JPH01139783A - Preparation of highly conductive polymer - Google Patents

Preparation of highly conductive polymer

Info

Publication number
JPH01139783A
JPH01139783A JP62296793A JP29679387A JPH01139783A JP H01139783 A JPH01139783 A JP H01139783A JP 62296793 A JP62296793 A JP 62296793A JP 29679387 A JP29679387 A JP 29679387A JP H01139783 A JPH01139783 A JP H01139783A
Authority
JP
Japan
Prior art keywords
conductive polymer
electrolytic polymerization
cylinder
polymerization
page
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62296793A
Other languages
Japanese (ja)
Inventor
Kenji Yamada
山田 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62296793A priority Critical patent/JPH01139783A/en
Publication of JPH01139783A publication Critical patent/JPH01139783A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare the title effective polymer having high electrical conductivity and capable of being widely used by imparting shearing stress during the electrolytic polymerization ot a conductive polymer, and carrying out molecular orientation simultaneously with the electrolytic polymerization ot the conductive polymer. CONSTITUTION:An inner cylinder 2 (working electrode) and an outer cylinder 3 (counter electrode) are arranged in a polymerization vessel 1. An electrolytic polymerization soln. 4 is filled between the cylinders 2 and 3. The inner cylinder 2 is then rotated at a high speed (about 500-10,000r.p.m.) to develop a high shearing rate on the working electrode of the cylinder 2, and then a constant electric current is applied. As a result, the electrolytic polymerization of the conductive polymer and the molecular orientation are simultaneously carried out, and a highly conductive polymer is deposited.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高導電性高分子の調製法に関し、特に有機二次
電池の電極材に適用されるものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for preparing highly conductive polymers, and is particularly applicable to electrode materials for organic secondary batteries.

[従来の技術と問題点] 周知の如く、従来の電解重合法(文献:A、F。[Conventional technology and problems] As is well known, conventional electrolytic polymerization methods (References: A, F.

Dlaz、J、  C,LaCr1ox、高分子、 V
ol、31i。
Dlaz, J, C, LaCr1ox, polymer, V
ol, 31i.

27B(1987)など)では、導電性高分子の合成中
に分子配向をもたらす剪断応力を加えずに電極表面上に
析出させている。この場合、導電性高分子鎖はランダム
配向となっており、導電率を高めるためには分子配向さ
せる必要がある。
27B (1987), etc.), conductive polymers are deposited on electrode surfaces without applying shear stress that causes molecular orientation during synthesis. In this case, the conductive polymer chains are randomly oriented, and it is necessary to orient the molecules in order to increase the conductivity.

ところで、電解重合後、導電性高分子を通常の遠心法で
配向させて、配向方向の導電率を数倍高めた例がある。
By the way, there is an example in which conductive polymers are oriented by a normal centrifugation method after electropolymerization, and the conductivity in the orientation direction is increased several times.

この場合の導電性高分子として、ポリピロール(文献:
 M、 Ogasawara、 K。
In this case, the conductive polymer is polypyrrole (Reference:
M., Ogasawara, K.

Funahashl、and  K、  Ivata、
 Mo1. Cryst。
Funahashl, and K. Ivata,
Mo1. Cryst.

LIQ、 Cryst、、118,159(1958)
 )の例があるのみで他にない。
LIQ, Cryst, 118, 159 (1958)
), but there are no other examples.

しかるに、導電率を高めるために電解重合試料を電解重
合後に通常の延伸法により配向させた例は、ポリピロー
ルのみであり、他の重合種では延伸できたという報告は
今のところない。この理由は、他の重合種では脆く延伸
の困難さによる。
However, polypyrrole is the only example in which an electropolymerized sample was oriented by a normal stretching method after electropolymerization in order to increase electrical conductivity, and there are no reports to date that stretching could be achieved with other polymer species. The reason for this is that other polymeric species are brittle and difficult to stretch.

本発明は上記事情に鑑みてなされたもので、電解重合中
に剪断応力を与えることにより、導電性高分子の電解重
合と分子配向を同時に行い、高導電率で汎用かつ有効な
高導電性高分子の調製法を提供することを目的とする。
The present invention was made in view of the above circumstances, and by applying shear stress during electrolytic polymerization, electrolytic polymerization and molecular orientation of conductive polymers are simultaneously performed, and a highly conductive polymer with high conductivity, versatile and effective. The purpose is to provide a method for the preparation of molecules.

[問題点を解決するための手段と作用]本発明は、導電
性高分子の電解重合中剪断応力を与えることにより、前
記導電性高分子の電解m合と分子配向を同時に行うこと
を要旨とする。
[Means and effects for solving the problems] The gist of the present invention is to simultaneously perform electrolytic polymerization and molecular orientation of the conductive polymer by applying shear stress during the electrolytic polymerization of the conductive polymer. do.

本発明においては、円筒(作用電極)を高速で回転する
ことによりこの円筒表面付近に剪断応力が働くようにし
た後、円筒に重合電位を印加する。
In the present invention, a cylinder (working electrode) is rotated at high speed to apply shear stress near the surface of the cylinder, and then a polymerization potential is applied to the cylinder.

このようにして分子子配合した導電性高分子が前記円筒
表面上に析出する。
The conductive polymer molecules mixed in this way are deposited on the cylindrical surface.

[実施例コ 以下、本発明の実施例を第1図を参照して説明する。ま
ず、第1図に示す分子配向−電解重合同時法による高導
電性分子調製装置について説明する。
[Embodiment] Hereinafter, an embodiment of the present invention will be described with reference to FIG. First, a highly conductive molecule preparation apparatus using the molecular orientation/electrolytic polymerization joint method shown in FIG. 1 will be explained.

図中の1は、重合容器である。この重合容器1内には、
内側の円筒(作用電極)2.外側の円筒(対極)3が夫
々配置されている。ここで、前記円筒2は例えば直径2
4mm、高さ3CIIlであり、円筒3の直径は30〜
5011でって、いずれもpt製である。また、円筒2
の表面の平均剪断速度は、円筒3の直径と円筒2の回転
数に依存する。電解重合溶液4は、前記円筒2の上面を
越えて円筒2゜3の間に充填する。前記重合容器1の上
方には、固定台5、ブラシ6などが配置されている。な
お、図中の7は参照電極(A g/A g+主電極、8
は塩橋である。
1 in the figure is a polymerization container. Inside this polymerization container 1,
Inner cylinder (working electrode)2. An outer cylinder (counter electrode) 3 is arranged respectively. Here, the cylinder 2 has a diameter of 2, for example.
4mm, height 3CIIl, and the diameter of the cylinder 3 is 30~
5011, all of which are made by PT. Also, cylinder 2
The average shear rate on the surface of depends on the diameter of the cylinder 3 and the rotation speed of the cylinder 2. The electropolymerization solution 4 passes over the upper surface of the cylinder 2 and fills between the cylinders 2.3. A fixing table 5, a brush 6, etc. are arranged above the polymerization container 1. In addition, 7 in the figure is the reference electrode (A g/A g + main electrode, 8
is a salt bridge.

実施例1 次に、配向ポリチオフェンの調製の場合について説明す
る。
Example 1 Next, the preparation of oriented polythiophene will be described.

■まず、チオフェン濃度0101〜0.3M。■First, the thiophene concentration is 0101-0.3M.

支持電解質濃度0.03〜0.2Mの電解重合溶液(溶
媒:プロピレンカーボネート又はアセトニトリル)を調
整する。但し、支持電解質としてテトラエチルアンモニ
ウムバークロレート、テトラ−n−ブチルアンモニウム
バークロレートを用いた。つづいて、電解重合溶液を第
1図に示す重合容器1内に充填する。溶液温度はθ〜3
0’Cとする。次いで、内側の円筒2を高速(500〜
110000rp )で回転させることにより、前記円
筒2の表面の作用電極上に高せん断速度を発生させた。
An electrolytic polymerization solution (solvent: propylene carbonate or acetonitrile) with a supporting electrolyte concentration of 0.03 to 0.2 M is prepared. However, tetraethylammonium verchlorate and tetra-n-butylammonium verchlorate were used as supporting electrolytes. Subsequently, the electrolytic polymerization solution is filled into the polymerization container 1 shown in FIG. The solution temperature is θ~3
Let it be 0'C. Next, the inner cylinder 2 is heated at high speed (500~
A high shear rate was generated on the working electrode on the surface of the cylinder 2 by rotating at 110,000 rpm).

ここで、平均剪断速度は、上記円筒2,3の直径(夫々
24IIlffl、30〜50ff1m)、高速回転(
500〜10000rpI11)の条件下で74〜47
10sec−1となる。
Here, the average shear rate is the diameter of the cylinders 2 and 3 (24IIlffl, 30 to 50ff1m, respectively), the high speed rotation (
74-47 under the conditions of 500-10000rpI11)
It becomes 10 sec-1.

■次に、このように内側の円筒2を高速で回転した後、
低電流(電流密度0.5〜5mA/co+2)を印加し
た。なお、重合に要した層重荷量は0.5〜IC/cI
112とした。ここで、調整した重合膜のX線解析によ
りポリチオフェン鎖が配向することを確認した。
■Next, after rotating the inner cylinder 2 at high speed like this,
A low current (current density 0.5-5 mA/co+2) was applied. Note that the layer weight required for polymerization is 0.5 to IC/cI.
It was set at 112. Here, it was confirmed by X-ray analysis of the prepared polymer film that the polythiophene chains were oriented.

しかして、内側の円筒2の回転を停止させて調製した無
配向電解重合膜の導電率は10〜100s/cm程度で
あるが、上記の内側の円筒2を回転させて調製した配向
電解重合膜の導電率は配向方向で約1.5〜2倍増加し
た。
Therefore, the electrical conductivity of the non-oriented electrolytic polymer film prepared by stopping the rotation of the inner cylinder 2 is about 10 to 100 s/cm, but the oriented electrolytic polymer film prepared by rotating the inner cylinder 2 described above has a conductivity of about 10 to 100 s/cm. The electrical conductivity increased by about 1.5-2 times in the orientation direction.

実施例2 次に、配向ポリピロールの調製の場合について説明する
Example 2 Next, the preparation of oriented polypyrrole will be described.

まず、ビロール濃度0.01〜0.3M、支持電解質濃
度0.03〜0.2Mの電解重合溶液(溶媒:プロピレ
ンカーボネート又はアセトニトリル)を調製する。但し
、支持電解質としてテトラエチルアンモニウムバークロ
レート、テトラ−n−ブチルアンモニウムバークロレー
ト、ホウフッ化リチウムを用いた。つづいて、電解重合
溶液を第1図に示す重合容器1内に充填する。溶液温度
は0〜30℃とする。次いで、実施例1と同様に、内側
の円筒2を高速(500〜1010000rpで回転さ
せた後、定電流(電流密度0.5〜3mA/c+n2)
を印加した。なお、重合に要した層重荷量は0.5〜l
c/Cm2とした。ここで、調整した重合膜のX線解析
によりポリピロール鎖が配向することを確認した。
First, an electrolytic polymerization solution (solvent: propylene carbonate or acetonitrile) having a virol concentration of 0.01 to 0.3M and a supporting electrolyte concentration of 0.03 to 0.2M is prepared. However, tetraethylammonium verchlorate, tetra-n-butylammonium verchlorate, and lithium borofluoride were used as supporting electrolytes. Subsequently, the electrolytic polymerization solution is filled into the polymerization container 1 shown in FIG. The solution temperature is 0 to 30°C. Next, as in Example 1, after rotating the inner cylinder 2 at high speed (500 to 1,010,000 rpm), a constant current (current density of 0.5 to 3 mA/c+n2) was applied.
was applied. In addition, the layer weight required for polymerization is 0.5 to 1
c/Cm2. Here, it was confirmed by X-ray analysis of the prepared polymer film that the polypyrrole chains were oriented.

しかして、内側の円筒2の回転を停止させて調製した無
配向電解重合膜の導電率は30〜140s/cffl程
度であるが、上記の内側の円筒2を回転させて調製した
配向電解重合膜の導電率は配向方向で約1.5〜2.5
倍増加した。
Therefore, the conductivity of the non-oriented electrolytic polymer film prepared by stopping the rotation of the inner cylinder 2 is about 30 to 140 s/cffl, but the oriented electrolytic polymer film prepared by rotating the inner cylinder 2 described above has a conductivity of about 30 to 140 s/cffl. The conductivity of is about 1.5-2.5 in the orientation direction.
doubled.

[発明の効果コ 以上詳述した如く本発明によれば、電解重合中に剪断応
力を与えることにより、導電性高分子の電解重合と分子
配向を同時に行い、高導電率で汎用かつ有効な高導電性
高分子の調製法を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, by applying shear stress during electrolytic polymerization, electrolytic polymerization and molecular orientation of a conductive polymer are simultaneously performed, and a general-purpose and effective polymer with high conductivity is produced. A method for preparing a conductive polymer can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る分子配向−電解重合同時法による
高導電性分子調製装置の説明図である。 1・・・重合容器、2,3・・・円筒、4・・・電解重
合溶液、5・・・固定台、6・・・ブラシ、7・・・参
照電極、8・・・塩橋。 出願人代理人 弁理士 鈴江武彦 第1図 手続補正書 平成元年2月10日 1、事件の表示 特願昭62−296793号 イ ネ 3、補正をする者                 
     5事件との関係  特許出願人 (620)  E菱11業4式会1       。 4、代理人 東京都千代田区霞が関3丁目7番2号   4! ?、補正の内容 (i)明細書節2頁2行目において「遠心法」ヒあるを
、「延伸法」と訂正する。 (2)明細書筒2頁6行目においてr (195g)J
ヒあるを、r (1985)Jと訂正する。 (3)明細書節3頁5行目において「分子子配渣」とあ
るを、「分子配合」と訂正する。 (4)明細書第3頁lO行目及び第7頁3行目に5いて
「高導電性分子」とあるを、「高導電性高子子」と訂正
する。 (5)明細書第3頁16行目において「でって」ヒある
を、「であって」と訂正する。 (6)明細書節4頁7行目及び第5頁15行目にUいて
r O,01Jとあるを、rO,l Jと訂正する。 (7)明細書節4頁8行目及び第5頁16行目に固いて
ro、03〜0.2MJとあるを、rO,02〜0.1
4」と訂正する。 (8)明細書節5頁2行目において「低電流」とあるを
、「定電流」と訂正する。 (9)明細書節5頁3行目及び第6頁6〜7行巳におい
て「層重荷量」とあるを、「総電荷量」と訂iEする。 (lO)明細書節5頁4行目及び第6頁7行目において
re/cm2Jとあるを、rC/ci’Jと訂正する。 (11)明細書節5頁9行目及び第6頁12行目におい
てrs/ca2Jとあるを、「S/c12」と訂正する
。 (12)第1図を別紙の如く訂正する。 第1図
FIG. 1 is an explanatory diagram of a highly conductive molecule preparation apparatus using the molecular orientation-electropolymerization joint method according to the present invention. DESCRIPTION OF SYMBOLS 1... Polymerization container, 2, 3... Cylinder, 4... Electrolytic polymerization solution, 5... Fixing stand, 6... Brush, 7... Reference electrode, 8... Salt bridge. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Procedural amendment February 10, 1989 1, Indication of case Patent application No. 62-296793 Ine 3, Person making the amendment
Relationship with the 5 cases Patent applicant (620) E Ryo 11 Gyo 4 Shikikai 1. 4. Agent 3-7-2 Kasumigaseki, Chiyoda-ku, Tokyo 4! ? Contents of the amendment (i) In the second line of page 2 of the specification section, "centrifugal method" is corrected to "stretching method." (2) r (195g) J on page 2, line 6 of the specification tube
Correct hi aru to r (1985) J. (3) In the specification section, page 3, line 5, the phrase ``molecular molecule ligand'' is corrected to ``molecular combination.'' (4) "Highly conductive molecules" in page 3, line 10 and page 7, line 3 of the specification are corrected to read "highly conductive polymers." (5) On page 3, line 16 of the specification, "dette" is corrected to "dete". (6) In the specification section, page 4, line 7, and page 5, line 15, the words r O, 01J are corrected to rO, l J. (7) In the specification section, page 4, line 8 and page 5, line 16, it says ro, 03-0.2MJ, rO, 02-0.1
4,” he corrected. (8) In the second line of page 5 of the specification section, the phrase "low current" is corrected to "constant current." (9) In the specification section, page 5, line 3, and page 6, lines 6-7, the term "layer weight" is revised to read "total charge amount." (lO) In the specification section, page 5, line 4 and page 6, line 7, re/cm2J is corrected to rC/ci'J. (11) In the specification section, page 5, line 9 and page 6, line 12, rs/ca2J is corrected to "S/c12". (12) Figure 1 is corrected as shown in the attached sheet. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 導電性高分子の電解重合中剪断応力を与えることにより
、前記導電性高分子の電解重合と分子配向を同時に行う
ことを特徴とする高導電性高分子の調製法。
A method for preparing a highly conductive polymer, characterized in that electrolytic polymerization and molecular orientation of the conductive polymer are simultaneously performed by applying shear stress during electrolytic polymerization of the conductive polymer.
JP62296793A 1987-11-25 1987-11-25 Preparation of highly conductive polymer Pending JPH01139783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62296793A JPH01139783A (en) 1987-11-25 1987-11-25 Preparation of highly conductive polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62296793A JPH01139783A (en) 1987-11-25 1987-11-25 Preparation of highly conductive polymer

Publications (1)

Publication Number Publication Date
JPH01139783A true JPH01139783A (en) 1989-06-01

Family

ID=17838206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62296793A Pending JPH01139783A (en) 1987-11-25 1987-11-25 Preparation of highly conductive polymer

Country Status (1)

Country Link
JP (1) JPH01139783A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099756A (en) * 1996-07-25 2000-08-08 International Business Machines Corporation Vibrational methods of deaggregation of electrically conductive polymers and precursors thereof
WO2007145185A1 (en) * 2006-06-12 2007-12-21 The Yokohama Rubber Co., Ltd. Process for producing conductive polymer dispersion and conductive polymer dispersion
JP2007332184A (en) * 2006-06-12 2007-12-27 Yokohama Rubber Co Ltd:The Method for producing conductive polymer dispersion and conductive polymer dispersion
US11118386B2 (en) 2017-05-11 2021-09-14 Julius Blum Gmbh Guide carriage for the displaceable mounting of a furniture part

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923889A (en) * 1982-07-14 1984-02-07 バスフ アクチェン ゲゼルシャフト Manufacture of pyrrole filmy polymer
JPS62170494A (en) * 1986-01-23 1987-07-27 Furukawa Electric Co Ltd:The Production of conductive resin sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923889A (en) * 1982-07-14 1984-02-07 バスフ アクチェン ゲゼルシャフト Manufacture of pyrrole filmy polymer
JPS62170494A (en) * 1986-01-23 1987-07-27 Furukawa Electric Co Ltd:The Production of conductive resin sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099756A (en) * 1996-07-25 2000-08-08 International Business Machines Corporation Vibrational methods of deaggregation of electrically conductive polymers and precursors thereof
WO2007145185A1 (en) * 2006-06-12 2007-12-21 The Yokohama Rubber Co., Ltd. Process for producing conductive polymer dispersion and conductive polymer dispersion
JP2007332184A (en) * 2006-06-12 2007-12-27 Yokohama Rubber Co Ltd:The Method for producing conductive polymer dispersion and conductive polymer dispersion
US7960499B2 (en) 2006-06-12 2011-06-14 The Yokohama Rubber Co., Ltd. Process for producing conductive polymer dispersion and conductive polymer dispersion
US11118386B2 (en) 2017-05-11 2021-09-14 Julius Blum Gmbh Guide carriage for the displaceable mounting of a furniture part

Similar Documents

Publication Publication Date Title
Scartazzini et al. Organogels from lecithins
Amatore et al. Charge transfer at partially blocked surfaces: A model for the case of microscopic active and inactive sites
Benicewicz et al. Magnetic field orientation of liquid crystalline epoxy thermosets
EP0231781B1 (en) Liquid crystal display element
Fernandes et al. Biodegradable deep-eutectic mixtures as electrolytes for the electrochemical synthesis of conducting polymers
Goldenberg et al. Benzene polymerization in 1-ethyl-3-methylimidazolium chloride-AlCl3 ionic liquid
Goto et al. Asymmetric electrochemical polymerization: Preparation of polybithiophene in a chiral nematic liquid crystal field and optically active electrochromism
JPH01139783A (en) Preparation of highly conductive polymer
Roncali et al. Electroactivity of transparent composite films from conducting poly (thiophenes)
Kuwabata et al. Effect of organic dopants on electrical conductivity of polypyrrole films
Osakai et al. Determination of the standard free energies of transfer of alkylammonium ions from nitrobenzene to water using polarographic methods with immiscible electrolyte solution interface
Liu et al. Preparation of PAA‐g‐PEG/PANI polymer gel electrolyte and its application in quasi solid state dye‐sensitized solar cells
Zhang et al. Wetting Phenomena and their Effect on the Electrochemical Performance of Surface‐Tailored Lithium Metal Electrodes in Contact with Cross‐linked Polymeric Electrolytes
DE69715392D1 (en) MATERIALS WITH HIGH ELECTRICAL CONDUCTIVITY AT ROOM TEMPERATURE AND METHOD FOR THE PRODUCTION THEREOF
Akagi Hyperstructured polyacetylene
Choi et al. Lithium ion conduction in PEO–salt electrolytes gelled with PAN
Villagrán et al. Electroreduction of N-methylphthalimide in room temperature ionic liquids under insonated and silent conditions
Li et al. Preparation of a porous conducting polymer film by electrochemical synthesis–solvent extraction method
Eftekhari Enhanced stability and conductivity of polypyrrole film prepared electrochemically in the presence of centrifugal forces
Murthy et al. Dynamic mechanical properties of poly (. gamma.-benzyl L-. alpha.-glutamate) gels in benzyl alcohol
Matricardi et al. Rheological gel-point determination for a polysaccharide system undergoing chemical cross-linking
Quartarone et al. Ions Dynamics and Diffusion in Self‐Healing Chemical Gel Electrolytes for Li‐ion Batteries
Nakazawa et al. Preparation of high quality polypyrrole films
Merle et al. Situ investigation of the doping and dedoping of poly methylthiophen by electromirage effect
Enkelmann et al. Transport properties of asymmetric polyamide membranes