共に、その上端縁部12aを前記膨
出部13の高さと同一寸法、L字状に前記膨出部13と
同一側へ屈曲成形する。
First, a predetermined number of synthetic resin heat exchange partition plates 12 of the same size and shape are vacuum formed from -1 synthetic resin plates using a vacuum forming method. At this time, a large number of bulges 13 are formed in the middle of each heat exchange partition plate 12 to protrude toward the same side, and furthermore, along both sides of each heat exchange partition plate 12, longitudinal uneven strips 15 that can be freely engaged with each other are added. At the same time, the upper end edge 12a is bent to the same side as the bulge 13 into an L-shape having the same size as the height of the bulge 13.

このように製造した前記熱交換隔壁板12を二枚一組と
して表裏を反転して前記上端12a9をその幅にわたり
相互に結合し一体化し、単一の熱交換器ユニットBとす
ると共に、相対峙する内向きの前記膨出部13同士を突
合せ、この2枚の熱交換隔壁板12の中間部を相互離間
させ、上端が閉止され左右が開口しているトンネル状の
一つの前記水平な空気通路11を形成する。
The heat exchange partition plates 12 manufactured in this way are made into a pair, turned over, and the upper ends 12a9 are interconnected and integrated over the width thereof to form a single heat exchanger unit B. The inwardly directed bulging parts 13 are brought into contact with each other, and the middle parts of the two heat exchange partition plates 12 are separated from each other to form one tunnel-shaped horizontal air passage whose upper end is closed and left and right sides are open. 11 is formed.

このように製造した熱交換器ユニットBを複数個相互平
行にして同一ケースC内に順次起立配置し、隣接する前
記熱交換器ユニットBの熱交換隔壁板12間に前記凹凸
条15を相互に掛け合わせ両側辺においてははゾ水密と
した前記液体流下通路10を一つ宛形成すると共に、こ
の隣接する熱交換器ユニットBの熱交換隔壁板12の上
端12a部間に前記液体流下通路10に通じる液体人口
10aを成形し、この液体流下通路形成面において隣接
する前記熱交換器ユニットB同士を掛合、分離自在に連
結配備し、前記熱交換器Aとする。
A plurality of heat exchanger units B manufactured in this way are arranged in parallel to each other in the same case C in order, and the uneven strips 15 are mutually arranged between the heat exchange partition plates 12 of the adjacent heat exchanger units B. On both sides of the intersection, one watertight liquid flow passage 10 is formed, and the liquid flow passage 10 is formed between the upper ends 12a of the heat exchange partition plates 12 of the adjacent heat exchanger units B. A communicating liquid population 10a is formed, and the heat exchanger units B adjacent to each other are coupled and separably connected on this liquid flow passage forming surface to form the heat exchanger A.

前記熱交換隔壁板12の中間部には、内外に膨出した水
平な邪魔部14を不連続で位置をずらして階層的に多数
分布して形成し、隣接する前記熱交換器ユニットBの熱
交換隔壁板12に設けた前記邪魔部14同士の掛け合い
及び突合せにより前記液体流下通路10をジグザグに蛇
行した流路に成形する。
In the middle part of the heat exchange partition plate 12, a large number of horizontal baffles 14 bulging inward and outward are formed discontinuously and shifted in position and distributed in a hierarchical manner. The liquid flow path 10 is formed into a zigzag meandering flow path by engaging and abutting the baffle portions 14 provided on the replacement partition plate 12.

図示の例において前述の邪魔部14を更に説明すれば液
体流下通路10を構成する一方の熱交換隔壁板12に浅
く外方に膨出した膨出部の内側に他方の熱交換隔壁板1
2の内方に深く膨出した膨出部の頂部分を各々嵌合し、
また面熱交換隔壁板12とともに内方に浅く膨出部にお
いて相互に突合せ、各々邪魔部14を成形すると共に、
これら邪魔部14の成形によって相対する両熱交換隔壁
板12の間に間隔を設けて前記液体流下通路10を成形
するスペーサの役目をなさせる。
To further explain the above-mentioned baffle part 14 in the illustrated example, one heat exchange partition plate 12 constituting the liquid flow passage 10 has a shallowly outwardly bulged bulge on the inside of the other heat exchange partition plate 1.
Fit the top portions of the bulges that bulged deeply inward to each other,
In addition, the planar heat exchange partition plates 12 and 12 are brought into abutment against each other at shallow inward bulges to form respective baffles 14,
By forming these baffle portions 14, a gap is provided between the opposing heat exchange partition plates 12, and the baffle portions 14 serve as spacers for forming the liquid flow passage 10.

前記実施例においては2枚の熱交換隔壁板12間に設け
た前記液体流下通路10の間隔寸法は2乃至5IIIl
l、好ましくは約2mとしてあり、これら熱交換隔壁板
12の厚みは0.2乃至0.4nmの物を用いる。
In the embodiment, the interval dimension of the liquid flow passage 10 provided between the two heat exchange partition plates 12 is 2 to 5IIIl.
1, preferably about 2 m, and the thickness of these heat exchange partition plates 12 is 0.2 to 0.4 nm.

更に、前記空気通路11内に膨出している膨出部13を
底部51開口の中空円錐台52とし、その内面53を前
記液体流下通路11における流下液体の渦発生部54と
する。更に具体的に説明すると、不連続で位置をずらし
て階層的に膨出した水平な邪魔部14郡のうち、上下少
なくとも2列おきで邪魔部14の開缶に膨出部13を位
置させ、このように膨出部13を配置した邪魔部14列
と上下の邪魔部14列で形成されるジグザグな液体流下
通路10に対して前記膨出部13を構成する中空円錐台
52の底部51全部が開口し、階層的に形成された液体
流下通路10内を流れる循環水は膨出部13を配置した
邪魔部14列から下の邪魔部14列へ流下するときに、
必ず前記中空円錐台52内に流入し渦流となりその後玉
の邪魔部14に向は流れ落ち、次いで水平方向に向きを
変え邪魔部15に添い流れていく(第1図参照)。
Further, the bulging portion 13 bulging into the air passage 11 is made into a hollow truncated cone 52 with an opening in the bottom portion 51, and its inner surface 53 is made into a vortex generating portion 54 for the flowing liquid in the liquid flowing passage 11. More specifically, among the 14 groups of horizontal baffle parts that are discontinuously and shifted in position and bulge hierarchically, the bulges 13 are positioned on open cans of the baffle parts 14 in at least every two rows above and below, The entire bottom portion 51 of the hollow truncated cone 52 that constitutes the bulging portion 13 is connected to the zigzag liquid flow passage 10 formed by the 14 rows of baffling portions in which the bulging portions 13 are arranged and the 14 rows of upper and lower baffling portions. is opened and the circulating water flowing in the hierarchically formed liquid flow passage 10 flows down from the 14 rows of baffle parts in which the bulging parts 13 are arranged to the 14 rows of baffle parts below.
It always flows into the hollow cone 52, becomes a vortex, and then flows down toward the ball's baffle part 14, and then changes its direction horizontally and flows along the baffle part 15 (see FIG. 1).

前記熱交換器ユニットBの2枚の熱交換隔壁板12の突
き合わされる膨出部13のうち、一方の膨出部13の頂
面には小突起(図示せず)を形成し、この小突起を受は
入れる小窪(図示せず)を他方の膨出部13の頂面に形
成し、これら小突起と小窪により、表裏反転して組立だ
2枚の熱交換隔壁板12の位置合わせを行う。
Among the bulging portions 13 of the two heat exchange partition plates 12 of the heat exchanger unit B that are butted against each other, a small protrusion (not shown) is formed on the top surface of one of the bulging portions 13. A small depression (not shown) for receiving the protrusion is formed on the top surface of the other bulge 13, and these small protrusions and small depressions are used to align the two heat exchange partition plates 12 that are assembled upside down. conduct.

なお、必要に応じて前記凹凸条15同士の掛け合いを確
実なものとすべく、凹凸条15の一部に掛合分離自在な
ノツチを設けたり、ファスナーをこの凹凸条15内に挿
入し使用する場合もある。
In addition, in order to ensure the engagement of the uneven strips 15 with each other, if necessary, a notch may be provided in a part of the uneven strips 15 so that they can be engaged and separated, or a fastener may be inserted into the uneven strips 15. There is also.

2)第2実施例 第2図において前記第1実施例と異なる構成は次の事項
であり、その他同−符号の事項は前記第1図に示す第1
実施例と同一の構成である。
2) Second Embodiment The differences in configuration from the first embodiment in FIG. 2 are as follows.
It has the same configuration as the embodiment.

即ち、相違する事項は、熱交換器ユニットBの下端16
をも全幅にわたり一体に結合し、前記空気通路を上下密
閉とし左右に給排気口を有するトンネル条のものに形成
する工程を付加し、間接型熱交換器A1とする。
That is, the difference is that the lower end 16 of the heat exchanger unit B
The indirect heat exchanger A1 is obtained by adding a step of integrally connecting the air passages over the entire width and forming the air passages into a tunnel strip having upper and lower sealed air passages and air supply and exhaust ports on the left and right sides.

3)第3実施例 第3図において前記第1実施例と異なる構成は次の事項
であり、その他同−符号の事項は前記第1実施例と同一
の構成である。
3) Third Embodiment In FIG. 3, the configuration that differs from the first embodiment is as follows, and other items with the same reference numerals are the same as the first embodiment.

即ち、相違する事項は、液体流下通路10Aをこの液体
流下通路10Aの両側壁面を形成する隣接する熱交換器
ユニットBの熱交換隔壁板12の内外に分布膨出した邪
魔部14を相互嵌合、突き合わせて形成した流下緩速部
Eと、この流下緩速部Eに隣接して形成された溢水路F
とで形成し、これら流下緩速部Eと溢水路Fとを、前記
熱交換隔壁板12の両側縁に沿い形成した相互嵌合離反
自在の縦方向凹凸条19により相互区画し、流下緩速部
Eからオーバーフローした循環水を溢水路F内に流入自
在に形成する工程を付加し、間接型熱交換器A2とする
That is, the difference is that the liquid flow passage 10A is fitted with the baffle portions 14 distributed inside and outside of the heat exchange partition plate 12 of the adjacent heat exchanger unit B forming both side wall surfaces of the liquid flow passage 10A. , a slow flow section E formed by butting each other, and an overflow channel F formed adjacent to the slow flow section E.
The slow flow section E and the overflow channel F are mutually separated by longitudinal grooves and grooves 19 that are removable and engageable with each other and are formed along both side edges of the heat exchange partition plate 12. A step of forming the circulating water overflowing from part E into the overflow channel F is added to form an indirect heat exchanger A2.

更に前記凹凸条19を前記熱交換隔壁板12の下端から
その上端の手前まで垂直に延在し、この凹凸条19の上
端と熱交換ユニットBの閉止した上端によって溢水路F
の入口部Gを形成され、前記凹凸条15と19により溢
水路Fの両側縁を密閉状態で形成する。
Furthermore, the uneven strip 19 extends vertically from the lower end of the heat exchange partition plate 12 to just before its upper end, and the upper end of the uneven strip 19 and the closed upper end of the heat exchange unit B form the overflow channel F.
An inlet G is formed, and both sides of the overflow channel F are formed in a sealed state by the uneven strips 15 and 19.

(実施例の使用方法) A)第1実施例の製造方法で製造された間接型熱交換器
Aの使用方法 前記第1実施例により製造した間接型熱交換器Aの冷却
塔Rへの組込法及び使用法を次に説明する。
(How to use the example) A) How to use the indirect heat exchanger A manufactured by the manufacturing method of the first example Assembling the indirect heat exchanger A manufactured by the first example into the cooling tower R The method of inclusion and usage will be explained below.

この熱交換器Aを前記冷却塔Rの本体20に組み込′む
場合には、この熱交換器Aの前記ケースCを冷却塔Rの
上部水槽21の下方に配置し、複数個の液体流下通路1
0に通じる液体入口10aを上部水槽21底面に向けて
開口させ、その吐出口を下部水槽22側に開口すると共
に、この冷却塔Rの本体20に設けた外気取入口23に
前記複数個の空気通路11の一次側を対面させ、その二
次側を排気口24に通じる通風室25に開口して、間接
型熱交換器Aを前記直交流式冷却塔Rの本体20に組み
込む(第10図参照)。
When this heat exchanger A is installed in the main body 20 of the cooling tower R, the case C of this heat exchanger A is placed below the upper water tank 21 of the cooling tower R, and a plurality of liquid flows Passage 1
The liquid inlet 10a leading to the cooling tower R is opened toward the bottom of the upper water tank 21, and its discharge port is opened toward the lower water tank 22 side. The indirect heat exchanger A is assembled into the main body 20 of the cross-flow cooling tower R, with the primary sides of the passages 11 facing each other and the secondary side opening into the ventilation chamber 25 leading to the exhaust port 24 (Fig. 10). reference).

このように組み込まれた前記熱交換器Aの熱交換作用は
次の通りである。
The heat exchange function of the heat exchanger A installed in this way is as follows.

上部水槽21から流下した循環水は前記複数個の液体流
下通路10内に流入し下部水槽22に向は流下していく
。この流下中にジグザグな流路さに連通する前記膨出部
13内に流入していき液体流下通路10に設けた複数の
膨出部13位置において循環水である流下液体は渦流と
なり膨出部13内部に一次滞留した後、下段のジグザグ
な流路内に膨出部13から再び流出していく。このよう
な流れを繰返し行いながら循環水はゆっくりと流下して
いき、下部水槽22へと流れていく。
The circulating water flowing down from the upper water tank 21 flows into the plurality of liquid flow passages 10 and flows down into the lower water tank 22. During this flowing down, the flowing liquid, which is circulating water, flows into the bulges 13 that communicate with the zigzag flow path, and at the positions of the plurality of bulges 13 provided in the liquid flow passage 10, the flowing liquid, which is circulating water, becomes a vortex flow at the bulges. After temporarily staying inside the bulge 13, it flows out from the bulge 13 into the zigzag flow path at the lower stage. While repeating this flow, the circulating water slowly flows down and flows into the lower water tank 22.

一方、外気取入口23から取れ込まれた空気は循環水の
流れと直交して前記複数の空気通路11内を流れ、この
通過時に訂記空気通路11内に膨出している膨出部13
においてこの膨出部13外周面に沿い偏流しつつ通風室
25に向は流れ、この通過中に熱交換隔壁板12を介し
て間接的に、即ち非接触で循環水を冷却し、自身昇温し
た空気は通風室25を通って排気口24から外部へ排気
される。
On the other hand, the air taken in from the outside air intake port 23 flows through the plurality of air passages 11 at right angles to the flow of circulating water, and the bulging portion 13 bulges into the air passage 11 during this passage.
In this case, the water flows toward the ventilation chamber 25 while being biased along the outer circumferential surface of the bulge 13, and during this passage, the circulating water is cooled indirectly via the heat exchange partition plate 12, that is, without contact, and its own temperature is increased. The air passes through the ventilation chamber 25 and is exhausted to the outside from the exhaust port 24.

長期間の使用乃至循環水の水質などにより前記幅の狭い
複数ある液体流下通路10のうち、数箇所の液体流下通
路10で塵埃や微生物がそれらの壁面に付着し循環水の
流れに支障を来すほどに目詰まりした場合には、その目
詰まりを生じた液体流下通路10の位置において、若し
くはすべての隣接する熱交換器ユニットBを相互に分離
し、液体流下通路10の内面を形成していた隣接する熱
交換器ユニットBの熱交換隔壁板12における凹凸面を
外部に露出させて、熱交換隔壁板12の外面、即ち、液
体流下通路10を形成する凹凸面に付着した付着物を循
環水の一部乃至洗浄水で除去し清浄化する。
Due to long-term use or the quality of the circulating water, dust and microorganisms may adhere to the walls of several of the plurality of narrow liquid flow passages 10, interfering with the flow of the circulating water. If the clogging is severe, the liquid flow passage 10 is separated from the inner surface of the liquid flow passage 10 by separating all adjacent heat exchanger units B from each other or at the position of the liquid flow passage 10 where the clogging has occurred. The uneven surface of the heat exchange partition plate 12 of the adjacent heat exchanger unit B is exposed to the outside to circulate the deposits attached to the outer surface of the heat exchange partition plate 12, that is, the uneven surface forming the liquid flow passage 10. Remove and clean with some water or washing water.

このようにして液体流下面を清掃した後は、再び隣接す
る熱交換器ユニットBの熱交換隔壁板12同士を掛合し
て元の液体流下通路10を再度形成して前記冷却塔Rの
運転を開始する。
After cleaning the liquid flow downward surface in this manner, the heat exchange partition plates 12 of the adjacent heat exchanger units B are engaged again to form the original liquid flow passage 10 again, and the operation of the cooling tower R is resumed. Start.

B) 第2実施例で製造した間接型熱交換器A1の作用 前記第2実施例の製造方法で製造した熱交換器A1の作
用を直交流式冷却塔Rへの組込法及び使用法と共に次に
説明する。
B) Function of the indirect heat exchanger A1 manufactured in the second embodiment The function of the heat exchanger A1 manufactured by the manufacturing method of the second embodiment, together with the method for incorporating it into the cross-flow cooling tower R and the method for using it. This will be explained next.

この実施例の熱交換器A1を冷却塔R1の本体30に組
み込む場合には、単一のケースCに前記熱交換器ユニッ
トBを隣接して複数枚並設し、隣合う熱交換器ユニット
B同士の熱交換隔壁板12を相互に掛合し連結して前記
液体流下通路10を隣合う熱交換器ユニ288間に形成
し、所望の熱交換率を発揮する熱交換器A1に組立た後
、この熱交換器の前記ケースCを直交流式冷却塔R1の
上部水槽31と下部充填材32との間に配置し。
When the heat exchanger A1 of this embodiment is incorporated into the main body 30 of the cooling tower R1, a plurality of heat exchanger units B are arranged adjacently in a single case C, and the adjacent heat exchanger units B After the heat exchange partition plates 12 are interlocked and connected to form the liquid flow passage 10 between adjacent heat exchanger units 288 and assembled into a heat exchanger A1 that exhibits a desired heat exchange efficiency, The case C of this heat exchanger is placed between the upper water tank 31 and the lower filling material 32 of the cross-flow cooling tower R1.

複数個の流体流下通路10の上部供給口10aを上部水
槽31底面に向けて開口させ、その吐出口17を下部水
槽33に向は開口すると共に、この冷却塔R1の本体3
0に設けた外気取入口34に前記複数個の空気通路11
の一次側を前記下部充填材32の一次側と同様に対面さ
せ、その二次側を前記下部充填材32の二次側と同様に
排気口35に通じる通風室36に開口して、熱交換器A
1を前記冷却塔R1の本体30に組み込み、白煙防止機
能付きの冷却塔とする(第11図参照)。
The upper supply ports 10a of the plurality of fluid flow passages 10 are opened toward the bottom surface of the upper water tank 31, and the discharge ports 17 thereof are opened toward the lower water tank 33, and the main body 3 of the cooling tower R1 is opened toward the bottom surface of the upper water tank 31.
The plurality of air passages 11 are connected to the outside air intake port 34 provided at
The primary side is made to face the primary side of the lower filling material 32 in the same manner as the primary side of the lower filling material 32, and the secondary side thereof is opened to the ventilation chamber 36 that communicates with the exhaust port 35 similarly to the secondary side of the lower filling material 32, thereby allowing heat exchange. Vessel A
1 is incorporated into the main body 30 of the cooling tower R1 to form a cooling tower with a white smoke prevention function (see FIG. 11).

而して第1実施例で製造した熱交換器Aと同様の作用を
する上に次のようにも作用する。
In addition to having the same function as the heat exchanger A manufactured in the first embodiment, the heat exchanger A also functions as follows.

前記上部水槽31から流下した循環水は前記複数個の流
体流下通路10内に流入した後、下部充填材32上に散
布され、下部水槽33へ向は流下していく。一方、外気
取入口34から取り込まれた空気は循環水の流れと直交
して前記複数の空気通路11内を流れ、この通過中に熱
交換隔壁板12を介して間接的に、即ち非接触で循環水
を冷却し、絶対湿度一定で自身昇温した空気は、通風室
36において前記下部充填材32を流下中の循環水と直
接接触して冷却し自身絶対湿度を上げ昇温した空気と混
合して、絶対湿度を低下させた状態で混合した空気は排
気口35から外部へ排気され、白煙化しない。この際、
前記熱交換器ユニットBの下端が全幅にわたり相互結合
し一体化しであるため、下部充填材32上を流下中に空
気と直接接触し潜熱作用を受けて蒸発する水分は前記空
気通路11内に侵入すること無く、下部充填32材間を
通過する空気流に乗り通風室36に至る。
After the circulating water flowing down from the upper water tank 31 flows into the plurality of fluid flow passages 10, it is spread on the lower filling material 32, and flows down to the lower water tank 33. On the other hand, the air taken in from the outside air intake port 34 flows through the plurality of air passages 11 perpendicularly to the flow of circulating water, and during this passage, it passes through the heat exchange partition plate 12 indirectly, that is, in a non-contact manner. The circulating water is cooled, and the air that has risen in temperature with constant absolute humidity is cooled by directly contacting the lower filling material 32 with the flowing circulating water in the ventilation chamber 36, thereby increasing its own absolute humidity and mixing with the heated air. The mixed air with reduced absolute humidity is exhausted to the outside from the exhaust port 35 and does not turn into white smoke. On this occasion,
Since the lower ends of the heat exchanger unit B are interconnected and integrated over the entire width, moisture that comes into direct contact with air and evaporates under the action of latent heat while flowing down on the lower filling material 32 enters the air passage 11. The air flow passes between the lower filling materials 32 and reaches the ventilation chamber 36 without doing so.

C) 第3実施例で製造した熱交換器A2の作用 前記第3実施例の製造方法で製造した間接型熱交換器A
2の作用を直交流式冷却塔R2への組込法及び使用法と
共に次に説明する。
C) Function of heat exchanger A2 manufactured in the third example Indirect heat exchanger A manufactured by the manufacturing method of the third example
The effect of No. 2 will be explained below along with how to incorporate it into the cross-flow cooling tower R2 and how to use it.

この熱交換器A2を前記冷却塔R2の本体40に組み込
む場合には、単一のケースCに前記熱交換器ユニットB
を隣接して複数枚並設し、隣合う熱交換器ユニットB同
士の熱交換隔壁板12を相互に掛合し連結して前は液体
流下通路10を隣合う熱交換器ユニット8間に形成し、
所望の熱交換率を発揮する熱交換器A2に組立てた後、
この熱交換器A2の前記ケースCを冷却塔R2の上部水
槽41の下方に配置し、複数個の液体流下通路10の上
部供給口を上部水槽41底面に向けて開口させ、その吐
出口を下部水槽42側に開口すると共に、この冷却塔R
2の本体40に設けた外気取入口に前記複数個の空気通
路11の一次側を対面させ、その二次側を排気口44に
通じる通風室に開口して、この熱交換器A2を前記直交
流式冷却塔R2の本体20に組み込む(第12図参照)
When this heat exchanger A2 is incorporated into the main body 40 of the cooling tower R2, the heat exchanger unit B is installed in a single case C.
A plurality of heat exchanger units B are arranged adjacently in parallel, and the heat exchange partition plates 12 of the adjacent heat exchanger units B are interlocked and connected to form a liquid flow passage 10 between the adjacent heat exchanger units 8. ,
After assembling into heat exchanger A2 that exhibits the desired heat exchange rate,
The case C of this heat exchanger A2 is arranged below the upper water tank 41 of the cooling tower R2, the upper supply ports of the plurality of liquid flow passages 10 are opened toward the bottom surface of the upper water tank 41, and the discharge ports are opened toward the bottom of the upper water tank 41. It opens to the water tank 42 side, and this cooling tower R
The primary side of the plurality of air passages 11 is made to face the outside air intake port provided in the main body 40 of No. 2, and the secondary side thereof is opened to a ventilation chamber leading to the exhaust port 44, so that the heat exchanger A2 is Incorporate into main body 20 of AC cooling tower R2 (see Figure 12)
.

更に前記各空気通路11内には散水装[Hの散水装置H
の散水管Pが一本宛水平に配管しである。
Further, each air passage 11 is provided with a water sprinkler system [H].
The water sprinkler pipes P are piped horizontally to each other.

而して第1実施例で製造した熱交換器Aと同様の作用を
する上に次のようにも作用する。
In addition to having the same function as the heat exchanger A manufactured in the first embodiment, the heat exchanger A also functions as follows.

前記液体流下通路10のうち、流下緩速部Eが仮に目詰
まりしても、前記流下緩速部Eからオーバーフローした
循環水の一部は前記溢水路F内に流入して前記下部水槽
に向けこの溢水路F内を流下していき、液体流下通路1
0の供給口に向けて逆流せず、冷却塔R2の周囲に飛散
しない。
Even if the slow flow section E of the liquid flow passage 10 becomes clogged, a portion of the circulating water overflowing from the slow flow section E will flow into the overflow channel F and be directed to the lower water tank. The liquid flows down in this overflow channel F, and
It does not flow backward toward the supply port of No. 0 and does not scatter around the cooling tower R2.

更に、前記散水装置Hにおける散水管Pから空気通路1
1内に散水される高温循環水と空気通路11内を流れる
空気流との間でも、直接の熱交換を促進し、高温の循環
水を冷却する。
Furthermore, the air passage 1 is connected from the water sprinkling pipe P in the water sprinkling device H.
Direct heat exchange is also promoted between the high-temperature circulating water sprinkled in the air passage 11 and the air flow flowing in the air passage 11, thereby cooling the high-temperature circulating water.

(実施例固有の効果) 第1実施例の製造方法においては 前記空気通路11内に膨出している膨出部13をその内
面が液体流下通路10に開口した中空円錐台52とし、
その内面53を前記液体流下通路11における流下液体
の渦発生部54とし、ジグザグな流路に連通する前記膨
出部13内に流入し液体流下通路10に設けた複数の膨
出部13の内面53において流下液体は渦流となり膨出
50内部に一時滞留した後、下段のジグザグな流路内に
膨出部13から流出していく構造に形成することにより
、液体流下通路10内での循環水の流下速度を充分に遅
く出来、前記空気通路11を流れる空気流と間接的な接
触時間を充分に長く取ることができ、循環水を所定温度
に、空気の絶対湿度を変えることなく冷却することが出
来る間接型熱交換器Aを製造できる。
(Effects Unique to the Embodiment) In the manufacturing method of the first embodiment, the bulging portion 13 bulging into the air passage 11 is made into a hollow truncated cone 52 whose inner surface is open to the liquid flow passage 10;
The inner surface 53 is used as a vortex generating part 54 for the flowing liquid in the liquid flowing passage 11, and the inner surfaces of the plurality of bulging parts 13 provided in the liquid flowing passage 10 flow into the said bulging part 13 communicating with the zigzag flow path. At 53, the flowing liquid turns into a vortex, temporarily stays inside the bulge 50, and then flows out from the bulge 13 into the zigzag flow path at the lower stage. The flow rate of the water can be made sufficiently slow, and the indirect contact time with the air flow flowing through the air passage 11 can be made sufficiently long, so that the circulating water can be cooled to a predetermined temperature without changing the absolute humidity of the air. An indirect heat exchanger A can be manufactured.

またこれら膨出部13の突合せで2枚の熱交換隔壁板1
2の中間部は相互離間して水平な空気通路11としであ
るため、この空気通路11を通過時に前記空気通路11
内に膨出している膨出突起52においてこの膨出突起5
2外周面に沿い偏流しつつ冷却塔Rの通風室25に流れ
ることとなり、膨出部13内部で渦流となり一時滞留し
ている循環水の一部と膨出部13の中空円錐台52壁面
を介して間接で長い時間充分な空気量と接触することが
でき、循環水を各膨出位置において充分に冷却できる間
接型熱交換器Aを製造できる。
In addition, two heat exchange partition plates 1 are formed by abutting these bulging portions 13.
2 are spaced apart from each other to form a horizontal air passage 11, so when passing through this air passage 11, the air passage 11
In the bulging protrusion 52 that bulges inward, this bulging protrusion 5
2, it flows into the ventilation chamber 25 of the cooling tower R while drifting along the outer peripheral surface, and a part of the circulating water that is temporarily retained as a vortex inside the bulge part 13 and the wall surface of the hollow cone 52 of the bulge part 13. It is possible to manufacture an indirect heat exchanger A that can indirectly contact a sufficient amount of air for a long time through the pump, and can sufficiently cool the circulating water at each expansion position.

相互に突き合わされ、空気通路11を形成する膨出部1
3は、隣接した熱交換ユニットBの横方向のリブとして
機能し、座屈性を向上した間接型熱交換器Aを製造でき
る。
Swelling parts 1 that are butted against each other and form an air passage 11
3 functions as a lateral rib of the adjacent heat exchange unit B, making it possible to manufacture an indirect heat exchanger A with improved buckling resistance.

前記液体流下通路10を形成すべくこの熱交換隔壁板1
2の中間部には、内外に膨出した水平な邪魔部14が不
連続で位置をずらして階層的に多数分布して形成してあ
り、隣接する前記熱交換器ユニットBの熱交換隔壁板1
2に設けた前記邪魔部14同士の掛合乃至嵌置及び突合
せにより前記液体流下通路10をジグザグに蛇行した流
路に容易に成形することが出来る間接型熱交換器Aを製
造できる。
This heat exchange partition plate 1 is used to form the liquid flow passage 10.
In the middle part of the heat exchanger unit B, a large number of horizontal baffle parts 14 bulging inwardly and outwardly are discontinuously distributed at different positions in a hierarchical manner. 1
An indirect heat exchanger A can be manufactured in which the liquid flow passage 10 can be easily formed into a meandering zigzag flow passage by engaging, fitting, and abutting the baffle parts 14 provided in the second embodiment.

第2実施例においては、次の固有の効果をも奏する。The second embodiment also provides the following unique effects.

前記熱交換器ユニットBの下端を全幅にわたり相互結合
し一体化する製造方法であるため、下部充填材32上を
流下中に空気と直接し潜熱作用を受けて蒸発する水分が
前記空気通路11内に侵入するのを皆無とした間接型熱
交換器A1を製造できる。
Since the manufacturing method involves interconnecting and integrating the lower ends of the heat exchanger unit B over the entire width, moisture that evaporates directly with the air while flowing down on the lower filling material 32 and receives latent heat action is absorbed into the air passage 11. It is possible to manufacture an indirect heat exchanger A1 in which there is no intrusion into the heat exchanger A1.

第3実施例の固有の効果は次の通りである。The unique effects of the third embodiment are as follows.

前記流下緩速部Eと溢水路Fとは、前記熱交換隔壁板1
2の少なくとも一側縁に沿い形成され相互底金離反自在
の縦力行の凹凸条19により相互区画され、流下緩速部
Eからオーバーフローした循環水が溢水路F内に流入自
在に形成することにより、前記液体流下通路のうち、流
下緩速部Eが仮に目詰まりしても、前記流下緩速部Eか
らオーバーフローした循環水の一部を前記溢水路F内に
流入させることが出来、前記下部水槽42に向けこの溢
水路F内を通して循環水の一部を流すことが出来、液体
流下通路10の液体入口10aに向けて流下緩速部Eか
らオーバーフローした循環水の一部が逆流することが無
くなり、循環水量自体に不足を来たさず、しかも冷却塔
R2の周囲に飛散することを皆無にできる間接型熱交換
器A2を製造できる。
The slow flow section E and the overflow channel F are connected to the heat exchange partition plate 1.
2 are mutually partitioned by vertically powered uneven strips 19 formed along at least one side edge of the bottom plate and capable of being freely separated from each other. Even if the slow flow section E of the liquid flow passage becomes clogged, a part of the circulating water overflowing from the slow flow section E can be made to flow into the overflow channel F. A part of the circulating water can flow through this overflow channel F toward the water tank 42, and a part of the circulating water overflowing from the slow-flowing part E can flow back toward the liquid inlet 10a of the liquid flowing passage 10. Therefore, it is possible to manufacture an indirect heat exchanger A2 that does not cause a shortage in the amount of circulating water itself and can completely eliminate the possibility of scattering around the cooling tower R2.

前記液体流下通路10Aの両側壁面を形成する隣接する
熱交換器ユニットBの熱交換隔壁板12の内外に分布膨
出した邪魔部14を相互嵌合、突き合わせて流下緩速部
Eを形成し、これら流下緩速部Eと溢水路Fとは、前記
熱交換隔壁板12の少なくとも一側縁に沿い形成され相
互底金離反自在の縦方向の凹凸条19により相互区画す
る製造方法であるため、前記液体流下通路10の目詰ま
り時に隣接する熱交換器ユニットBをその液体流下通路
形成面りで相互離反するのみにより各熱交換器ユニット
Bを損傷すること無く流下緩速部Eと溢水路Fどの分解
清掃を簡単に行える間接型熱交換器A2を製造できる。
The baffle portions 14 bulging inside and outside of the heat exchange partition plate 12 of the adjacent heat exchanger unit B forming both side wall surfaces of the liquid flow passage 10A are mutually fitted and abutted to form a slow flow portion E; Since the slow flow section E and the overflow channel F are formed along at least one side edge of the heat exchange partition plate 12 and are separated from each other by a longitudinal uneven strip 19 that can be separated from each other, When the liquid flow passage 10 is clogged, the adjacent heat exchanger units B are separated from each other by their liquid flow passage forming surfaces, so that each heat exchanger unit B is not damaged, and the slow flow part E and the overflow passage F are separated. An indirect heat exchanger A2 that can be easily disassembled and cleaned can be manufactured.

4、図面の簡単説明 図はこの発明に係るもので、第1図はこの発明の第1実
施例の熱交換器の一部省略正面図、第2図は第2実施例
の熱交換器の一部省略正面図、第3図は第3実施例の熱
交換器の一部省略正面図、第4図乃至第8図は第1図の
4−4.5−5.6−6.7−7.8−8の各線に沿い
縦断し隣接する熱交換ユニットの突合せ状態を示す一部
省略縦断面図、第9図は第1図の一部省略底面図、第1
O図は第1図の熱交換器の使用例を示す概略図、第12
図は第3図の熱交換器の使用例を示す概略図及び第13
図は第3図の一部省略底面図である。
4. Simple explanatory diagrams of the drawings are related to the present invention; Fig. 1 is a partially omitted front view of a heat exchanger according to a first embodiment of the present invention, and Fig. 2 is a partially omitted front view of a heat exchanger according to a second embodiment of the present invention. 3 is a partially omitted front view of the heat exchanger of the third embodiment, and FIGS. 4 to 8 are 4-4.5-5.6-6.7 of FIG. 1. -7.8-8 is a partially omitted longitudinal cross-sectional view showing the butt state of adjacent heat exchange units, FIG. 9 is a partially omitted bottom view of FIG.
Figure O is a schematic diagram showing an example of the use of the heat exchanger in Figure 1;
The figure is a schematic diagram showing an example of the use of the heat exchanger in Figure 3 and
The figure is a partially omitted bottom view of FIG. 3.

図中の主な符号 A、Al、A2・・・・・・冷却塔用熱交換器、10、
IOA・・・・・・液体流下通路、11・・・・・・空
気通路、 12・・・・・・熱交換隔壁板、 B・・・・・・・・・熱交換器ユニット。
Main symbols A, Al, A2 in the figure...cooling tower heat exchanger, 10,
IOA: liquid flow passage, 11: air passage, 12: heat exchange partition plate, B: heat exchanger unit.

手続補正書(方式) 昭和63年3月8日Procedural amendment (formality) March 8, 1986

Claims (1)

【特許請求の範囲】 1)扁平な垂直方向の相互に平行な数個の液体流下通路
と、これらの各液体流下通路間にそれぞれ形成された垂
直方向の面をもつ扁平で、気流のの流れる水平な空気通
路を有し、これらの2つの液体通路が相互の流体を非接
触とする複数枚の合成樹脂板よりなる熱交換隔壁板によ
って仕切られている間接型熱交換器の製造方法において
、a)真空成形法によって所定枚数、同大同一形状の合
成樹脂製熱交換隔壁板をそれぞれ一枚の合成樹脂板から
真空成形加工し、各熱交換隔壁板の中間で多数の膨出部
を同一側へ突出成形し、更に各隔壁板の両側辺に沿い相
互掛合自在な縦方向の凹凸条を形成すると共に、その上
端縁部をこの膨出部の高さと同一寸法、L字状に前記膨
出部と同一側へ屈曲成形する工程。 b)前記熱交換隔壁板を2枚一組として相互に表裏を反
転してその屈曲成形した上端縁部同士をその全幅に亘り
相互に結合し一体化し単一の熱交換器ユニットとすると
共に、相対峙する内向きの前記膨出部同士を突合せ、こ
の2枚の熱交換隔壁板の中間部を相互離間させ、少なく
とも上端が閉止され左右が開口しているトンネル状の一
つの空気通路を形成する工程。 c)このように製造した熱交換器ユニットを複数個ケー
ス内に順次起立して並列配置し、隣接する熱交換器ユニ
ットにおける熱交換隔壁板に設けた縦方向の前記凹凸条
を相互に掛け合わせ両側辺においてほゞ水密とした流体
流下通路を、隣接する熱交換器ユニットの熱交換隔壁板
間に形成すると共にこの隣接する熱交換器ユニットの熱
交換隔壁板の上端縁間に前記液体流体流下通路に通じる
液体入口を成形し、各流体流下通路形成面で相互掛合分
離自在にこれら熱交換器ユニット同士を連結する工程。 以上a)乃至c)からなることを特徴とする間接型熱交
換器の製造方法。 2)前記液体流下通路を、この液体流下通路の両側壁面
を形成する隣接する熱交換器ユニットの熱交換隔壁板の
内外に分布膨出した水平な邪魔部を相互嵌合、突合せ階
層的にジグザグな液体流下通路とする特許請求の範囲第
1項記載の間接型熱交換器の製造方法。 3)熱交換器ユニットの下端をも全幅にわたり一体に結
合し、前記空気通路を上下密閉で左右に給排気口を有す
るトンネル状のものに形成する特許請求の範囲第1項記
載の間接型熱交換器の製造方法。 4)前記の液体流下通路を、この液体流下通路の両側壁
面を形成する隣接する熱交換器ユニットの熱交換壁板の
内外に分布膨出した邪魔部を相互嵌合、若しくは突き合
わせて形成した流下緩速部と、この流下緩速部に隣接し
て形成された溢水路とで成形し、これら流下緩速部と溢
水路を、前記熱交換壁板の少なくとも一側縁に沿い形成
した相互嵌合離反自在の縦方向の凹凸条により相互区画
して、流下緩速部からオーバーフローした循環水を溢水
路内に流入自在に形成する特許請求の範囲第1項記載の
間接型熱交換器の製造方法。 5)前記空気通路内に膨出している前記膨出部はその内
面が前記液体流下通路側に、開口した中空円錐台とし、
その内面は前記液体流下通路における流下液体の渦発生
部とする特許請求の範囲第1項記載の間接型熱交換器の
製造方法。
[Scope of Claims] 1) A flat device having several flat vertical liquid flow passages parallel to each other and a vertical surface formed between each of these liquid flow passages, through which an air flow flows. In a method for manufacturing an indirect heat exchanger, which has a horizontal air passage and these two liquid passages are partitioned by a heat exchange partition plate made of a plurality of synthetic resin plates that keep the fluids out of contact with each other, a) A predetermined number of synthetic resin heat exchange partition plates of the same size and shape are vacuum formed from one synthetic resin plate using the vacuum forming method, and a large number of bulges are formed in the middle of each heat exchange partition plate to be the same. In addition, along both sides of each partition plate, vertical uneven strips are formed that can be freely engaged with each other, and the upper edge thereof is formed into an L-shape with the same dimension as the height of the bulge. The process of bending to the same side as the exit part. b) forming a set of two of the heat exchange partition plates, reversing the front and back of each other, and connecting the bent upper edges thereof to each other over the entire width to form a single heat exchanger unit; The opposing inward bulging portions are butted against each other, and the middle portions of the two heat exchange partition plates are separated from each other to form one tunnel-shaped air passageway with at least the upper end closed and the left and right sides open. The process of doing. c) A plurality of heat exchanger units manufactured in this manner are sequentially arranged in parallel in a case, and the vertical uneven stripes provided on the heat exchange partition plates of adjacent heat exchanger units are crossed with each other. A fluid flow passage that is substantially watertight on both sides is formed between the heat exchange partition plates of adjacent heat exchanger units, and the liquid fluid flow passage is formed between the upper edges of the heat exchange partition plates of the adjacent heat exchanger units. A step of forming a liquid inlet leading to a passage and connecting these heat exchanger units so that they can be engaged and separated from each other at each fluid flow passage forming surface. A method for manufacturing an indirect heat exchanger, characterized by comprising the steps a) to c) above. 2) The liquid flow passage is formed in a hierarchical zigzag pattern by interfitting and abutting horizontal baffles distributed inside and outside of the heat exchange partition plates of adjacent heat exchanger units that form both side wall surfaces of the liquid flow passage. A method for manufacturing an indirect heat exchanger according to claim 1, wherein the indirect heat exchanger has a liquid flow passage. 3) The indirect type heat exchanger unit according to claim 1, wherein the lower end of the heat exchanger unit is also integrally connected over the entire width, and the air passage is formed into a tunnel-like structure that is vertically sealed and has air supply and exhaust ports on the left and right sides. Method of manufacturing an exchanger. 4) The above-mentioned liquid flow passage is formed by mutually fitting or butting together baffles that bulge out inside and outside of the heat exchange wall plates of adjacent heat exchanger units that form both side wall surfaces of this liquid flow passage. A mutual fitting formed by a slow flow part and an overflow channel formed adjacent to the slow flow flow part, and the slow flow flow part and the overflow channel are formed along at least one side edge of the heat exchange wall plate. Manufacture of an indirect heat exchanger according to claim 1, which is partitioned by longitudinal uneven strips that can be freely combined and retracted, so that circulating water overflowing from a slow-flowing section can freely flow into an overflow channel. Method. 5) The bulging portion bulging into the air passage is a hollow truncated cone whose inner surface is open to the liquid flow passage side,
2. The method for manufacturing an indirect heat exchanger according to claim 1, wherein the inner surface thereof serves as a vortex generating part for the flowing liquid in the liquid flowing passage.
JP62295045A 1987-11-17 1987-11-25 Manufacturing method of indirect heat exchanger Expired - Fee Related JP2660207B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP62295045A JP2660207B2 (en) 1987-11-25 1987-11-25 Manufacturing method of indirect heat exchanger
DE3852552T DE3852552T2 (en) 1987-11-17 1988-05-06 Heat exchanger for a cooling tower.
EP88107336A EP0316510B1 (en) 1987-11-17 1988-05-06 Heat exchanger for cooling tower
EP91116137A EP0464874B1 (en) 1987-11-17 1988-05-06 Heat exchanger for cooling tower
DE88107336T DE3883161T2 (en) 1987-11-17 1988-05-06 Heat exchanger for a cooling tower.
DE3855049T DE3855049T2 (en) 1987-11-17 1988-05-06 Heat exchanger for a cooling tower
EP91116138A EP0464875B1 (en) 1987-11-17 1988-05-06 Heat exchanger for cooling tower
US07/233,265 US4874035A (en) 1987-11-17 1988-08-16 Heat exchanger for cooling tower
US07/337,062 US4997031A (en) 1987-11-17 1989-04-11 Heat exchanger for cooling tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62295045A JP2660207B2 (en) 1987-11-25 1987-11-25 Manufacturing method of indirect heat exchanger

Publications (2)

Publication Number Publication Date
JPH01140927A true JPH01140927A (en) 1989-06-02
JP2660207B2 JP2660207B2 (en) 1997-10-08

Family

ID=17815606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62295045A Expired - Fee Related JP2660207B2 (en) 1987-11-17 1987-11-25 Manufacturing method of indirect heat exchanger

Country Status (1)

Country Link
JP (1) JP2660207B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014125566A1 (en) * 2013-02-12 2017-02-02 三菱電機株式会社 Plate heat exchanger and refrigeration cycle apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140942A (en) * 1974-02-06 1975-11-12
JPS51100370A (en) * 1975-01-27 1976-09-04 Marley Co

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140942A (en) * 1974-02-06 1975-11-12
JPS51100370A (en) * 1975-01-27 1976-09-04 Marley Co

Also Published As

Publication number Publication date
JP2660207B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
US6568466B2 (en) Heat exchange assembly
US4116271A (en) Counter-current bumped plates heat exchanger
EP0464874B1 (en) Heat exchanger for cooling tower
EP1361406A2 (en) Heat exchanger
US20070137843A1 (en) Heat exchanger core and heat exchanger equipped therewith
KR100497847B1 (en) Evaporator
JPH01140927A (en) Manufacture of indirect type heat-exchanger
US4964977A (en) Cross-flow type cooling tower
JP2550366B2 (en) Heat exchanger for cooling tower
JP2579504B2 (en) Indirect heat exchanger for cooling tower
JPH0749914B2 (en) Stacked heat exchanger
JP2003185376A (en) Cooling liquid/air heat exchanger core assembly
JP2617759B2 (en) cooling tower
US7261285B2 (en) Internal inserts in cooling towers
JP2579523B2 (en) Crossflow cooling tower
JP2579522B2 (en) Cross-flow heat exchange tower
US7959134B2 (en) Contact body for an evaporation humidifier or material exchanger
JPH09273830A (en) Evaporator
JPS59183288A (en) Cooling tower of closed type
CN216694618U (en) PVC dividing wall type cross flow heat exchanger
CN216159685U (en) Plate type evaporative condenser
JPH0835792A (en) Packing material for cooling tower
CN114136138A (en) PVC dividing wall type cross flow heat exchanger
JP2534751Y2 (en) Heat exchanger
JPS59115986A (en) Heat exchanger

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees