JPH01138989A - Controlling method for reel driving motor - Google Patents

Controlling method for reel driving motor

Info

Publication number
JPH01138989A
JPH01138989A JP62297165A JP29716587A JPH01138989A JP H01138989 A JPH01138989 A JP H01138989A JP 62297165 A JP62297165 A JP 62297165A JP 29716587 A JP29716587 A JP 29716587A JP H01138989 A JPH01138989 A JP H01138989A
Authority
JP
Japan
Prior art keywords
motor
tension
reel
signal
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62297165A
Other languages
Japanese (ja)
Other versions
JPH06104247B2 (en
Inventor
Ichiro Ueda
一郎 上田
Katsuya Kondo
勝也 近藤
Eizo Yasui
安居 栄蔵
Takeshi Taniguchi
武史 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62297165A priority Critical patent/JPH06104247B2/en
Publication of JPH01138989A publication Critical patent/JPH01138989A/en
Publication of JPH06104247B2 publication Critical patent/JPH06104247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Winding, Rewinding, Material Storage Devices (AREA)
  • Control Of Metal Rolling (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

PURPOSE:To stabilize reel tension and obtain high platethickness-controlling precision, by performing process for avoiding counting noise, and by performing differential arithmetic. CONSTITUTION:In a tension responding arithmetic unit 52, smoothing filters 527, 528, and a subtracter 529 are additionally arranged. By the smoothing filter 527, through the input of the rotational speed omega of a motor M detected by a rotational speed meter 51, counting noise is smoothing-processed, and an arithmetic unit omega' is produced. By the subtractor 529, a difference between this signal omega' and the original rotational speed omega is found, and with a multiplier 520, the difference is multiplied by the inverse number of a time constant, and the differential signal (domega/dt)' of the rotational speed omega is equivalently found. A difference between signal multiplied by the moment of inertia with a multiplier 522, and the signal TM' of generation torque TM smoothing-processed by the smoothing filter 528 is found by a subtracter 523, and the input to a subtractor 524 is provided as load torque TL'.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧延機、特に冷間圧延機のリール駆動モータの
制御方法に関し、更に詳述すれば高速圧延時、薄物圧延
時における板厚制御精度を高め得る制御方法を提案する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for controlling a reel drive motor of a rolling mill, particularly a cold rolling mill, and more specifically, to a control method for a reel drive motor in a rolling mill, and more specifically, in controlling plate thickness during high-speed rolling and thin rolling. This paper proposes a control method that can improve accuracy.

〔従来技術〕[Prior art]

冷間圧延機は圧延材を圧延するロールスタンドと、その
両側にあって圧延材を供給し、或いは巻取る2つのリー
ルとを備え、リールを駆動するモータの制御によって圧
延材に加わる張力の制御を行い板厚制御に関与させてい
る。
A cold rolling mill is equipped with a roll stand that rolls the rolled material, and two reels on both sides of the stand that supply or wind up the rolled material, and the tension applied to the rolled material is controlled by controlling the motor that drives the reels. This is done to participate in plate thickness control.

第3図は例えば特公昭50−22192号に記載されて
いるリール駆動モータの制御系を示すブロック図である
。リール2に巻戻されている圧延材3はロールスタンド
1にて圧延され図示しない方のリールに巻取られる。ロ
ールスタンド1の入側、出側の板厚は板厚計30.31
にて測定され板厚制御回路32へ入力され、板厚制御回
路32は張力の変更信号ΔT(モータMの電機子電流の
換算値)を出力しこれを加算器18に与える。
FIG. 3 is a block diagram showing a control system for a reel drive motor, which is described in, for example, Japanese Patent Publication No. 50-22192. The rolled material 3 that has been rewound onto the reel 2 is rolled on the roll stand 1 and wound onto a reel (not shown). The board thickness at the entrance and exit sides of roll stand 1 is 30.31 in total.
The tension is measured and input to the plate thickness control circuit 32, and the plate thickness control circuit 32 outputs a tension change signal ΔT (converted value of the armature current of the motor M) and supplies it to the adder 18.

リール2とロールスタンド1との間には圧延材3に転接
するデフレフクロール4が設けられており、これに連動
回転する速度検出器5が検出した圧延材3の移送速度V
の信号は界磁調整装置10へ与えられる。リール2を駆
動するモータMの界磁巻線9には界磁調整装置10から
界磁電流が与えられる。モータMの電機子電流は電源装
置6から供給され、その端子電圧Vt及び電機子電流I
は、端子電圧検出装置8及び抵抗7によって夫々検出さ
れ、界磁調整装置10へ与えられ、また電機子電流Iは
電源装置6に信号を発して電機子電流を制御する電流制
御装置11に与えられる。
A deflation crawler 4 is provided between the reel 2 and the roll stand 1 and rolls into rolling contact with the rolled material 3, and the transfer speed V of the rolled material 3 detected by a speed detector 5 that rotates in conjunction with this is provided.
The signal is given to the field adjustment device 10. A field current is applied from a field adjustment device 10 to a field winding 9 of a motor M that drives the reel 2 . The armature current of the motor M is supplied from the power supply device 6, and its terminal voltage Vt and armature current I
are detected by the terminal voltage detection device 8 and the resistor 7, respectively, and provided to the field adjustment device 10, and the armature current I is provided to the current control device 11, which sends a signal to the power supply device 6 and controls the armature current. It will be done.

張力の設定信号Tは加算器18に与えられる。圧延速度
全体の加減速指令信号S(加減速の指令を示すオン・オ
フ信号)は加減速電流演算n16に入力され、ここで該
信号Sがオンの場合は後述するようにして加減速電流信
号SAが演算され、該信号SAは加算器18へ入力され
る。加算器18はΔT。
The tension setting signal T is applied to an adder 18. The acceleration/deceleration command signal S (on/off signal indicating acceleration/deceleration command) for the entire rolling speed is input to the acceleration/deceleration current calculation n16, and if the signal S is on, the acceleration/deceleration current signal is calculated as described later. SA is calculated and the signal SA is input to adder 18. Adder 18 is ΔT.

T及びSAの3つの入力に基づいて電流目標値IAを算
出してこれを電流制御装置11へ与える。電流制御装置
11はこの目標値I^とフィードバック信号としての抵
抗7による電機子電流実測値■とによって電機子電流を
目標値IAに一致させるべく電源装置6を制御する。ま
た界磁調整装置10は通常は以下のようにしてリール2
上の圧延材3のコイルの外径とモータの界磁電流とが比
例するように界磁調整を行う、即ち、端子電圧検出装置
8にて検出した端子電圧Vtと抵抗7にて検出した電機
子電流Iと電機子回路の抵抗Rとから逆起電圧Eを下記
(1)式にて先ず計算する。
A current target value IA is calculated based on the three inputs T and SA and is provided to the current control device 11. The current control device 11 controls the power supply device 6 to make the armature current match the target value IA based on the target value I^ and the armature current actual value ■ measured by the resistor 7 as a feedback signal. Further, the field adjustment device 10 normally operates the reel 2 as follows.
The field is adjusted so that the outer diameter of the coil of the rolled material 3 above is proportional to the field current of the motor, that is, the terminal voltage Vt detected by the terminal voltage detection device 8 and the electric machine detected by the resistor 7 are adjusted. First, a back electromotive force E is calculated from the child current I and the resistance R of the armature circuit using the following equation (1).

E=Vt=IR・(1) そしてこの逆起電圧Eと圧延材の速度Vとが比例するよ
うに界磁電流を調整する。このようにしておくことによ
り電機子電流と圧延材3にかかる張力(以下リール張力
という)とは比例するから電流制御装置11は実測した
電機子電流Iが目標値IAに等しくなるように電源装置
6の出力電圧を冨周整することになる。
E=Vt=IR・(1) Then, the field current is adjusted so that this back electromotive force E and the speed V of the rolled material are proportional. By doing so, the armature current and the tension applied to the rolled material 3 (hereinafter referred to as reel tension) are proportional, so the current control device 11 controls the power supply so that the actually measured armature current I becomes equal to the target value IA. The output voltage of No. 6 will be adjusted to the fullest extent.

以上の如き従来技術は定常状態下における電機子電流と
リール張力との間の関係を表す式に基づいているから、
モータMを加減速した場合のような過渡状態においては
対応し得ない。そこで圧延機オペレータが圧延機全体の
加減速を行う場合のように加減速率が予め定められてい
るか、又は指定できる場合(前記信号Sがオンの場合)
には前記演算器16にて下記(2)式の如く加減速トル
クを計算し、これを加減速電流に換算して前記加減速電
流信号SAを得る。
Since the above-mentioned conventional technology is based on an equation expressing the relationship between armature current and reel tension under steady state conditions,
This cannot be done in a transient state such as when the motor M is accelerated or decelerated. Therefore, when the acceleration/deceleration rate is predetermined or can be specified, such as when the rolling mill operator accelerates/decelerates the entire rolling mill (when the signal S is on)
Then, the arithmetic unit 16 calculates the acceleration/deceleration torque as shown in equation (2) below, and converts this into an acceleration/deceleration current to obtain the acceleration/deceleration current signal SA.

但し、Tad:加減速トルク α :加減速率 GDt:機械系の慣性 D :圧延材コイル径 そして該信号SAは前記加算器18へ入力され、ここで
リール張力の目標値Tに加算される。
However, Tad: acceleration/deceleration torque α: acceleration/deceleration rate GDt: mechanical system inertia D: rolled material coil diameter, and the signal SA is input to the adder 18, where it is added to the target value T of the reel tension.

また、板厚制御(AGC)によってリール張力を変更す
る場合のように加減速率が定まっていない、又は予測で
きない場合は、前記変更信号ΔTのみが加算器18へ入
力され、ここでリール張力の目標値Tに加算される。
Further, when the acceleration/deceleration rate is not determined or cannot be predicted, such as when changing the reel tension by plate thickness control (AGC), only the change signal ΔT is input to the adder 18, where the target reel tension is It is added to the value T.

さて、このような従来のAGCによって張力制御系へΔ
Tが与えられたとしてもこれはリール張力付与のみなら
ず、張力変化に必要なリール回転数変化を与えるための
リール機械系の加減速トルクにも用いられるから、リー
ル張力の応答が悪いという問題があった。
Now, with such conventional AGC, Δ is applied to the tension control system.
Even if T is given, this is used not only to apply reel tension, but also to the acceleration/deceleration torque of the reel mechanical system to give changes in reel rotation speed necessary for changes in tension, so the problem is that the response of reel tension is poor. was there.

そこで、本発明者等はリール張力の高速応答を可能なら
しめる手段として次に述べるような方法を提案した(特
願昭61−145390号)。即ち、板厚測定値から得
た張力の変更信号に対する実張力の応答遅れを解消すべ
く電機子電流の目標値変更量を演算し、これに基づいて
電機子電流を補正する方法を提案した。具体例を挙げれ
ば、前述した制御系(第3図参照)に対し、モータMの
回転速度ωを測定する回転速度計51及び電機子電流の
目標値変更量■。を演算する張力応答演算装置52(第
4図参照)を付加し、板厚制御回路32から出力される
張力の変更信号Δ′Fを加算器18へではなく前記張力
応答演算装置52へ入力する制御系を用い、次に述べる
ような演算に基づく制御を行う方法である。なお、前記
張力応答演算装置52へは回転速度計51にて測定され
るモータMの回転速度ω及び抵抗7にて検出される電機
子電流■から換算されるモーフ発生トルクT8も人力さ
れる。
Therefore, the present inventors proposed the following method as a means to enable high-speed response of the reel tension (Japanese Patent Application No. 145390/1982). That is, in order to eliminate the delay in response of the actual tension to the tension change signal obtained from the plate thickness measurement value, we have proposed a method of calculating the target value change amount of the armature current and correcting the armature current based on this. To give a specific example, for the control system described above (see FIG. 3), the tachometer 51 that measures the rotational speed ω of the motor M and the target value change amount (■) of the armature current. A tension response calculation device 52 (see FIG. 4) is added to calculate the tension response calculation device 52 (see FIG. 4), and the tension change signal Δ′F output from the plate thickness control circuit 32 is inputted to the tension response calculation device 52 instead of to the adder 18. This method uses a control system to perform control based on the calculations described below. Furthermore, the morph generating torque T8, which is converted from the rotational speed ω of the motor M measured by the tachometer 51 and the armature current 2 detected by the resistor 7, is also manually inputted to the tension response calculation device 52.

張力応答演算装置52では微分演算器521、乗算器5
22及び減算器523を用いて下記(3)式で表される
リール張力による負荷トルクTLが先ず求められる。
The tension response calculation device 52 includes a differential calculation unit 521 and a multiplier 5.
22 and a subtractor 523, the load torque TL due to the reel tension expressed by the following equation (3) is first determined.

但し、J:機械系の慣性モーメント そして減算器524にて前記リール張力による負荷トル
クTLと張力の変更信号ΔTとの差が求められ、その差
が補正電流演算器525へ入力されて所定の演算が行わ
れ、その出力と張力の変更信号ΔTとの和が加算器52
6で求められる。そしてかくして得られた演算結果は張
力応答演算装置52の出力信号(電機子電流の目標値変
更量tc)として前記加算器18へ人力される。
However, J: Moment of inertia of the mechanical system.The subtractor 524 calculates the difference between the load torque TL due to the reel tension and the tension change signal ΔT, and the difference is input to the correction current calculator 525 to perform a predetermined calculation. is performed, and the sum of the output and the tension change signal ΔT is added to the adder 52.
It is found by 6. The calculation result thus obtained is inputted to the adder 18 as an output signal (target value change amount tc of armature current) of the tension response calculation device 52.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然るに、上述したような回転速度ωの微分演算を含む負
荷トルク演算では、回転速度計51にて得られる回転速
度ωの信号に計測ノイズが含まれると、微分演算器52
1による演算精度が低下し、その結果として負荷トルク
TLの演算に誤差が生じるため、実際のリール張力の応
答が不安定になるという問題があった。
However, in the load torque calculation including the differential calculation of the rotational speed ω as described above, if the signal of the rotational speed ω obtained by the tachometer 51 contains measurement noise, the differential calculation unit 52
1, and as a result, an error occurs in the calculation of the load torque TL, resulting in a problem that the response of the actual reel tension becomes unstable.

本発明はかかる問題を解消すべくなされたものであり、
リール張力の高速応答を可能ならしめると共に安定した
応答を実現するリール駆動モータの制御方法を提供する
ことを目的とする。
The present invention has been made to solve such problems,
It is an object of the present invention to provide a control method for a reel drive motor that enables high-speed response of reel tension and realizes stable response.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係るリール駆動モータの制御方法は、圧延機の
リールを駆動するためのモータとされ該モータの電機子
電流を与えられた電流目標材の値に制御する電流制御装
置を備えたリール駆ため動装置において、前記モータの
発生トルクと前記モータの回転速度とからリール張力に
よる負荷トルクを演算し、その演算値と板厚測定値によ
る張力変更信号との差から電機子電流の目標値変更量を
演算し、これに基づいて電機子電流を・補正することを
特徴とする。
A reel drive motor control method according to the present invention is a reel drive motor that is a motor for driving a reel of a rolling mill and is equipped with a current control device that controls an armature current of the motor to a value of a given current target material. In the storage device, the load torque due to the reel tension is calculated from the torque generated by the motor and the rotational speed of the motor, and the target value of the armature current is changed based on the difference between the calculated value and the tension change signal based on the plate thickness measurement value. It is characterized by calculating the amount and correcting the armature current based on this.

〔作用〕[Effect]

かかる本発明方法による場合は、モータの回転速度の信
号に計測ノイズが含まれるとしても、該回転速度の微分
信号を作成するのに直接微分演算を行うのではなく計測
ノイズ除去のための処理を行った上で微分演算を行うの
で、該微分演算は常に精度よく行われる。
In the case of the method of the present invention, even if measurement noise is included in the motor rotational speed signal, processing for removing measurement noise is performed instead of directly performing differential calculation to create a differential signal of the rotational speed. Since the differential operation is performed after the calculation, the differential operation is always performed with high accuracy.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づいて詳述する
The present invention will be described in detail below based on drawings showing embodiments thereof.

第1図は本発明方法の実施をするための装置のブロック
図である。
FIG. 1 is a block diagram of an apparatus for implementing the method of the invention.

リール2に巻戻されている圧延材3はロールスタンド1
にて圧延され図示しない方のリールに巻取られる。ロー
ルスタンド1の入側、出側の板厚は板厚計30.31に
て測定され、AGC等の板厚制御回路32へ入力され、
板厚制御回路32は張力の変更信号ΔT(モータMの電
機子電流の換算値)を出力し、これを張力応答演算装置
52に与える。
The rolled material 3 being rewound onto the reel 2 is placed on the roll stand 1
The material is rolled and wound onto a reel (not shown). The board thickness at the entrance and exit sides of the roll stand 1 is measured using a board thickness gauge 30, 31, and is input to a board thickness control circuit 32 such as AGC.
The plate thickness control circuit 32 outputs a tension change signal ΔT (converted value of the armature current of the motor M), and provides this to the tension response calculation device 52.

リール2とロールスタンド1との間には圧延材3に転接
するデフレフクロール4が設けられており、これに連動
回転する速度検出器5が検出した圧延材3の移送速度V
の信号は界磁調整装置10へ与えられる。リール2を駆
動するモータMの界磁巻線9には界磁調整装置10から
界磁電流が与えられる。界磁調整については従来同様で
ある。モータMの電機子は電源装置6から供給され、そ
の端子電圧Vt及び電機子電流!は、端子電圧検出装置
8及び抵抗7によって夫々検出され、界磁調整装置10
へ与えられ、また電機子電流■は電源装置6に信号を発
、して電機子電流を制御する電流制御装置11及び張力
応答演算装置52に与えられる。なお張力応答演算装置
52へはモータMの発生トルクTHに換算されて与えら
れる。モータMには回転速度計51が付設されており、
該回転速度計51による測定信号は張力応答演算装置5
2へ入力される。
A deflation crawler 4 is provided between the reel 2 and the roll stand 1 and rolls into rolling contact with the rolled material 3, and the transfer speed V of the rolled material 3 detected by a speed detector 5 that rotates in conjunction with this is provided.
The signal is given to the field adjustment device 10. A field current is applied from a field adjustment device 10 to a field winding 9 of a motor M that drives the reel 2 . Field adjustment is the same as before. The armature of the motor M is supplied from the power supply 6, and its terminal voltage Vt and armature current! are detected by the terminal voltage detection device 8 and the resistor 7, respectively, and the field adjustment device 10
The armature current {circle around (2)} is applied to the current control device 11 and the tension response calculation device 52, which issue a signal to the power supply device 6 and control the armature current. Note that the torque is converted into the generated torque TH of the motor M and given to the tension response calculation device 52. A tachometer 51 is attached to the motor M.
The measurement signal from the tachometer 51 is sent to the tension response calculation device 5.
2.

張力の設定信号Tは加算器18に与えられる。圧延速度
全体の加減速指令信号S又はαは加減速電流演算器16
に入力され、ここで加減速電流信号S^が演算され、こ
の信号SAは加算器18へ入力される。加算器18には
張力応答演算装置52が後述するようにして算出した電
機子電流の目標値変更量I。
The tension setting signal T is applied to an adder 18. The acceleration/deceleration command signal S or α for the entire rolling speed is provided by the acceleration/deceleration current calculator 16.
The acceleration/deceleration current signal S^ is calculated here, and this signal SA is inputted to the adder 18. The adder 18 stores the armature current target value change amount I calculated by the tension response calculation device 52 as described later.

も入力され、前記T、SA等の入力に基づいて電流目標
値IAを算出してこれを電流制御装置11へ与える。電
流制御装置11はこの目標値IAと電機子電流実測値I
とによって電機子電流を目標値IAに一致させるべく電
源装置6を制御する。
is also input, and a current target value IA is calculated based on the inputs of T, SA, etc., and is provided to the current control device 11. The current control device 11 uses this target value IA and the armature current actual value I.
The power supply device 6 is controlled so that the armature current matches the target value IA.

さて、かかる装置を用いて本発明方法を実施する場合、
張力の変更信号に基づく電流値の変更量の他に張力を変
化させるリール速度変化を与えるための加減速トルクに
必要な電流変更量を加えて電機子電流の目標値変更量I
Cとする。
Now, when carrying out the method of the present invention using such an apparatus,
In addition to the current change amount based on the tension change signal, the armature current target value change amount I is added by the current change amount necessary for acceleration/deceleration torque to give a reel speed change that changes the tension.
Let it be C.

該目標値変更量■。は張力応答演算装置52にて演算さ
れるが、該張力応答演算装置52において行ねれる演算
内容について以下に説明する。
The target value change amount■. is calculated by the tension response calculation device 52, and the content of the calculation performed by the tension response calculation device 52 will be explained below.

該張力応答演算装置52は、第4図にて説明した従来の
それに対し、平滑フィルタ527.528及び減算器5
29が付加的に備えられると共に前記微分演算器521
に代えて乗算器520が備えられたものである。平滑フ
ィルタ527では回転速度計51にて検出したモータM
の回転速度ωを入力として計測ノイズに対する平滑処理
が行われ、信号ω′が作成される。なお、この信号ω′
と元の回転速度ωとの間には下記(4)式に示す関係が
ある。
The tension response calculation device 52 includes smoothing filters 527 and 528 and a subtractor 5, in contrast to the conventional device explained in FIG.
29 is additionally provided, and the differential calculator 521
A multiplier 520 is provided instead. The smoothing filter 527 detects the motor M detected by the tachometer 51.
Smoothing processing for measurement noise is performed using the rotational speed ω of ω as input, and a signal ω′ is created. Note that this signal ω′
There is a relationship between ω and the original rotational speed ω as shown in equation (4) below.

但し、T:平滑フィルタ527の時定数Sニラプラス演
算子 減算器529ではこの信号ω′と元の回転速度ωとの差
が求められ、その差に対して乗算器520を用いて前記
時定数Tの逆数が乗じられて等価的に速度ωとの間には
下記(5)式に示す関係がある。
However, T is the time constant S of the smoothing filter 527. The nira plus operator subtracter 529 calculates the difference between this signal ω' and the original rotational speed ω, and uses the multiplier 520 to calculate the difference by using the time constant T. There is a relationship between the speed ω and the equivalent speed ω multiplied by the reciprocal of ω as shown in the following equation (5).

とみることができる。そして、この微分信号性モーメン
)Jが乗じられ、更にその結果の信号t イルタ528にて平滑処理された信号T、4′との差が
減算器523にて求められ、負荷トルクTL’として減
算器524へ入力される。なお平滑フィルタ528にて
下記(6)式が成り立つように前記発生トルクエイが平
滑処理されるのは、減算器523での演算の位相を一致
させるためである。
It can be seen as Then, this differential signal moment) J is multiplied, and the difference between the resulting signal t and the signal T, 4' smoothed by the filter 528 is determined by the subtracter 523, and subtracted as the load torque TL'. 524. Note that the reason why the generated torque ray is smoothed by the smoothing filter 528 so that the following equation (6) holds true is to match the phase of the calculation in the subtracter 523.

但し、T:平滑フィルタ528の時定数即ち減算器52
3にて求められる負荷トルクTL’は下記(7)式のよ
うに表現することができる。
However, T: the time constant of the smoothing filter 528, that is, the subtracter 52
The load torque TL' obtained in step 3 can be expressed as shown in equation (7) below.

そして減算器524にて上述の如く求めた負荷トルクT
L’と張力の変更信号ΔTとの差が求められ、その差が
補正電流演算器525へ入力されて所定の演算が行われ
、その出力と張力の変更信号ΔTとの和が加算器526
で求められる。そしてかくして得られた演算結果は張力
応答演算装置52の出力信号(電機子電流の目標値変更
MIc)として前記加算器1日へ入力される。
Then, the subtracter 524 calculates the load torque T as described above.
The difference between L' and the tension change signal ΔT is determined, the difference is input to the correction current calculator 525 to perform a predetermined calculation, and the sum of the output and the tension change signal ΔT is added to the adder 526.
is required. The calculation result thus obtained is input to the adder 1 as an output signal (armature current target value change MIc) of the tension response calculation device 52.

なお、前記平滑フィルタ527.528の時定数Tは計
測ノイズの周波数fと実際に実現しようとするリール張
力応答の時定数T、とに応じて設定する。
Note that the time constant T of the smoothing filters 527 and 528 is set depending on the frequency f of the measurement noise and the time constant T of the reel tension response to be actually realized.

即ち、計測ノイズ除去の観点からは前記時定数Tは例え
ば下記(8)式を満たす程度に大きいことが望ましい。
That is, from the viewpoint of removing measurement noise, it is desirable that the time constant T is large enough to satisfy, for example, the following equation (8).

T>10・□  ・・・(8) 2πf 一方、真の負荷トルクTLと上述の如く求めた負荷トル
クTL′との間には下記(9)式が成り立ち、時定数T
は真の負荷トルクTLに対する負荷トルクTL′の平滑
フィルタ527.528による影響の度合いを示してお
り、この観点からは前記時定数Tは例えば下記01式を
満たす程度に小さいことが望ましい。
T>10・□ ...(8) 2πf On the other hand, the following equation (9) holds true between the true load torque TL and the load torque TL' obtained as described above, and the time constant T
indicates the degree of influence of the smoothing filters 527 and 528 on the load torque TL' with respect to the true load torque TL, and from this point of view, it is desirable that the time constant T is small enough to satisfy, for example, the following equation 01.

T<0.I T、         −Ql上述した如
く本発明方法を実施する場合は、回転速度及び電機子電
流の信号に計測ノイズが含まれているとしても、ノイズ
の周波数及び実際に実現しようとするリール張力応答の
時定数に応じて平滑フィルタ527,528の時定数T
の値を設定することにより、常に安定してリール張力の
高速応答を実現することができる。
T<0. I T, -Ql When implementing the method of the present invention as described above, even if measurement noise is included in the rotational speed and armature current signals, the frequency of the noise and the reel tension response that is actually intended to be realized are The time constant T of the smoothing filters 527 and 528 according to the time constant
By setting the value of , it is possible to always achieve stable and high-speed response of the reel tension.

なお、リール張力による負荷トルクを演算するに際し、
ディジタル制御用コンピュータを適用する場合は、信号
をΔを時間毎にサンプリングし、下記00式による演算
を行うとよい。
In addition, when calculating the load torque due to reel tension,
When a digital control computer is used, it is preferable to sample the signal Δ every time and perform calculations according to the following equation 00.

(以下余白) 但し、TM(1):モータの発生トルクT。のiサンプ
リング時刻での値 ω(1):モータの回転速度ωのiサンプリング時刻で
の値 TL(1):リール張力による負荷トルクTLのiサン
プリング時刻で の値 ξ(1):積分変数ξのiサンプリング時刻での値 Δt :サンプリング時間ピッチ T  :平滑フィルタの時定数 J  :機械系の慣性モーメント [効果〕 以上詳述した如く、本発明方法によれば、モータの回転
速度の信号に計測ノイズが含まれるとしても、該回転速
度の微分信号を作成するのに直接微分演算を行うのでは
なく計測ノイズ除去のための処理を行うた上で微分演算
を行うので、該微分演算は常に精度よく行われる。従っ
て、リール張力を安定させ良好な板厚制御精度を得るこ
とができる。
(Left below) However, TM (1): Torque T generated by the motor. Value at i sampling time ω(1): Value of motor rotational speed ω at i sampling time TL(1): Value of load torque TL due to reel tension at i sampling time ξ(1): Integral variable ξ Value at i sampling time Δt: Sampling time pitch T: Time constant J of smoothing filter: Moment of inertia of mechanical system [Effect] As detailed above, according to the method of the present invention, the signal of the rotational speed of the motor can be measured. Even if noise is included, the differential calculation is not performed directly to create the differential signal of the rotation speed, but is performed after processing to remove measurement noise, so the differential calculation always has high accuracy. It is often done. Therefore, it is possible to stabilize the reel tension and obtain good plate thickness control accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための装置のブロック図
、第2図は該装置中の張力応答演算装置のブロック図、
第3図は従来方法を実施するための装置のブロック図、
第4図は該装置中の張力応□  答演算装置のブロック
図である。 1・・・ロールスタンド 2・・・リール 3・・・圧
延材32・・・板厚制御回路 51・・・回転速度計 
52・・・張力応答演算装置 M・・・モータ 特 許 出願人  住友金属工業株式会社代理人 弁理
士  河  野  登  失策 1 図 策3図 第2図 第4図
FIG. 1 is a block diagram of an apparatus for implementing the method of the present invention, FIG. 2 is a block diagram of a tension response calculation device in the apparatus,
FIG. 3 is a block diagram of an apparatus for carrying out the conventional method;
FIG. 4 is a block diagram of the tension response calculation device in the device. 1... Roll stand 2... Reel 3... Rolled material 32... Plate thickness control circuit 51... Rotation speed meter
52...Tension response calculation device M...Motor patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono Mistakes 1 Plan 3 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】 1、圧延機のリールを駆動するためのモータと該モータ
の電機子電流を与えられた電流目標値に制御する電流制
御装置を備えたリール駆動装置において、前記モータの
発生トルクと前記モータの回転速度とからリール張力に
よる負荷トルクを演算し、その演算値と板厚測定値によ
る張力変更信号との差から電機子電流の目標値変更量を
演算し、これに基づいて電機子電流を補正することを特
徴とするリール駆動モータの制御方法。 2、前記リール張力にる負荷トルクの演算を下記(i)
式によって行う特許請求の範囲第1項記載のリール駆動
モータの制御方法。 T_L=1/1+TS−T_M−J[S/(1+TS)
]ω・・・(i) 但し、T_L:リール張力による負荷トルクT_M:モ
ータの発生トルク ω:モータの回転速度 T:平滑フィルタの時定数 J:機械系の慣性モーメント S:ラプラス演算子 3、モータの発生トルク及びモータの回転速度を時系列
的にサンプリングし、下記(ii)式に基づいて前記リ
ール張力による負荷トルクの演算を行う特許請求の範囲
第1項記載のリール駆動モータの制御方法。 ξ(i)=μξ(i−1)+(1−μ)T_M(i)+
(1−μ)K_ω(i)・・・(ii) T_L(i)=ξ(i)−K_ω(i)・・・(ii) K=J[(1−μ)/Δt]・・・(ii) −Δt/T・・・(ii) μ=e・・・(ii) 但し、T_M(i):モータの発生トルクT_Mのiサ
ンプリング時刻での値 ω(i):モータの回転速度ωのiサンプリング時刻で
の値 T_L(i):リール張力による負荷トルクT_Lのi
サンプリング時刻での値 ξ(i):積分変数ξのiサンプリング時刻での値 Δ_t:サンプリング時間ピッチ T:平滑フィルタの時定数 J:機械系の慣性モーメント
[Scope of Claims] 1. A reel drive device comprising a motor for driving a reel of a rolling mill and a current control device for controlling an armature current of the motor to a given current target value. The load torque due to the reel tension is calculated from the torque and the rotational speed of the motor, the target value change amount of the armature current is calculated from the difference between the calculated value and the tension change signal based on the plate thickness measurement value, and based on this, A method for controlling a reel drive motor, comprising correcting an armature current. 2. Calculate the load torque based on the reel tension as shown below (i)
A method of controlling a reel drive motor according to claim 1, which is carried out using a formula. T_L=1/1+TS-T_M-J[S/(1+TS)
]ω...(i) However, T_L: Load torque due to reel tension T_M: Torque generated by the motor ω: Rotational speed of the motor T: Time constant of the smoothing filter J: Moment of inertia of the mechanical system S: Laplace operator 3, A method for controlling a reel drive motor according to claim 1, wherein the torque generated by the motor and the rotational speed of the motor are sampled in time series, and the load torque based on the reel tension is calculated based on the following equation (ii). . ξ(i)=μξ(i-1)+(1-μ)T_M(i)+
(1-μ)K_ω(i)...(ii) T_L(i)=ξ(i)-K_ω(i)...(ii) K=J[(1-μ)/Δt]... (ii) −Δt/T...(ii) μ=e...(ii) However, T_M(i): Value of motor generated torque T_M at i sampling time ω(i): Motor rotation speed Value T_L(i) of ω at i sampling time: i of load torque T_L due to reel tension
Value at sampling time ξ(i): Value of integral variable ξ at i sampling time Δ_t: Sampling time pitch T: Time constant of smoothing filter J: Moment of inertia of mechanical system
JP62297165A 1987-11-24 1987-11-24 Reel drive motor control method Expired - Fee Related JPH06104247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62297165A JPH06104247B2 (en) 1987-11-24 1987-11-24 Reel drive motor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62297165A JPH06104247B2 (en) 1987-11-24 1987-11-24 Reel drive motor control method

Publications (2)

Publication Number Publication Date
JPH01138989A true JPH01138989A (en) 1989-05-31
JPH06104247B2 JPH06104247B2 (en) 1994-12-21

Family

ID=17843029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62297165A Expired - Fee Related JPH06104247B2 (en) 1987-11-24 1987-11-24 Reel drive motor control method

Country Status (1)

Country Link
JP (1) JPH06104247B2 (en)

Also Published As

Publication number Publication date
JPH06104247B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
JP3575148B2 (en) Automatic gain adjustment method and apparatus for servo mechanism
JPH01138989A (en) Controlling method for reel driving motor
JP2906838B2 (en) Tension control device for winding / unwinding machine
JPH0369820B2 (en)
JPS59149260A (en) Controller for motor of winder/rewinder
JP2752559B2 (en) Digital proportional integral and derivative control method
JPH06206655A (en) Tensile force control device
JP3449305B2 (en) Tension control method and apparatus for strip material
JPS6293026A (en) Tension control device
JPH01205815A (en) Method and apparatus for controlling rotary tension fluctuation of take-up reel
JPS6137654A (en) Web winder
JPH0565419B2 (en)
JP3672481B2 (en) Mechanical loss compensation amount calculation device and mechanical loss compensation control device
JP2930593B2 (en) Control device for tape transfer device
JP2791008B2 (en) Control method of tape transfer device
JPH05204467A (en) Method and device for reel tension control
JPH07102923B2 (en) Winder control device
JP3700899B2 (en) Reel control method
SU850241A1 (en) Apparatus for automatic breaking down of rolling mill
JP2575955Y2 (en) Film line unwinding and winding control device
JPH04189246A (en) Control unit for winder
JPS632511A (en) Control method for reel driving motor
JP3533780B2 (en) Method for controlling electric motor for winding machine and control device therefor
JPS63256209A (en) Device for controlling elongation percentage in rolling mill
JPH11347615A (en) Plate thickness controller

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees