JPH0113799Y2 - - Google Patents

Info

Publication number
JPH0113799Y2
JPH0113799Y2 JP7554084U JP7554084U JPH0113799Y2 JP H0113799 Y2 JPH0113799 Y2 JP H0113799Y2 JP 7554084 U JP7554084 U JP 7554084U JP 7554084 U JP7554084 U JP 7554084U JP H0113799 Y2 JPH0113799 Y2 JP H0113799Y2
Authority
JP
Japan
Prior art keywords
intake air
intake
heat
heating device
ptc heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7554084U
Other languages
Japanese (ja)
Other versions
JPS6158675U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7554084U priority Critical patent/JPH0113799Y2/ja
Publication of JPS6158675U publication Critical patent/JPS6158675U/ja
Application granted granted Critical
Publication of JPH0113799Y2 publication Critical patent/JPH0113799Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は内燃機関の吸気加熱装置に関する。[Detailed explanation of the idea] [Industrial application field] The present invention relates to an intake air heating device for an internal combustion engine.

〔従来の技術〕[Conventional technology]

機関温度が低い機関暖機完了前には気化器から
供給された燃料の気化が十分でなく、斯くして多
量の燃料が液状のまま機関シリンダ内に供給され
るために暖機完了後に比べて燃焼が悪く、その結
果安定した機関の運転を確保できないという問題
がある。従つて通常暖機運転時には暖機完了後に
おけるよりも濃い混合気を機関シリンダ内に供給
して安定した機関の運転を確保するようにしてい
る。しかしながらこのように濃い混合気を機関シ
リンダ内に供給した場合には排気ガス中の有害成
分である未燃炭化水素HC並びに一酸化炭素COが
増加するばかりでなく燃療消費率が悪化するとい
う問題を生じる。従つて機関暖機運転時において
気化器から供給される液状燃料を十分に気化する
ことかできれば機関シリンダ内に供給される混合
気を薄くしても安定した機関の運転が確保でき、
しかもこのような薄い混合気を使用できることに
より排気ガス中の有害成分を低減できると共に燃
料消費率を向上させることができる。機関暖機運
転時において液状燃料の気化を促進するために従
来より、米国特許U.S.P.4141327に示される如き
構造の吸気加熱装置が提案されている。しかしな
がら、この構造になる吸気加熱装置は次に示す欠
点を有している。まず第1にPTC発熱体がハニ
カム形状であるために製造工程が非常に複雑にな
り、歩留りが低く製造コストが高くなることであ
る。
Before the engine warm-up is completed when the engine temperature is low, the fuel supplied from the carburetor is not sufficiently vaporized, and as a result, a large amount of fuel is supplied in liquid form into the engine cylinders, compared to after the engine warm-up is completed. There is a problem in that combustion is poor and, as a result, stable engine operation cannot be ensured. Therefore, during normal warm-up operation, a richer air-fuel mixture is supplied into the engine cylinders than after completion of warm-up to ensure stable engine operation. However, when such a rich air-fuel mixture is supplied into the engine cylinder, there is a problem that not only does the amount of unburned hydrocarbons HC and carbon monoxide CO, which are harmful components in the exhaust gas, increase, but also the fuel consumption rate deteriorates. occurs. Therefore, if the liquid fuel supplied from the carburetor can be sufficiently vaporized during engine warm-up, stable engine operation can be ensured even if the air-fuel mixture supplied to the engine cylinders is diluted.
Moreover, by being able to use such a lean air-fuel mixture, harmful components in the exhaust gas can be reduced and fuel consumption rate can be improved. In order to promote vaporization of liquid fuel during engine warm-up, an intake air heating device having a structure as shown in US Pat. No. 4,141,327 has been proposed. However, the intake air heating device having this structure has the following drawbacks. First of all, since the PTC heating element has a honeycomb shape, the manufacturing process is very complicated, resulting in low yield and high manufacturing cost.

第2の問題点はPTCハニカム体は壁厚が厚く
なるために開口率を高くとることが困難で、所定
の開口面積を得るためにはどうしても外形を大き
くしなければならなく、設計上の制約がある場合
使用下可となることもあるという問題点があつ
た。
The second problem is that PTC honeycomb bodies have thick walls, making it difficult to achieve a high aperture ratio.In order to obtain a predetermined aperture area, the outer diameter must be increased, which is a design constraint. There was a problem that it could be prohibited to use in some cases.

〔考案の目的〕[Purpose of invention]

そこで本考案は製造し易く、従つて歩留りが向
上し、開口率を高いままで小型化できる吸気加熱
装置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an intake air heating device that is easy to manufacture, improves yield, and can be downsized while maintaining a high aperture ratio.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本考案では、1乃
至複数の平板環状PTC発熱体で構成される吸気
加熱装置において、PTC発熱体の上下面の環状
の放熱板を配設し、この放熱板は、吸気通路の中
心方向に延びる複数の枝部と、この複数の枝部が
中心付近で連結される連結部とを有し、隣り合う
放熱板は、その枝部および連結部が吸入空気の流
れ方向において重なり合わないように配設されて
いることを特徴とするものである。
In order to achieve the above object, in the present invention, in an intake air heating device composed of one or more flat annular PTC heating elements, annular heat sinks are provided on the upper and lower surfaces of the PTC heating elements, and the heat sinks are , has a plurality of branches extending in the direction of the center of the intake passage, and a connection part where the plurality of branches are connected near the center, and adjacent heat sinks have a plurality of branches extending in the direction of the center of the intake passage and a connection part where the branches and the connection part are connected to the flow of intake air. They are characterized in that they are arranged so that they do not overlap in the direction.

〔作用〕[Effect]

上記構成によれば、隣り合う放熱板はPTC発
熱体を介して間隔をおいて配設されているので、
吸入空気は放熱板の枝部および連結部を形成して
いない部分を通つて流入し、この吸入空気は隣り
合う放熱板との間隔を通つて、次の放熱板へ流入
する。そのため、吸入空気の吸気抵抗はさほど大
きくならず、高い開口率を維持することができ
る。
According to the above configuration, since adjacent heat sinks are arranged at intervals through the PTC heating element,
The intake air flows through the branch portions of the heat sink and the portions that do not form the connecting portions, and the intake air flows into the next heat sink through the gap between adjacent heat sinks. Therefore, the intake resistance of intake air is not so large, and a high aperture ratio can be maintained.

また、吸入空気は、PTC発熱体を通過するた
め、その混合気はPTC発熱体によつて直接加熱
される。
Furthermore, since the intake air passes through the PTC heating element, the air-fuel mixture is directly heated by the PTC heating element.

さらに、放熱板はPTC発熱体によつて加熱さ
れるため、混合気の一部はこの放熱板によつても
加熱されるとともに、複数の放熱板の枝部および
連結部は吸入空気の流れ方向において重なり合わ
ないように設定してあるので、混合気が局部的に
加熱されることなく全体的に有効に加熱され、特
に放熱板の枝部および連結部によつて通路の中央
を通過する加熱されにくい粒径の大きい液滴を効
率良く加熱することができる。
Furthermore, since the heat sink is heated by the PTC heating element, a portion of the air-fuel mixture is also heated by this heat sink, and the branches and joints of the multiple heat sinks are heated in the direction of the intake air flow. Since the air-fuel mixture is set so that it does not overlap, the air-fuel mixture is effectively heated as a whole without being heated locally, and in particular, the heating that passes through the center of the passage by the branches and connections of the heat sink is prevented. It is possible to efficiently heat droplets with large particle sizes that are difficult to be heated.

〔実施例〕〔Example〕

以下図面に基づいて、本考案の実施例について
説明する。第1図において1は気化器であつて図
示していないエアクリーナを介して大気に導通し
ている。2は吸気管で図示していない機関本体に
接続されている。3は樹脂製のヒートインシユレ
ータで吸気管2と気化器1との断熱作用をなして
いる。気化器1には2つの通路があり低速走行で
使用する第1の通路4と高速走行で使用する第2
通路5とがある。各々の通路には空気量を制御す
るスロツトル弁6および7を有している。そして
気化器1はヒートインシユレータ3と共に吸気管
2にボルト8、ワツシヤ9により固定されてい
る。吸気加熱装置10はヒートインシユレータ3
の中に構成されており、詳細は第2図で説明して
ゆく。ヒートインシユレータ3には気化器1と同
様、第1の吸気通路11と第2の吸気通路12と
があり、吸気加熱装置10はこの第1の吸気通路
11に構成されている。本実施例における吸気加
熱装置10は2枚の平板環状PTC発熱体13,
13′を有しており、第4図に断面図を示すよう
にその上側にはいずれも銅の薄板をプレス成形し
た断面凹形状のカバー14,14′が環状PTC発
熱体13,13′の上半分を覆つている。2枚の
PTC発熱体13,13′の間には耐熱・耐腐食性
でかつ導電性のウエーブ・スプリング15が3山
で形成されており、かつその上側には放熱板を兼
ねたプラス電極板16(詳細は第8図)が配設さ
れている。プラス電極板16の外周には穴のあい
た突部16′があり、組付時、インシユレータ3
のa部にはめ合わされ、リベツト30aにより固
着、インシユレータ3にモールドされた、ターミ
ナル・プラス31と導通するようになつている。
プラス電極板16はその中央に中程度の円16a
があり、放電状に3本のリブ16b,16b′,1
6b″により外環16cと接続している。なお、リ
ブ16b,16b′,16b″が本発明の枝部に相当
し、円16aが連結部に相当する。各部品の最外
端(カバー14およびPTC発熱体13′の外側)
には2枚のマイナス電極板17,18(詳細は第
7図、第9図)が配設されている形状は大幅に異
なつている。すなわち上側の電極板17には小さ
な円17aがあり、等ピツチのリブ17b,17
b′,17b″が3本外環17cに接続している。ま
た外環17cの一部には穴のあいた突部17′が
あり、組付時インシユレータ3のb部にはめ合わ
され、リベツト30bにより固定される。一方下
端のマイナス電極板18の中央には大円18aを
有し、3本の等ピツチのリブ18b,18b′,1
8b″が外環18cと接続している。なお、マイナ
ス電極板17,18のリブ17b,17b′,17
b″、18b,18b′,18b″が枝部に相当し、円
17a,18aが連結部に相当する。このマイナ
ス電極板18の外周には3ケ所の穴のあいた突部
18d,18e,18fを有し、インシユレータ
3への組付時には、インシユレータ3の3ケ所の
穴部d,e,fにそれぞれ、はめ合わされ、リベ
ツト30d,30e,30fにより固着される。
なおマイナスターミナル32は第5図のようにイ
ンシユレータ3にモールドされ、d部、b部にお
いて露出し、マイナス電極板17および18と接
触、導通が保たれている。プラス・マイナスのタ
ーミナル31,32の端部31a,32aは第5
図、第6図のようにインシユレータ3の外部で露
出しており、各々リード線33a,33bの端部
をめている。34はリード33a,33bをコ
ネクタで図示しいない電源に接続している。35
はターミナル露出部31a,32aを覆う絶縁性
のゴム・カバーである。
Embodiments of the present invention will be described below based on the drawings. In FIG. 1, reference numeral 1 denotes a carburetor, which is connected to the atmosphere via an air cleaner (not shown). 2 is connected to the engine body (not shown) through an intake pipe. Reference numeral 3 denotes a heat insulator made of resin, which acts as a heat insulator between the intake pipe 2 and the carburetor 1. The carburetor 1 has two passages, a first passage 4 used for low speed driving and a second passage 4 used for high speed driving.
There is a passageway 5. Each passage has a throttle valve 6 and 7 for controlling the amount of air. The carburetor 1 and the heat insulator 3 are fixed to the intake pipe 2 with bolts 8 and washers 9. The intake air heating device 10 is a heat insulator 3
The details will be explained in Fig. 2. Like the carburetor 1, the heat insulator 3 has a first intake passage 11 and a second intake passage 12, and the intake air heating device 10 is configured in the first intake passage 11. The intake air heating device 10 in this embodiment includes two flat annular PTC heating elements 13,
13', and as shown in the cross-sectional view in Fig. 4, covers 14 and 14' each having a concave cross section made of press-formed thin copper plates are provided above the annular PTC heating elements 13 and 13'. It covers the top half. 2 pieces
A heat-resistant, corrosion-resistant, and conductive wave spring 15 is formed in three peaks between the PTC heating elements 13 and 13', and above it is a positive electrode plate 16 (details) that also serves as a heat sink. (Fig. 8) are provided. There is a protrusion 16' with a hole on the outer periphery of the positive electrode plate 16, and when assembled, the insulator 3
It is fitted into part a of the insulator 3, fixed by a rivet 30a, and electrically connected to a terminal positive 31 molded on the insulator 3.
The positive electrode plate 16 has a medium circle 16a in its center.
There are three ribs 16b, 16b', 1 in a discharge shape.
6b'' is connected to the outer ring 16c.The ribs 16b, 16b', 16b'' correspond to the branch portions of the present invention, and the circle 16a corresponds to the connecting portion. The outermost end of each part (outside of cover 14 and PTC heating element 13')
The shapes in which the two negative electrode plates 17 and 18 (details are shown in FIG. 7 and FIG. 9) are arranged are significantly different. That is, the upper electrode plate 17 has a small circle 17a, and equally spaced ribs 17b, 17.
b', 17b'' are connected to the outer ring 17c. Also, a part of the outer ring 17c has a protrusion 17' with a hole, which is fitted into the b part of the insulator 3 during assembly, and the rivet 30b is connected to the outer ring 17c. On the other hand, the negative electrode plate 18 at the lower end has a large circle 18a in the center, and three equally spaced ribs 18b, 18b', 1
8b'' is connected to the outer ring 18c. Furthermore, the ribs 17b, 17b', 17 of the negative electrode plates 17, 18
b'', 18b, 18b', and 18b'' correspond to branch parts, and circles 17a and 18a correspond to connecting parts. The outer periphery of this negative electrode plate 18 has three protrusions 18d, 18e, and 18f with holes, and when assembled to the insulator 3, the three holes d, e, and f of the insulator 3 are provided with protrusions 18d, 18e, and 18f, respectively. They are fitted together and fixed by rivets 30d, 30e, and 30f.
The negative terminal 32 is molded on the insulator 3 as shown in FIG. 5, and is exposed at portions d and b, and is in contact with the negative electrode plates 17 and 18 to maintain electrical continuity. The ends 31a and 32a of the positive and negative terminals 31 and 32 are the fifth
As shown in FIG. 6, it is exposed outside the insulator 3, and the ends of the lead wires 33a and 33b are connected to each other. Reference numeral 34 connects the leads 33a and 33b to a power source (not shown) through a connector. 35
is an insulating rubber cover that covers the terminal exposed portions 31a and 32a.

以上述べた各々の部品をヒートインシユレータ
3に組付け上方から見た平面図が第3図である。
吸気通路4は3枚の電極板16,17,18の外
環16c,17c,18cの内側に形成されてい
る。各々の電極板は放熱板として機能するもので
あり、電極板をPTC発熱体13,13′を介在さ
せて組付けた状態においては、隣り合う電極板の
中央円環部16a,17a,18aおよびリブ1
6b,17b,18bが互いに接触しないように
所定の間隔をおいて配置されている。また、3枚
の電極板16,17,18の中央円環部16a,
17a,18aは径の大きさが全て異なり、組付
時の吸入空気の流れ方向の投影面は重なり合うこ
とがないように設定されるとともに、リブ16
b,17b,18bも投影面が重なり合わないよ
うに合計9本のリブが等ピツチになるように配置
されている。
FIG. 3 is a plan view of each of the above-mentioned components assembled to the heat insulator 3 and viewed from above.
The intake passage 4 is formed inside outer rings 16c, 17c, and 18c of the three electrode plates 16, 17, and 18. Each electrode plate functions as a heat sink, and when the electrode plates are assembled with the PTC heating elements 13, 13' interposed, the central annular portions 16a, 17a, 18a and rib 1
6b, 17b, and 18b are arranged at predetermined intervals so as not to come into contact with each other. Moreover, the central annular portion 16a of the three electrode plates 16, 17, 18,
The diameters of the ribs 17a and 18a are all different, and the projection planes in the intake air flow direction during assembly are set so that they do not overlap.
b, 17b, and 18b are also arranged so that a total of nine ribs are arranged at equal pitches so that the projection planes do not overlap.

さらに、この組付状態では、中央円環部16
a,17a,18aとリブ16b,17b,18
bの吸入空気の流れ方向の投影面の合計が吸気通
路の50%以下としており、吸気抵抗を極力押さえ
るようにしている。
Furthermore, in this assembled state, the central annular portion 16
a, 17a, 18a and ribs 16b, 17b, 18
The sum of the projected planes in the flow direction of the intake air (b) is set to be less than 50% of the intake passage, thereby minimizing intake resistance.

以上の構成になる吸気加熱装置は寒冷時、機関
の冷間時において、動作させるものであり、次の
ようになる。図示していないバツテリからの給電
はリード線33a、プラス・ターミナル31から
プラス電極板16におこなわれる。従つて上側
PTC発熱体13は下面が、また下側PTC発熱体
はウエーブ・スプリング15、カバー14′を介
して上面がプラス側になり、電流は2枚のPTC
発熱体を貫通して上・下方向に流れ上・下端のマ
イナス電極板17,18へと到る。インシユレー
タ3のb・d位置でリベツト30b・30dによ
り固着された電極板は互いに、マイナス・ターミ
ナル32により接続されており、リード線33b
を介してバツテリにもどる。
The intake air heating device having the above configuration is operated in cold weather and when the engine is cold, and is operated as follows. Power is supplied from a battery (not shown) to the positive electrode plate 16 from the lead wire 33a and the positive terminal 31. therefore the upper side
The lower surface of the PTC heating element 13 becomes the positive side, and the upper surface of the lower PTC heating element becomes the positive side through the wave spring 15 and the cover 14', and the current flows between the two PTC
It passes through the heating element and flows upward and downward, reaching the negative electrode plates 17 and 18 at the upper and lower ends. The electrode plates fixed by rivets 30b and 30d at positions b and d of the insulator 3 are connected to each other by a negative terminal 32, and a lead wire 33b
Return to Batsuteri via.

以上の電流の流れによりPTC発熱体13,1
3′が発熱する。熱の一部は吸気通路11を流れ
る混合気を直接、緩めると同時に、電極板、兼放
熱板として機能する16,17,18へと伝わ
り、各々リブを介して中央の環状部16a,17
a,18aの温度を上昇させる。従つて吸気通路
11の壁面を流れる液滴、および通路の中央を通
過する気化しにくい粒径の大きい液滴を圧損少な
く、効率良く、加熱することができる。
Due to the above current flow, the PTC heating elements 13, 1
3' generates heat. A part of the heat directly loosens the air-fuel mixture flowing through the intake passage 11, and at the same time is transmitted to the electrode plates 16, 17, and 18, which function as electrode plates and heat sinks, and is transferred to the central annular parts 16a and 17 via the ribs, respectively.
The temperature of a and 18a is increased. Therefore, the liquid droplets flowing on the wall surface of the intake passage 11 and the large liquid droplets that are difficult to vaporize and pass through the center of the passage can be efficiently heated with little pressure loss.

第10図は本考案になる吸気加熱装置A,
A′と従来の方式になる吸気加熱装置Bを比較試
験した結果である(圧力損失一定で比較)。図の
aグループは機関に燃料と空気とを流したときの
ヒータの発熱量をみたものであり、bグループは
機関に空気だけを流したときのヒータの発熱量を
示している。燃料を加えた時のほうが多く冷却さ
れるため、PTCの特性でより多く発熱している。
しかもA−A′およびB−B′の発熱量が燃料だけ
を加熱している熱量とみることができるのでA−
A′>B−B′となり本考案の吸気加熱ヒータは効
率良く、燃料を加熱しているといえる。
Figure 10 shows the intake air heating device A of the present invention.
These are the results of a comparative test between A' and the conventional intake air heating device B (compared with constant pressure loss). Group a in the figure shows the amount of heat generated by the heater when fuel and air flow through the engine, and group b shows the amount of heat generated by the heater when only air flows through the engine. Since more fuel is cooled when fuel is added, more heat is generated due to the characteristics of PTC.
Moreover, the calorific value of A-A' and B-B' can be seen as the amount of heat that heats only the fuel, so A-
A'>B-B', so it can be said that the intake air heater of the present invention heats the fuel efficiently.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本考案によれば、高い開口率
を維持しつつ、吸入空気を効率良く加熱すること
ができ、しかも製造し易いという極めて優れた効
果が得られる。
As described above, according to the present invention, extremely excellent effects such as being able to efficiently heat intake air while maintaining a high aperture ratio and being easy to manufacture can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案による吸気加熱装置の気化器部
への取付図、第2図は本考案実施例の組付の詳細
な斜視図、第3図は本実施例の上面図、第4図〜
第6図は吸気加熱装置の断面図、第7図〜第9図
は電極板16〜18の上面図、第10図は本実施
例と従来例の特性比較図である。 1……気化器、2……吸気管、3……ヒートイ
ンシユレータ、4……第1吸気通路、6……スロ
ツトル弁、10……吸気加熱装置、13,13′
……PTC発熱体、16……プラス電極板(放熱
板)、16a……円環部(連結部)、16b,16
b′,16b″……リブ(枝部)、17,18……マ
イナス電極板(放熱板)、17a,18a……円
部および円環部(連結部)、17b,17b′,1
7b″、18,18b′,18b″……リブ(枝部)。
Fig. 1 is a diagram of the installation of the intake air heating device according to the present invention to the carburetor section, Fig. 2 is a detailed perspective view of the assembly of the embodiment of the invention, Fig. 3 is a top view of the embodiment, and Fig. 4 ~
FIG. 6 is a sectional view of the intake air heating device, FIGS. 7 to 9 are top views of the electrode plates 16 to 18, and FIG. 10 is a characteristic comparison diagram of this embodiment and a conventional example. DESCRIPTION OF SYMBOLS 1... Carburetor, 2... Intake pipe, 3... Heat insulator, 4... First intake passage, 6... Throttle valve, 10... Intake air heating device, 13, 13'
... PTC heating element, 16 ... Positive electrode plate (heat sink), 16a ... Annular part (connection part), 16b, 16
b', 16b''...Rib (branch part), 17, 18...Negative electrode plate (heat sink), 17a, 18a...Circular part and annular part (connecting part), 17b, 17b', 1
7b'', 18, 18b', 18b''...Rib (branch).

Claims (1)

【実用新案登録請求の範囲】 1乃至複数の平板環状PTC発熱体で構成され
る吸気加熱装置において、 前記PTC発熱体の上下面に環状の放熱板を配
設し、 前記放熱板は、吸気通路の中心方向に延びる複
数の枝部と、この複数の枝部が中心付近で連結さ
れる連結部とを有し、隣り合う放熱板は、その枝
部および連結部が吸入空気の流れ方向において重
なり合わないように配設されていることを特徴と
する内燃機関の吸気加熱装置。
[Claims for Utility Model Registration] In an intake air heating device composed of one or more flat annular PTC heating elements, annular heat radiating plates are disposed on the upper and lower surfaces of the PTC heating elements, and the heat radiating plates are arranged in the air intake passage. has a plurality of branches extending in the direction of the center, and a connection part where the plurality of branches are connected near the center, and adjacent heat sinks have a plurality of branches and a connection part that overlap in the flow direction of intake air. An intake air heating device for an internal combustion engine, characterized in that the devices are arranged so that they do not match.
JP7554084U 1984-05-22 1984-05-22 Expired JPH0113799Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7554084U JPH0113799Y2 (en) 1984-05-22 1984-05-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7554084U JPH0113799Y2 (en) 1984-05-22 1984-05-22

Publications (2)

Publication Number Publication Date
JPS6158675U JPS6158675U (en) 1986-04-19
JPH0113799Y2 true JPH0113799Y2 (en) 1989-04-24

Family

ID=30616854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7554084U Expired JPH0113799Y2 (en) 1984-05-22 1984-05-22

Country Status (1)

Country Link
JP (1) JPH0113799Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2935327B2 (en) * 1992-06-29 1999-08-16 三菱電機株式会社 Secondary air supply device for internal combustion engine and gas heating device therefor

Also Published As

Publication number Publication date
JPS6158675U (en) 1986-04-19

Similar Documents

Publication Publication Date Title
US4535589A (en) Exhaust gas cleaning device for internal combustion engine
US4395994A (en) Fuel mixture heating device of an internal combustion engine
JPS6172861A (en) Suction heating device for internal-combustion engine
US4327697A (en) Heater for air-fuel mixture having heating element of positive temperature coefficient resistor
JPS5939167Y2 (en) Internal combustion engine intake air heating device
JPH0113799Y2 (en)
US4407254A (en) Intake heating apparatus of an internal combustion engine
JPS632021B2 (en)
US4448173A (en) Fuel evaporator
CN211648334U (en) Air heater
JPS6242109Y2 (en)
US4379443A (en) Intake manifold mounted air and fuel mixture heater
US4424787A (en) Encapsulated PTC heater for cold-start carburetor
JPS6151660B2 (en)
JPH0348872Y2 (en)
JPS6021497Y2 (en) Internal combustion engine intake air heating device
JPS6111496Y2 (en)
JPS5918133Y2 (en) Internal combustion engine intake air heating device
USRE32396E (en) PTC heater construction
JPH08319908A (en) Heating module for internal combustion engine
JPS6098159A (en) Intake heating device
JPS626284Y2 (en)
JPS603961Y2 (en) Internal combustion engine intake air heating device
JPH0223707B2 (en)
JPS6027818Y2 (en) Internal combustion engine intake air heating device