JPH01137525A - Manufacture of oxide superconductive mold - Google Patents

Manufacture of oxide superconductive mold

Info

Publication number
JPH01137525A
JPH01137525A JP62296448A JP29644887A JPH01137525A JP H01137525 A JPH01137525 A JP H01137525A JP 62296448 A JP62296448 A JP 62296448A JP 29644887 A JP29644887 A JP 29644887A JP H01137525 A JPH01137525 A JP H01137525A
Authority
JP
Japan
Prior art keywords
film
molded body
oxide
metal
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62296448A
Other languages
Japanese (ja)
Inventor
Shoji Shiga
志賀 章二
Eiki Cho
張 栄基
Nakahiro Harada
原田 中裕
Masanori Ozaki
正則 尾崎
Chikushi Hara
原 築志
Yukio Mitsui
三井 潔夫
Kiyoshi Ogawa
潔 小川
Sumitaka Yoshino
吉野 純隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Furukawa Electric Co Ltd
Hokkaido Electric Power Co Inc
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Holdings Inc
Original Assignee
Electric Power Development Co Ltd
Furukawa Electric Co Ltd
Hokkaido Electric Power Co Inc
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Furukawa Electric Co Ltd, Hokkaido Electric Power Co Inc, Tohoku Electric Power Co Inc, Tokyo Electric Power Co Inc filed Critical Electric Power Development Co Ltd
Priority to JP62296448A priority Critical patent/JPH01137525A/en
Publication of JPH01137525A publication Critical patent/JPH01137525A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make a long-scaled oxide superconductive mold mass-produced effectively at a high speed by serially performing a plural times of the following processes repetitively in the similar facility: one process in which a vapor phase precipitation method is used to form a filmy metal component of oxide superconductive elements on a running continuous filament susceptor, and the other process in which the metal film is oxidized. CONSTITUTION:The following processes; one in which a vapor phase precipitation method is used to form a filmy metal component of oxide superconductive elements on a running continuous filament susceptor, and the other process in which the metallic film is oxidized, are performed serially in plural times in the similar facility. Namely this equipment is composed of the following units: a film forming device 1 for use in forming a filmy metal component of a superconductor on a susceptor 4, an oxidation processor 2 in which the metal is oxidized, a pair of turn rolls 3, 3' for use in introducing the susceptor repetitively into the film forming device 1 and the oxidation processor 2, and a coiler 7 for use in winding the superconductive mold 6 manufactured in the device 1, 2. Accordingly the oxide superconductive mold, which is excellent in its superconductive characteristic and long-scaled, can be made to be mass-produced effectively at a high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電カケープル、マグネット、電力貯蔵リンク又
は磁気シールド等に用いられる酸化物超電導成形体の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an oxide superconducting molded body used for power cables, magnets, power storage links, magnetic shields, etc.

〔従来の技術とその問題点] 近年、(Ln+−++S rx)CoO2、(Ln+−
xBaw)tcuo、、LnBazCusOt、L n
 B a 、−。
[Conventional technology and its problems] In recent years, (Ln+-++S rx)CoO2, (Ln+-
xBaw)tcuo,,LnBazCusOt,Ln
B a, -.

Sr、Cu=O=等(但し、LnはY、Sc又は希土類
元素)の層状ペロブスカイト型構造の酸化物超電導成形
体が見出°されている。
An oxide superconducting molded body having a layered perovskite structure of Sr, Cu=O=, etc. (Ln is Y, Sc, or a rare earth element) has been found.

これらの酸化物超電導体は、液体N2温度以上で超電導
となるため従来の液体He温度で超電導を示す金属超電
導体に較べて格段に経済的であり、各分野での利用が検
討されている。
These oxide superconductors are much more economical than conventional metal superconductors which exhibit superconductivity at liquid He temperatures because they become superconducting above the liquid N2 temperature, and their use in various fields is being considered.

しかしながら上記の酸化物超電導体は脆いため金属材料
のように塑性加工ができず、これらを線条体等に成形す
るには、粉末冶金法又はPVD法等の気相成長法が応用
されているが、前者は粉末の製造から焼結まで多くの工
程を要し、また途中の加熱工程で酸素などの構成元素の
出入りがおこり組成や構造が変化し易いため、製造条件
の管理を厳密に行わなければならず、生産性及び経済性
に劣る欠点がある。
However, the above-mentioned oxide superconductors are brittle and cannot be plastically processed like metal materials, so powder metallurgy or vapor phase growth methods such as PVD are applied to form them into strips. However, the former requires many steps from powder production to sintering, and the composition and structure are likely to change due to the entry and exit of constituent elements such as oxygen during the heating process, so manufacturing conditions must be strictly controlled. However, it has the disadvantage of being inferior in productivity and economy.

又粉末をAg等の貴金属パイプに充填して伸延加工した
のち、焼結する方法も検討されているが、パイプ材に貴
金属を用いるためコスト高となるり、焼結体は低密度、
低酸素量等の理由により臨界電流密度(以下Jcと略記
)が低い値のものしか得られない。
Also, a method of filling a noble metal pipe such as Ag with powder, stretching it, and then sintering it has been considered, but since the pipe material is made of noble metal, the cost is high, and the sintered body has a low density and
Due to reasons such as low oxygen content, only a low critical current density (hereinafter abbreviated as Jc) can be obtained.

一方PVD法は、長尺材の製造には不向きとされており
、また成膜速度が遅いため生産性に劣る等の問題があっ
た。
On the other hand, the PVD method is considered unsuitable for manufacturing long materials, and has problems such as poor productivity due to slow film formation speed.

〔問題点を解決するための手段及び作用〕本発明は、か
かる状況に鑑みなされたもので、その目的とするところ
は、J6等の超電導特性に優れた長尺の酸化物超電導成
形体を高速度で、効率よく量産できる製造方法を提供す
ることにある。
[Means and effects for solving the problems] The present invention has been made in view of the above situation, and its purpose is to develop a long oxide superconducting molded body with excellent superconducting properties such as J6 to high Our goal is to provide a manufacturing method that allows for fast, efficient mass production.

即ら本発明方法は、走行する連続線条基体上に酸化物超
電導体成分のうちの金属成分を気相析出法により膜状に
形成する工程及び上記金属膜を酸化処理する工程をそれ
ぞれ同一設備により順次複数回繰り返し施す事を特徴と
するものである。
That is, in the method of the present invention, the step of forming a metal component of the oxide superconductor component into a film on a traveling continuous linear substrate by vapor phase deposition and the step of oxidizing the metal film are performed in the same equipment. It is characterized by being applied repeatedly several times in sequence.

本発明において基体にはハステロイ合金、ステンレスス
チール、Nb、Ta、Ti、Fe、Ni。
In the present invention, the substrate includes Hastelloy alloy, stainless steel, Nb, Ta, Ti, Fe, and Ni.

Cu、A1等の金属又はC,AN、03、Zr、O,、
Sin、、SiC,MgO等の非金属の線やテープ又は
フィラメント等で、導体として必要な強度と可撓性を存
しているものが用いられる。
Metals such as Cu, A1 or C, AN, 03, Zr, O,...
Non-metallic wires, tapes, filaments, etc. such as Sin, SiC, MgO, etc., which have the strength and flexibility necessary as a conductor, are used.

本発明に用いられる気相析出法としては、スパッタリン
グ法、イオンブレーティング法、蒸着法等のPVD法又
はCVD法等があり、特にPVD法はプラズマ等の併用
により高速度で安定して成膜処理することができるので
最も適した方法である。
The vapor phase deposition method used in the present invention includes PVD methods such as sputtering method, ion blasting method, and vapor deposition method, or CVD method. In particular, PVD method can form a film stably at high speed by using plasma etc. This is the most suitable method because it can be processed.

本発明の気相析出法で用いられる蒸発源又はターゲット
は、超電導体成分のうちの金属成分からなる合金が用い
られ、例えばYBatCuxOtの超電導体の場合は、
Y−Ba−Cu系合金からなるターゲットを用いて、Y
、Ba、Cuの各元素をそれぞれモル比で1:2:3に
なるように化学量論比に応じて混合体、層状又は合金と
して基体上に膜状に析出させる。
The evaporation source or target used in the vapor deposition method of the present invention is an alloy made of metal components among superconductor components. For example, in the case of YBatCuxOt superconductor,
Using a target made of Y-Ba-Cu alloy, Y
, Ba, and Cu are deposited in a film form on a substrate as a mixture, layer, or alloy depending on the stoichiometric ratio so that the molar ratio is 1:2:3.

上記の金属膜は、このあと酸化処理することにより所定
の組成及び結晶構造の酸化物超電導体に形成されるが、
金属膜が薄い場合は、極めて短時間に超電導体となる。
The above metal film is then formed into an oxide superconductor with a predetermined composition and crystal structure by oxidation treatment.
If the metal film is thin, it becomes a superconductor in an extremely short time.

気相析出法において蒸発源又はターゲットに酸化物を用
い基体上に直接層状ペロプスカイト型構造の酸化物を析
出させる場合は、析出速度は極めて低速となるが、金属
成分を析出させる場合は、上記の10倍程度の高速で析
出させる事ができる。
When an oxide with a layered perovskite structure is directly deposited on a substrate using an oxide as an evaporation source or target in a vapor phase deposition method, the deposition rate is extremely slow, but when depositing a metal component, the above It is possible to precipitate at a high speed of about 10 times that of the previous one.

このような事から金属成分の析出とこの金属膜を酸化処
理する工程とを別々に行う本発明方法によれば酸化物超
電導体を高速度で形成することができる。
For this reason, according to the method of the present invention in which the steps of depositing a metal component and oxidizing the metal film are performed separately, an oxide superconductor can be formed at a high speed.

本発明において上記の成膜工程と酸化処理工程を複数回
繰り返して所望の膜厚に形成する理由は、1回当りの成
膜厚さが厚過ぎると酸化処理において0□の供給及び結
晶化が十分になされないためで、1回の成膜厚さは50
0Å以下にするのが好ましく、他方25Å以下では生産
性が低下するので、1回当りの成膜厚さは50〜500
人にするのが適当である。
In the present invention, the reason why the above film formation process and oxidation treatment process are repeated multiple times to form a desired film thickness is that if the film formation thickness per time is too thick, the supply of 0□ and crystallization in the oxidation treatment will be reduced. This is because the film is not deposited sufficiently, and the thickness of one film is 50%.
It is preferable that the thickness be 0 Å or less; on the other hand, if it is 25 Å or less, the productivity will decrease, so the film forming thickness per time should be 50 to 500 Å.
It is appropriate to make it a person.

酸化処理の方法としては、低圧のO2雰囲気中での加熱
やプラズマ酸化法、o2イオン注入法等が用いられる。
As a method for the oxidation treatment, heating in a low-pressure O2 atmosphere, plasma oxidation method, O2 ion implantation method, etc. are used.

上記の酸化処理は金属膜を形成する雰囲気と同程度の真
空下でも実施できるので、双方を同一チャンバー内に併
設すると設備上大変好都合である。
Since the above-mentioned oxidation treatment can be carried out under the same vacuum as the atmosphere in which the metal film is formed, it is very convenient in terms of equipment to provide both in the same chamber.

尚、成膜工程と酸化処理工程を複数回繰り返したあと更
に酸化処理を別途行うことにより性能の改善と安定化を
計ることができる。
Incidentally, performance can be improved and stabilized by repeating the film formation process and the oxidation treatment process multiple times and then separately performing the oxidation treatment.

本発明において成膜工程と酸化処理工程とをそれぞれ同
一の装置を用い、この装置内に基体を多段に並列させ繰
り返し走行させて施す理由は、設備費の低減ばかりでな
く、葵発源又はターゲットからの蒸発粒子等を効率よく
基体上に補足するためである。更に基体にねじりを与え
ておくと蒸発源やターゲントに対し基体の特定部分が影
になることがなくなり、膜が基体周囲に万遍なく均等に
形成され又酸化処理も均質になされる。
In the present invention, the film formation process and the oxidation treatment process are performed using the same equipment, and the substrates are arranged in parallel in multiple stages and run repeatedly in this equipment.The reason is not only to reduce equipment costs, but also to This is to efficiently capture evaporated particles and the like onto the substrate. Further, by twisting the substrate, a specific part of the substrate will not be in the shadow of the evaporation source or target, and the film will be evenly formed around the substrate, and the oxidation treatment will be uniform.

本発明において、基体上に超電導体を形成する前後又は
中間に非反応性の非超電導体物質例えばPd%PtSA
g等の貴金属やダイヤモンド、BNSZrOt 、Mg
O,5rTiOz等を形成させることにより、ピンニン
グ効果を付与し、又結晶を緻密化、均質化してJ6等の
超電導特性を向上させることができる。特に貴金属は、
上記効果が著しい。
In the present invention, a non-reactive non-superconducting material such as Pd%PtSA is used before, during or after forming a superconductor on a substrate.
Precious metals such as g, diamond, BNSZrOt, Mg
By forming O, 5rTiOz, etc., a pinning effect can be imparted, and the crystal can be made denser and more homogeneous, thereby improving the superconducting properties of J6 and the like. Especially precious metals
The above effect is remarkable.

以上、YBa、CuzOtの酸化物超電導体を例に説明
したが、本発明は0の一部をF等のハロゲン元素やS、
Se等と置換した物質にも適用できることは言うまでも
ない。
The above explanation has been given using oxide superconductors such as YBa and CuzOt as examples, but in the present invention, a part of 0 is replaced by a halogen element such as F, S,
It goes without saying that this method can also be applied to substances substituted with Se or the like.

本発明の一実施例を示す超電導成形体製造設備の側面図
及び平面図をそれぞれ第1図イ、口に示した。同図にお
いて、1は成膜装置、2は酸化処理装置である。
A side view and a plan view of a superconducting molded body production facility showing one embodiment of the present invention are shown in FIGS. 1A and 1A, respectively. In the figure, 1 is a film forming apparatus, and 2 is an oxidation processing apparatus.

アンコイラ−5から供給される基体4上に超電導体の金
属成分を膜状に形成する成膜装置1、上記金属膜を酸化
する酸化処理装置2、基体を成膜装M1と酸化処理装置
2に繰り返し導入するための一対のターンロール3.3
′、上記装置1.2によって製造された超電導成形体6
を巻き取るコイラー7から構成されている。
A film forming apparatus 1 forms a metal component of a superconductor in the form of a film on a substrate 4 supplied from an uncoiler 5, an oxidation treatment apparatus 2 oxidizes the metal film, and a substrate is transferred to a film formation apparatus M1 and an oxidation treatment apparatus 2. A pair of turn rolls for repeated introductions 3.3
', superconducting molded body 6 manufactured by the above apparatus 1.2
It consists of a coiler 7 that winds up.

本発明においてターンロール3.3′の円周には周方向
に基体4を成膜装置lと酸化処理装置2に繰り返し導入
するための基体案内溝が所望数設けられており、各々の
溝近傍には、ガイドピン、回転ガイドビン又はガイドロ
ール等が必要に応し設けられる。また基体4がターンロ
ール3.3′と接触して傷を生しないようにターンロー
ル3.3′には、回転機能が具備されている。
In the present invention, a desired number of substrate guide grooves are provided on the circumference of the turn roll 3.3' for repeatedly introducing the substrate 4 into the film forming apparatus 1 and the oxidation treatment apparatus 2 in the circumferential direction, and the substrate guide grooves are provided in the vicinity of each groove. A guide pin, a rotating guide bin, a guide roll, etc. are provided as necessary. Furthermore, the turn roll 3.3' is provided with a rotating function so that the base body 4 does not come into contact with the turn roll 3.3' and cause damage.

本発明において、成膜装置lには、真空蒸着装置やマグ
ネトロンスパッタ装置等が用いられる。
In the present invention, a vacuum evaporation device, a magnetron sputtering device, or the like is used as the film forming device l.

成膜雰囲気は前者の場合、10− ’Torr、後者の
場合10−’Torr以下の真空が用いられる。
The film forming atmosphere is 10-' Torr in the former case, and a vacuum of 10-' Torr or less in the latter case.

−芳醇化処理装置には、プラズマ酸化炉等が用いられ、
10− ’Torr以下の真空下で処理される。
- A plasma oxidation furnace etc. is used for the aromatization treatment equipment,
Processed under vacuum below 10-'Torr.

成膜工程では、0□が多少混入しても問題ないので、成
膜装置1を酸化処理装置2と同じ処理室9に入れて処理
室9全体を真空に保持するのがコスト的にもスペース的
にも有利である。
In the film-forming process, there is no problem even if some 0□ gets mixed in, so it is best to put the film-forming device 1 in the same processing chamber 9 as the oxidation processing device 2 and keep the entire processing chamber 9 in a vacuum, both in terms of cost and space. It is also advantageous.

本発明において、成膜装置lと酸化処理装置2の内部ス
ペースは広くとりそれぞれ一台の装置で多数の基体を多
数回繰り返し処理できるように設計される。
In the present invention, the internal spaces of the film forming apparatus 1 and the oxidation processing apparatus 2 are designed to be large so that a large number of substrates can be repeatedly processed many times with one apparatus.

第2図に成膜装置と酸化処理装置をもう一台づつ設けた
2連式の製造設備の側面図を示した。
FIG. 2 shows a side view of a two-unit production facility equipped with one film forming device and one oxidation processing device.

この設備によれば生産性の向上が計れ、又異種の超電導
体を積層して形成できる等のメリットがある。
This equipment has advantages such as improved productivity and the ability to layer and form different types of superconductors.

第3図に非超電導物質等を被着する予備処理室を併設し
た製造設備の側面図を示した。
FIG. 3 shows a side view of a manufacturing facility equipped with a pretreatment chamber for depositing non-superconducting materials, etc.

予備処理室8内に非超電導物質被着装置10が配置され
ており、処理室9での処理の前後又は途中で非超電導物
質層を基体又は超電導体膜上に被着することができる。
A non-superconducting material deposition device 10 is disposed in the pre-treatment chamber 8, and can deposit a non-superconducting material layer on the substrate or superconductor film before, during or after the treatment in the treatment chamber 9.

第4図にターンロールを増設した製造設備の側面図を示
した。ターンロール33に小型のものが使用できるので
設備がコンパクト化される。
Figure 4 shows a side view of the manufacturing equipment with additional turn rolls. Since a small turn roll 33 can be used, the equipment can be made more compact.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例1 第3図の装置を用いてハステロイ線上にYo、。Example 1 Yo on the Hastelloy wire using the apparatus shown in FIG.

Ero、2BazCu30tの超電導体膜を約3μ形成
した酸化物超電導成形体(以下超電導成形体と略記)を
製造した。
An oxide superconducting molded body (hereinafter abbreviated as superconducting molded body) in which a superconductor film of Ero, 2BazCu, and 30t was formed to a thickness of about 3 μm was manufactured.

予備処理室8及び処理室9はいずれも図示していない真
空ポンプにより10−’Torr台の真空に保持した。
Both the pretreatment chamber 8 and the treatment chamber 9 were maintained at a vacuum of about 10-' Torr by a vacuum pump (not shown).

予備処理室8の非超電導物質被着装置10にはマグネト
ロンスパッタ装置(以下スパッタ装置と略記)を用い装
置内はA r 10−”Torrに保持した。処理室9
内の成膜装置lにはスパッタ装置を用い、装置内はA 
r 10−”Torrに保持した。酸化処理装置2には
プラズマ酸化炉を用い、炉内はO”10− ’Torr
に保持した。
A magnetron sputtering device (hereinafter abbreviated as sputtering device) was used as the non-superconducting material deposition device 10 in the pretreatment chamber 8, and the inside of the device was maintained at A r 10-” Torr.Processing chamber 9
A sputtering device is used for the film forming device L inside the device, and the inside of the device is A.
A plasma oxidation furnace was used as the oxidation treatment apparatus 2, and the temperature inside the furnace was maintained at O"10-' Torr.
was held at

予備処理室8と処理室9にはそれぞれ一対のターンロー
ル23.23’ 、3.3’が配置されており、上記ロ
ールは、いずれも400IIIIlφX 300麺2の
大きさで、円周の周方向に0.2鵬8の溝が0.5+m
*ピッチで300溝形成されている。
A pair of turn rolls 23.23' and 3.3' are arranged in the pretreatment chamber 8 and the treatment chamber 9, respectively, and each of the rolls has a size of 400III1φX 300 noodles 2, and rotates in the circumferential direction of the circumference. The groove of 0.2 Peng 8 is 0.5 + m
*300 grooves are formed at a pitch.

基体4として0.0511IIaφのハステロイ線をア
ンコイラ−から送出し、これをコイラー7に30(1m
/winの速度で巻き取り、この間先ず予備処理室8の
スパッタ装置10内をターンロール23.23’を介し
て2往復半(2,5往復)させて、上記基体4上にpt
を1 、500人被覆し、次いでこれを処理室9のスパ
ッタ装置1に導入して、Yo、*E r o、tB a
z、tcus、zの合金をターゲットに用いてY−Er
−Ba−Cu系合金を200人成膜したのち、これをタ
ーンロール3′を介してプラズマ酸化炉2に導入して5
50°Cに加熱して上記合金膜を酸化させ、次いでこれ
をターンロール3を介して再びスパッタ装21に導入し
て、この上に更に合金膜を形成するという成膜と酸化処
理の工程を60回繰り返したのち、これを予備処理室8
に戻して、スパッタ装置10内に2往復させてptを1
 、200人被覆し、しかるのちこれをコイラー7に巻
き取り、最後にコイラー7ごと0.気流中で600°C
6H加熱して超電導成形体を製造した。
A Hastelloy wire of 0.0511 IIaφ is sent out from the uncoiler as the base 4, and it is connected to the coiler 7 with a length of 30 (1 m).
/win, and during this time, the sputtering device 10 in the pretreatment chamber 8 is first made two and a half reciprocations (2.5 reciprocations) via the turn roll 23, 23', and the PT is coated on the substrate 4.
1,500 people, and then introduced into the sputtering device 1 of the processing chamber 9, Yo, *E r o, tB a
Y-Er using an alloy of z, tcus, and z as a target
- After 200 layers of Ba-Cu alloy were deposited, the film was introduced into the plasma oxidation furnace 2 via the turn roll 3'.
The process of film formation and oxidation treatment is performed in which the alloy film is heated to 50°C to oxidize it, and then introduced into the sputtering equipment 21 again via the turn roll 3 to further form an alloy film thereon. After repeating this 60 times, this is carried out in the pretreatment chamber 8.
pt and make it reciprocate twice in the sputtering apparatus 10 to reduce the pt to 1.
, 200 coated, and then wound on the coiler 7, and finally the coiler 7 was coated with 0. 600°C in air flow
A superconducting molded body was produced by heating for 6 hours.

実施例2 ハステロイ線の走行速度及び成膜と酸化処理の繰り返し
数を実施例1の4倍とし、又1回当りの合金の成膜厚さ
を50人とした他は実施例1と同じ方法により超電導成
形体を製造した。
Example 2 The same method as in Example 1 except that the running speed of the Hastelloy wire and the number of repetitions of film formation and oxidation treatment were four times that of Example 1, and the thickness of alloy film formation per time was changed to 50 people. A superconducting molded body was manufactured using the following method.

実施例3 ハステロイ線の走行速度及び成膜と酸化処理の繰り返し
数を実施例1の172とし、1回当りの合金の成膜厚さ
を400人とした他は実施例1と同じ方法により超電導
成形体を製造した。
Example 3 Superconductivity was produced by the same method as in Example 1, except that the running speed of the Hastelloy wire and the number of repetitions of film formation and oxidation treatment were 172 as in Example 1, and the thickness of the alloy film per time was 400. A molded body was produced.

実施例4 ハステロイ線の走行速度及び成膜と酸化処理の繰り返し
数を実施例1の174とし、1回当りの合金の成膜さを
800人とし、最初と最後のPt処理をそれぞれ1.5
及び1往復とした他は実施例1と同じ方法により超電導
成形体を製造した。
Example 4 The running speed of the Hastelloy wire and the number of repetitions of film formation and oxidation treatment were set to 174 as in Example 1, the number of alloy film formation per cycle was set to 800 people, and the initial and final Pt treatments were each performed at 1.5
A superconducting molded body was manufactured by the same method as in Example 1 except that the reciprocation was performed once.

実施例5 成膜と酸化処理を2回繰り返す毎にpt処理を1往復行
いl往復当りのPtの被覆厚さを遮蔽板を用いて30人
に薄<シた他は実施例1と同じ方法により製造した。
Example 5 The same method as in Example 1 except that the PT treatment was performed once every time the film formation and oxidation treatment were repeated twice, and the Pt coating thickness per 1 round trip was reduced to 30 by using a shielding plate. Manufactured by.

実施例6 ptの代りにIrを用いた他は実施例5と同じ方法によ
り製造した。
Example 6 Produced in the same manner as in Example 5 except that Ir was used instead of pt.

実施例7 予めアンコイラ−にハステロイ線を3本−緒に巻き取っ
ておいて、このハステロイ線をアンコイラ−から送出し
て3本−緒に処理した他は実施例2と同じ方法により超
電導成形体を製造した。
Example 7 A superconducting molded body was produced in the same manner as in Example 2, except that three Hastelloy wires were wound together in an uncoiler in advance, and the three Hastelloy wires were sent out from the uncoiler and processed together. was manufactured.

実施例8 コイラー巻取り後の酸化処理を省略した他は実施例1と
同じ方法により超電導成形体を製造した。
Example 8 A superconducting molded body was manufactured by the same method as in Example 1 except that the oxidation treatment after winding the coiler was omitted.

比較例1 Yo、tEro、JazCu30tの粉末を外径60圓
、内径30IIIIIIのAgパイプに充填し真空封止
したのち、これを鍛造及びスェージングにより5閣φに
加工し、更にローラーダイスにより0.8Wφに仕上げ
た。次にこれを1気圧の0□中で850℃6H加熱して
から2°(:/minの速度で冷却し超電導成形体を製
造した。
Comparative Example 1 Yo, tEro, and JazCu 30t powders were filled into an Ag pipe with an outer diameter of 60 mm and an inner diameter of 30 III, vacuum sealed, and then processed into a 5 mm diameter by forging and swaging, and further into a 0.8 W diameter with a roller die. Finished. Next, this was heated at 850° C. for 6 hours in 0□ at 1 atm, and then cooled at a rate of 2° (:/min) to produce a superconducting molded body.

斯くの如くして得た各々の超電導成形体について臨界温
度(T、)及びJeを測定した。結果は第1表に主な製
造条件を併記して示した。
The critical temperature (T, ) and Je of each of the superconducting molded bodies obtained in this way were measured. The results are shown in Table 1 along with the main manufacturing conditions.

第1表より明らかなように本発明方法品(実施例1〜7
)は比較方法品(比較例1)に較べてT9、Jcとも著
しく高い値を示している。
As is clear from Table 1, the method of the present invention (Examples 1 to 7)
) shows significantly higher values for both T9 and Jc than the comparative method product (Comparative Example 1).

本発明方法品のうちでは、1回の成膜厚さが薄い程高い
J、値を示し、その差は外部磁場の存在下において顕著
にあられれている。これは1回当りの成膜厚さが薄い程
、次の酸化処理において02の供給と結晶化が十分にな
されるためである。
Among the products manufactured using the method of the present invention, the thinner the film formed once, the higher the J value, and the difference is noticeable in the presence of an external magnetic field. This is because the thinner the film is formed each time, the more 02 is supplied and crystallized in the next oxidation treatment.

超電導体内に貴金属層を介在させたもの(実施例5,6
)は、特に外部磁場の存在下で高いJc値を示している
が、これは貴金属層のピンニング効果によるものである
A superconductor with a noble metal layer interposed in it (Examples 5 and 6)
) shows high Jc values, especially in the presence of an external magnetic field, which is due to the pinning effect of the noble metal layer.

基体を3本同時に走行させたもの(実施例7)は、1本
を走行させたもの(実施例2)とほぼ同じ特性を示し、
特性を落とさずに生産性向上が可能なことが実証された
The one in which three substrates were run at the same time (Example 7) showed almost the same characteristics as the one in which one was run (Example 2),
It has been demonstrated that productivity can be improved without compromising properties.

コイラー巻取り後の酸化処理を省略したもの(実施例8
)は、酸化処理を行ったもの(実施例1)に較べてTc
、Jcともやや低い値になっている。
Coiler without oxidation treatment after winding (Example 8)
) has a higher Tc than that subjected to oxidation treatment (Example 1).
, Jc are both somewhat low values.

〔効果〕〔effect〕

以上述べたように本発明によれば、J6等の超電導特性
並びに機械的強度や可撓性に優れた長尺の酸化物超電導
成形体を高速度で効率よく量産できるので、工業上顕著
な効果を奏する。
As described above, according to the present invention, long oxide superconducting molded bodies such as J6 having excellent superconducting properties, mechanical strength, and flexibility can be mass-produced efficiently at high speed, resulting in significant industrial effects. play.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ1口は本発明を実施する設備の一例を示すそれ
ぞれ側面及び平面図、第2図は、他の例を示す側面説明
図、第3図は非超電導物質被着装置を併設した設備の側
面図、第4図は複数対のターンロールを有する設備の側
面図である。 1、ビ・・・成膜装置、 2.2′・・・酸化処理装置
、 3. 3’ 、13.13’ 、23.23’ 、
33・・・ターンロール、  4・・・基体、  5・
・・アンコイラ−26・・・超電導成形体、 7・・・
コイラー、  8・・・予備処理室、 9.9′・・・
処理室、 10・・・非超電導物質被着装置。 特許出願人   古河電気工業株式会社第1図
Figure 1 A is a side view and a plan view showing an example of equipment for carrying out the present invention, Figure 2 is an explanatory side view showing another example, and Figure 3 is a side view showing an example of equipment for carrying out the present invention, and Figure 3 is a side view showing an example of equipment for carrying out the present invention. FIG. 4 is a side view of the equipment having multiple pairs of turn rolls. 1. Bi... film forming device, 2.2'... oxidation treatment device, 3. 3', 13.13', 23.23',
33...Turn roll, 4...Base body, 5.
...Uncoiler-26...Superconducting molded body, 7...
Coiler, 8...Pretreatment chamber, 9.9'...
processing chamber, 10... non-superconducting material deposition device; Patent applicant Furukawa Electric Co., Ltd. Figure 1

Claims (6)

【特許請求の範囲】[Claims] (1)走行する連続線条基体上に酸化物超電導体成分の
うちの金属成分を気相析出法により膜状に形成する工程
及び上記金属膜を酸化処理する工程をそれぞれ同一設備
により順次複数回繰り返し施す事を特徴とする酸化物超
電導成形体の製造方法。
(1) The process of forming a metal component of the oxide superconductor component into a film on a running continuous filament base by vapor phase deposition and the process of oxidizing the metal film are performed multiple times in sequence using the same equipment. A method for producing an oxide superconducting molded body, which is characterized by repeated application.
(2)1回当りの成膜厚さが500Å以下である事を特
徴とする特許請求の範囲第1項記載の酸化物超電導成形
体の製造方法。
(2) The method for producing an oxide superconducting molded body according to claim 1, characterized in that the film thickness per time is 500 Å or less.
(3)気相析出法がPVD法である事を特徴とする特許
請求の範囲第1項記載の酸化物超電導成形体の製造方法
(3) The method for producing an oxide superconducting molded body according to claim 1, wherein the vapor phase deposition method is a PVD method.
(4)酸化処理工程と成膜工程の2工程の中間に非超電
導物質を被覆する工程を所望回施す事を特徴とする特許
請求の範囲第1項記載の酸化物超電導成形体の製造方法
(4) A method for producing an oxide superconducting molded body according to claim 1, characterized in that a step of coating a non-superconducting substance is performed as many times as desired between the two steps of the oxidation treatment step and the film forming step.
(5)非超電導物質が貴金属である事を特徴とする特許
請求の範囲第4項記載の酸化物超電導成形体の製造方法
(5) The method for producing an oxide superconducting molded body according to claim 4, wherein the non-superconducting substance is a noble metal.
(6)成膜工程と酸化処理工程において、複数本の連続
線条基体を並行して処理する事を特徴とする特許請求の
範囲第1項記載の酸化物超電導成形体の製造方法。
(6) The method for producing an oxide superconducting molded body according to claim 1, wherein a plurality of continuous filamentous substrates are treated in parallel in the film forming step and the oxidation treatment step.
JP62296448A 1987-11-25 1987-11-25 Manufacture of oxide superconductive mold Pending JPH01137525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62296448A JPH01137525A (en) 1987-11-25 1987-11-25 Manufacture of oxide superconductive mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62296448A JPH01137525A (en) 1987-11-25 1987-11-25 Manufacture of oxide superconductive mold

Publications (1)

Publication Number Publication Date
JPH01137525A true JPH01137525A (en) 1989-05-30

Family

ID=17833676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62296448A Pending JPH01137525A (en) 1987-11-25 1987-11-25 Manufacture of oxide superconductive mold

Country Status (1)

Country Link
JP (1) JPH01137525A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6209221B1 (en) 1998-05-14 2001-04-03 Asm International N.V. Wafer rack provided with a gas distribution device
WO2011043409A1 (en) * 2009-10-07 2011-04-14 株式会社フジクラ Underlying layer of alignment film for oxide superconductor, method of forming same, and device for forming same
WO2013084604A1 (en) * 2011-12-09 2013-06-13 東レエンジニアリング株式会社 Film conveying and forming apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6209221B1 (en) 1998-05-14 2001-04-03 Asm International N.V. Wafer rack provided with a gas distribution device
WO2011043409A1 (en) * 2009-10-07 2011-04-14 株式会社フジクラ Underlying layer of alignment film for oxide superconductor, method of forming same, and device for forming same
CN102576583A (en) * 2009-10-07 2012-07-11 株式会社藤仓 Underlying layer of alignment film for oxide superconductor, method of forming same, and device for forming same
US8420575B2 (en) 2009-10-07 2013-04-16 Fujikura Ltd. Underlying layer of alignment film for oxide superconducting conductor and method of forming same, and device for forming same
JP5756405B2 (en) * 2009-10-07 2015-07-29 株式会社フジクラ Method for forming alignment layer underlayer for oxide superconductor, method for manufacturing substrate with alignment layer for oxide superconductor, substrate with alignment layer for oxide superconductor, and alignment layer underlayer for oxide superconductor Deposition equipment
WO2013084604A1 (en) * 2011-12-09 2013-06-13 東レエンジニアリング株式会社 Film conveying and forming apparatus
JP2013139621A (en) * 2011-12-09 2013-07-18 Toray Eng Co Ltd Film conveying and forming apparatus

Similar Documents

Publication Publication Date Title
EP0285108A2 (en) Method of producing superconducting wire
CN112981326B (en) Metal-based superconducting tape and preparation method thereof
US5140004A (en) Method for preparing a high Tc superconducting fiber
JP3521182B2 (en) Oxide superconducting wire and superconducting device
US5079218A (en) Superconducting fiber and a method for preparing the same
US20030130128A1 (en) Method of fabricating fine high temperature superconducting composites
JPH01137525A (en) Manufacture of oxide superconductive mold
US6536097B1 (en) Method of preparing and handling oxide superconducting wire
JPH01134825A (en) Manufacture of oxide superconductive compact
JPH01143106A (en) Manufacture of oxide superconductive compact
JP2877367B2 (en) Superconducting wire
JP2575443B2 (en) Method for producing oxide-based superconducting wire
JP3098906B2 (en) Method for manufacturing superconducting wire
JP2835069B2 (en) Superconducting coil
JPH0362905A (en) Manufacture of superconducting coil
Woolf et al. Fabrication of long length Bi-2223 superconductor tape using a continuous electrophoretic coating process
JP2575442B2 (en) Method for producing oxide-based superconducting wire
JPH01203298A (en) Method and apparatus for producing elongated conductor equipped with ceramix oxide superconductive material
JPS63274017A (en) Superconductive wire material
JPS63241826A (en) Manufacture of superconducting wire
JP4373683B2 (en) Method for manufacturing Bi-based oxide superconducting coil
JPH05250937A (en) Manufacture of multi-conductor oxide superconductive wire
JPS63310520A (en) Manufacture of superconductive wire
JPH02192619A (en) Manufacture of oxide superconductor
JPH01209607A (en) Manufacture of oxide superconductive wire rod