JPH01137000A - Electrolytic treatment of wire rod - Google Patents

Electrolytic treatment of wire rod

Info

Publication number
JPH01137000A
JPH01137000A JP29281487A JP29281487A JPH01137000A JP H01137000 A JPH01137000 A JP H01137000A JP 29281487 A JP29281487 A JP 29281487A JP 29281487 A JP29281487 A JP 29281487A JP H01137000 A JPH01137000 A JP H01137000A
Authority
JP
Japan
Prior art keywords
electrolytic
wire
soln
electrolytic cell
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29281487A
Other languages
Japanese (ja)
Inventor
Hajime Fukiganehara
吹金原 肇
Susumu Takada
進 高田
Yasunobu Kawaguchi
川口 康信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29281487A priority Critical patent/JPH01137000A/en
Publication of JPH01137000A publication Critical patent/JPH01137000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To reduce the electrolytic voltage and to improve the critical electrolytic current density by coaxially arranging in series two electrolytic cells provided with a liq. inlet on one end of its cylindrical body having a penetrating hole for traveling a wire rod and a solid soln. flow, introducing the soln. into the hole in a specified manner, and discharging the soln. from the hole. CONSTITUTION:A wire rod W is traveled in the direction as shown by the arrow, and first and second electrolytic cells 3a and 4a are coaxially arranged in series respectively on the upstream and downstream sides. An electrolyte inlet guide K is fixed to the upstream or downstream end of each cylindrical body P, the downstream or upstream end is connected to a discharge port H, the electrolyte is recovered from the discharge port and collected in a tank, and the electrolyte is circulated to each cell. In this case, after the soln. introduced from the circumferential direction is spiraled by the spiral flow forming part of the guide K or while the soln. is spiraled, the soln. flow is forcibly turned to the discharge port H used as the inlet or the outlet for the wire rod W. The soln. turned to the discharge port H is throttled by the soln. inlet member having a solid soln. flow forming part to obtain a solid soln. flow. A negative voltage or a positive voltage is impressed on the cell 3a or 4a from a power source E.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、線材の表面処理や熱処理に先立って行なわれ
る電解酸洗や電解脱脂等の電解処理に利用される装置に
関し、特に電解液の洩れ等を起こすことなく高速電解処
理を実行できる様にした線材電解処理装置に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus used for electrolytic treatments such as electrolytic pickling and electrolytic degreasing performed prior to surface treatment and heat treatment of wire rods, and in particular, relates to an apparatus used for electrolytic treatments such as electrolytic pickling and electrolytic degreasing that are performed prior to surface treatment and heat treatment of wire rods, and in particular, The present invention relates to a wire electrolytic processing apparatus that can perform high-speed electrolytic processing without causing leakage or the like.

[従来の技術] 線材の電解処理に当たっては、電解液を貯留した電解槽
内に陰極な浸漬すると共に被処理線材を陽極(コンタク
トロール)に接触させつつ電解槽へ導入し、電解液1介
して陽極と線材間に電解電流が流される。線材表面のス
ケールについてはこうした線材電解処理によって除去す
ることができるが、処理後の線材表面にはスマットと呼
ばれる非電解性老廃物質が残存することが多く、これを
完全に除去する為に更に長時間の電解を続けると素地が
溶出し肌荒れが発生する。そこで上記問題に対処する方
法について検討が重ねられ、その1つとして電解液中の
電解処理線材に逆極性の電圧を負荷して線材表面からH
2を発生させ、スマツトを除去するという方法が提唱さ
れるに及んでいる。
[Prior art] In the electrolytic treatment of wire rods, the wire rods are cathodically immersed in an electrolytic tank storing an electrolytic solution, and the wire rods to be treated are introduced into the electrolytic tank while being brought into contact with an anode (contact roll), and then the wire rods are introduced into the electrolytic tank through the electrolytic solution 1. An electrolytic current is passed between the anode and the wire. Scale on the wire surface can be removed by such wire electrolytic treatment, but non-electrolytic waste substances called smut often remain on the wire surface after treatment, and in order to completely remove this, a longer period of time is required. If electrolysis continues for hours, the base material will dissolve and the skin will become rough. Therefore, many studies have been conducted on methods to deal with the above problem, and one of them is to apply a voltage of opposite polarity to the electrolytically treated wire in an electrolytic solution to remove the H from the surface of the wire.
A method of generating smut and removing smut has been proposed.

第2図は上記方法を適用した電解装置(***特許第71
8’175号)を示す断面説明図であり、供給リール3
9と巻取リール40の間に架は渡された被処理材(ここ
では板材)31は巻取り−ル40の回転に伴ない第1電
解槽33.水洗槽41.第2電解槽34.水洗槽42を
順次通過して巻取られる。この間、第1電解槽33に浸
漬した陰極37と第2電解槽34に浸漬した陽極38の
間に電圧を印加すれば電解液を介して被処理材31に電
流が流れ、電解処理が行なわれる。即ち第1電解槽33
では被処理材31の方が高電圧であるので被処理材31
から陰極37へ電流が流れて被処理材31表面の電解処
理(マイナス電解)が進行するが、これだけでは前述の
如く被処理材1表面にスマットが残留し、被処理材31
の表面を清浄にすることができない、スマットを付着し
たままの被処理材1は水洗槽41で洗浄された後、第2
電解槽34に至り、ここでスマット除去が行なわれる。
Figure 2 shows an electrolyzer (West German Patent No. 71) to which the above method is applied.
8'175) is a cross-sectional explanatory diagram showing the supply reel 3.
As the take-up reel 40 rotates, the material to be treated (here, a plate material) 31 is passed between the take-up reel 40 and the first electrolytic cell 33. Washing tank 41. Second electrolytic cell 34. It passes through the washing tank 42 one after another and is wound up. During this time, if a voltage is applied between the cathode 37 immersed in the first electrolytic bath 33 and the anode 38 immersed in the second electrolytic bath 34, a current flows through the electrolytic solution to the material 31 to be treated, and electrolytic treatment is performed. . That is, the first electrolytic cell 33
In this case, since the voltage of the material 31 to be treated is higher, the material 31 to be treated is
A current flows from the to the cathode 37 to progress the electrolytic treatment (minus electrolysis) on the surface of the material 31 to be treated, but this alone leaves smut on the surface of the material 1 to be treated as described above, and the material 31 to be treated 31
The material 1 to be treated with smut still attached, whose surface cannot be cleaned, is washed in the washing tank 41 and then washed in the second washing tank 41.
It reaches an electrolytic bath 34, where smut removal is performed.

即ち第2電解、[34では被処理材31の方が低電圧側
となるので陽極38から被処理材31へ電流が流れて被
処理材31表面でH2が発生し、これによって被処理材
31表面のスマットが除去される。その後被処理材31
は水洗[42で水洗され巻取り−ル40へ巻回される。
That is, in the second electrolysis [34, the voltage of the material 31 to be treated is lower than that of the material 31 to be treated, so a current flows from the anode 38 to the material 31 to be treated, and H2 is generated on the surface of the material 31 to be treated. Surface smut is removed. After that, the material to be treated 31
is washed with water [42] and wound onto a winding wheel 40.

上記処理方式によれば電解処理とスマット除去処理が連
続的に行なわれ、表面が活性で且つ清浄な被処理材を得
ることかできる。
According to the above treatment method, the electrolytic treatment and the smut removal treatment are performed continuously, and it is possible to obtain a treated material with an active and clean surface.

この様な方式の電解処理装置についてはその改良装置が
種々提案されており、その様式を類型化すると第3〜8
図の様に表わすことができる。
Various improved devices have been proposed for this type of electrolytic treatment device, and the types can be categorized into 3 to 8 types.
It can be expressed as shown in the figure.

まず第3図は、単一槽を仕切りTによって区画し第1電
解槽33と第2電解槽34を形成した電解装置(標準型
)であり、仕切りTにはスリットSが形成されており、
スリットS部分を通して第1電解槽33から第2電解槽
34へ線材Wが走行する。しかるに上記標準型の場合に
は、仕切りTのスリットS部分を通じて電解液同士が導
通しているので、線材Wを通らずに電解液内を短絡して
陽極から陰極へ到達する漏洩電流の比率がかなり大きく
なり、電解効率が低い、こうした標準型の欠点を緩和し
た。のが第4図の多重仕切り型電解装置であり、基本的
には前記標準型と同様の構成を採用するが、スリットS
を有する仕切りTを三重に設けることによって漏洩電流
をできる限り低減させることが狙われる。しかしながら
その低減効果は、電解液同士の導通を完全には遮断でき
ないので未だ不十分であり、低電解効率という欠点は解
消されていない。
First, FIG. 3 shows an electrolysis device (standard type) in which a single tank is divided by a partition T to form a first electrolytic cell 33 and a second electrolytic cell 34, and a slit S is formed in the partition T.
The wire W runs from the first electrolytic cell 33 to the second electrolytic cell 34 through the slit S portion. However, in the case of the above-mentioned standard type, the electrolyte is electrically connected through the slit S of the partition T, so the ratio of leakage current that short-circuits the electrolyte without passing through the wire W and reaches the cathode from the anode is This alleviated the shortcomings of these standard types, which were considerably larger and had lower electrolytic efficiency. This is the multi-partition type electrolyzer shown in Fig. 4, which basically has the same configuration as the standard type described above, but with a slit S.
The aim is to reduce leakage current as much as possible by providing three layers of partitions T. However, the reduction effect is still insufficient because the conduction between the electrolytes cannot be completely interrupted, and the drawback of low electrolytic efficiency remains unsolved.

これに対し第5図の気中給電型電解装置及び第6図の分
離型電解装置は、漏洩電流の遮断効果に関しては完全と
いえるが、前者の場合には気中給電区域におけるジュー
ル熱の発生が大きく、線材温度が上昇して線材に延びや
歪が発生する等の問題点が生じた。又気中における線材
への給電は、コンタクトロールBによる接触給電であり
、高速処理を行なうとコンタクトロール8部分でスパー
クを発生する恐れがある。他方第6図の分離型電解装置
は液中給電であるのでスパークが発生せず、漏洩電流も
皆無であるが、電解電圧が上昇するという欠点がある。
On the other hand, the air-fed electrolyzer shown in Fig. 5 and the separate electrolyzer shown in Fig. 6 can be said to have a perfect leakage current blocking effect, but in the case of the former, Joule heat is generated in the air-fed area. This caused problems such as the wire temperature rising and causing elongation and distortion in the wire. Further, the power supply to the wire rod in the air is by contact power supply by the contact roll B, and if high-speed processing is performed, there is a risk that sparks will be generated at the contact roll 8 portion. On the other hand, since the separate type electrolyzer shown in FIG. 6 uses submerged power supply, no sparks are generated and there is no leakage current, but it has the disadvantage that the electrolysis voltage increases.

次に電解効率を高める為に電解槽を小型化し密封したの
が第7図の密閉型電解装置であり、又密閉型電解装置に
おいて槽壁自体を電極としたのが第8図の電極壁型電解
装置である。しかるに第7.8図の装置では電解槽を密
閉化並びに小型化した関係から槽内にターンローラ等を
設けることができず、その為線材通過に際しては直線的
に(線材を曲げずに)電解槽内に導入し且つ引出さざる
をえない、従って線材導入口及び線材引出口からの液洩
れを避けることができないという欠点がある。尚前記第
3〜5図の装置にも当てはまることがあるが、第1電解
槽と第2電解槽の電解液を完全に分離することができず
、異なる電解液を使用する場合には電解液の混合が生じ
るという問題がある。
Next, in order to increase the electrolysis efficiency, the electrolytic cell was made smaller and sealed in the closed type electrolyzer shown in Fig. 7, and in the sealed electrolyzer, the cell wall itself was used as an electrode, the electrode wall type shown in Fig. 8. It is an electrolysis device. However, in the device shown in Figure 7.8, because the electrolytic cell is sealed and miniaturized, it is not possible to install turn rollers or the like in the cell, and therefore the electrolysis is carried out in a straight line (without bending the wire) when the wire passes through it. The disadvantage is that the liquid must be introduced into the tank and then pulled out, and therefore leakage from the wire inlet and wire outlet cannot be avoided. Note that this may also apply to the devices shown in Figures 3 to 5 above, but if the electrolytes in the first electrolytic tank and the second electrolytic tank cannot be completely separated and different electrolytes are used, the electrolytic solution There is a problem that a mixture of

[発明が解決しようとする問題点1 以上の通り、電解処理及びスマット除去処理を連続して
行なう装置が種々提案されており、夫々長所・短所があ
って溝足し得るものではない。特にこれらの装置は上記
欠点の為にいずれの場合にも高速処理には適しておらず
、生産性向上の観点からも抜本的な解決策を確立するこ
とが望まれている。
[Problem to be Solved by the Invention 1] As mentioned above, various apparatuses for performing electrolytic treatment and smut removal treatment continuously have been proposed, and each has its own advantages and disadvantages, and none of them can be used interchangeably. In particular, these devices are not suitable for high-speed processing in any case due to the above-mentioned drawbacks, and it is desired to establish a drastic solution from the viewpoint of improving productivity.

上記要請に答えるには電解条件を高電流密度(電解速度
の向上)且つ低電解電圧(電力コストの低減)とするこ
とが前提となるが、電解電流密度(CD)をある一定の
値(この値を最大CDという)を超えて上昇させると線
材表面粗れが顕著となると共に線材表面が酸化されて光
沢が失なわれる。
In order to meet the above requirements, it is necessary to set the electrolysis conditions to high current density (improvement of electrolysis speed) and low electrolysis voltage (reduction of power cost). When the value is increased beyond the maximum CD (referred to as the maximum CD), the wire surface becomes noticeably rough and the wire surface is oxidized and loses its luster.

一方電解電圧の低下に関しては電解電圧の構成を考察す
る必要がある。即ち電解電圧は、(1)陽極分解電圧V
+、(2)陰極分解電圧V2.(3)線材の固有抵抗に
よる電圧V3.(4)電解液の抵抗による電圧V4.(
5)回路抵抗による電圧vs及び(6)陽極で発生する
ガスによる遮断抵抗電圧v6の総和に相当するものであ
るから、各構成々分の一部又は全部を低圧化すればそれ
らの総和である電解電圧を低減することができると考え
られる。しかしながら上記のうち陽極分解電圧vI及び
陰極分解電圧v2は、例えば下記(1)式で示される電
解反応を行なう為の電圧であり、理論上−定である。
On the other hand, regarding the decrease in electrolytic voltage, it is necessary to consider the structure of the electrolytic voltage. That is, the electrolytic voltage is (1) anodic decomposition voltage V
+, (2) cathode decomposition voltage V2. (3) Voltage V3 due to the specific resistance of the wire. (4) Voltage V4 due to resistance of electrolyte. (
It corresponds to the sum of 5) voltage vs due to circuit resistance and (6) cutoff resistance voltage v6 due to gas generated at the anode, so if some or all of each component is lowered in voltage, it is the sum of them. It is considered that the electrolysis voltage can be reduced. However, among the above, the anodic decomposition voltage vI and the cathodic decomposition voltage v2 are voltages for carrying out the electrolytic reaction represented by the following formula (1), for example, and are theoretically constant.

M−5o4+H,0→M + 1/202+H,SO4
−(1)M:金属元素 又線材の固有抵抗による電圧V、は線材の財貨。
M-5o4+H, 0→M + 1/202+H, SO4
-(1) M: Voltage V due to the specific resistance of the metal element or wire is the property of the wire.

太さ及び長さによって決定される電圧であり操業上はや
はり一定と考えなければならない、更に■、は実用機で
は無視できる値である。従って電解液の抵抗による電圧
v4及びガスによる遮断抵抗電圧v6を低減させる他の
方法はないことになる。このうちガスによる遮断抵抗電
圧v6は上記(1)式で示される反応に従って発生した
。2が陽極面に付着・蓄積して生じる電圧であり、その
値はかなりの割合を占めており、この点で改善の余地が
大きいと思われる。よって電解電圧の低減についてはガ
スによる遮断抵抗電圧を何らかの手段によって低減する
ことが有望であると考えられる。尚電解液の抵抗による
電圧v4については電解セルの規模によってほぼ決定さ
れてしまう為、ガスによる遮断抵抗電圧v6はどの低減
効果は期待できない。
The voltage is determined by the thickness and length, and must be considered constant during operation. Furthermore, (2) is a value that can be ignored in a practical machine. Therefore, there is no other way to reduce the voltage v4 due to the resistance of the electrolytic solution and the cutoff resistance voltage v6 due to the gas. Among these, the gas-induced cutoff resistance voltage v6 was generated according to the reaction shown by the above equation (1). This is the voltage generated when 2 adheres and accumulates on the anode surface, and its value accounts for a considerable proportion, so there seems to be a lot of room for improvement in this respect. Therefore, in order to reduce the electrolysis voltage, it is considered to be promising to reduce the gas-induced cutoff resistance voltage by some means. Note that since the voltage v4 due to the resistance of the electrolytic solution is almost determined by the scale of the electrolytic cell, no effect of reducing the cutoff resistance voltage v6 due to the gas can be expected.

本発明はこうした事情に着目してなされたものであって
、ガス遮断抵抗電圧等の非効率電圧を低減することによ
フて電解電圧を低下させると共に限界CDを高め、経済
的に且つ効率良く電解処理を行なうことのできる様な装
置を提供することを目的とするものである。
The present invention has been made with attention to these circumstances, and by reducing inefficient voltages such as gas cutoff resistance voltage, it is possible to lower the electrolysis voltage and increase the limit CD, thereby economically and efficiently. The object of this invention is to provide an apparatus capable of carrying out electrolytic treatment.

[問題点を解決するための手段] しかして上記目的を達成した本発明装置は、線材走行用
貫通空間を軸方向に有すると共に一端側に線材導入口、
他端側に線材排出口を有し、且つ周方向からの導入液体
を旋回させた後に又は旋回させつつ該導入液体の流れの
向きを、線材導入口又は線材排出口のいずれかを兼ねる
液体排出口方向に強制する回流形成部、並びに液体排出
口に向けられた前記導入液体の流れを絞って中実液流に
してから液体排出口へ排出する中実液流形成部を有する
液体導入部材を、 線材及び中実液流走行用貫通孔を内包する筒状体の少な
くとも一端側に設けて電解セルを構成し、該電解セルを
同軸状に少なくとも2基連設して、上流側電解セルに負
電圧を印加すると共に下流側電解セルに正電圧を印加す
る様に構成してなる点に要旨を有するものである。
[Means for Solving the Problems] The device of the present invention that has achieved the above object has a through space for running the wire in the axial direction, and a wire introduction port on one end side.
The other end has a wire discharge port, and after or while swirling the liquid introduced from the circumferential direction, the flow direction of the introduced liquid is changed to a liquid discharge port that also serves as either the wire introduction port or the wire discharge port. A liquid introduction member having a circulation forming part that forces the liquid in the exit direction, and a solid liquid flow forming part that throttles the flow of the introduced liquid directed toward the liquid discharge port to form a solid liquid flow and then discharges it to the liquid discharge port. , a wire rod and a solid liquid flow running through hole are provided on at least one end side of a cylindrical body containing the wire rod, and at least two electrolytic cells are connected coaxially, and an electrolytic cell is provided on the upstream side. The gist of this method is that it is configured to apply a negative voltage and at the same time apply a positive voltage to the downstream electrolytic cell.

[作用] 電解処理を高速で行なう為には線材に大電流を流す必要
があり、従ってCDを大きくしなければならない。とこ
ろが大電流を流す場合、第5図に示した様なコンタクト
ロールによる給電方式ではスパークを起こし、品質不良
を発生する。従って電解液を介して給電することが必要
となり、陽極並びに陰極を液中に浸漬した液中給電タイ
プであることが不可欠となる。一方高速処理すべく電解
条件を高CD条件に設定しようとすると、電解液の流速
を大きくする必要があるが、従来の電解処理装置では攪
拌あるいはオーバーフローによって電解液を流動させる
程度であり、高速処理に対応し得る様な電解液流の高速
化を達成することができない。又前述の如く電解電圧殊
にガス遮断抵抗電圧を低減する為にも、電解液を高速で
流動させることは有意義であり、結局電解槽内に滞留す
るガスを高速流動電解液によって押し流すことによって
ガス遮断抵抗電圧が低下し、低電圧下での大CD条件を
達成することが可能となる。かくして無接点電解ができ
る液中給電型電解装置において電解液流速を高めること
が課題となる訳であるが、高速処理を達成しようとする
と、第1電解槽と第2電解槽の電解液の混合並びに液洩
れや液の飛散が問題となる。即ち高速処理を行なおうと
すると、線材は電解槽内を高速で走行することになる為
、前記第3〜5図に示した如く槽内で線材を屈曲させて
走行させる方式では液の飛散が激しくなって実操業状の
問題が多くなる。従って第7゜8図の様に線材を直線的
に電解槽へ導入し且つ引出す方式の電解装置であること
が必要条件となるが、この場合には従来も問題点として
挙げていた線材導入口並びに線材引出口からの液洩れが
一層激しくなり、これらは高速処理を実現する上で避け
て通れない解決課題としてクローズアップされてくる。
[Function] In order to perform electrolytic treatment at high speed, it is necessary to pass a large current through the wire, and therefore the CD must be increased. However, when a large current is applied, the power supply system using contact rolls as shown in FIG. 5 causes sparks, resulting in quality defects. Therefore, it is necessary to supply power through an electrolytic solution, and it is essential to use a submerged power supply type in which the anode and cathode are immersed in the liquid. On the other hand, when trying to set electrolytic conditions to high CD conditions for high-speed processing, it is necessary to increase the flow rate of the electrolytic solution, but in conventional electrolytic processing equipment, the electrolytic solution is only made to flow by stirring or overflow, and high-speed processing It is not possible to achieve a high electrolyte flow rate that corresponds to the current flow rate. In addition, as mentioned above, it is meaningful to flow the electrolyte at high speed in order to reduce the electrolytic voltage, especially the gas cutoff resistance voltage.In the end, the gas stagnant in the electrolytic cell is forced away by the high-speed flowing electrolyte, and the gas is The cut-off resistance voltage is reduced, making it possible to achieve a large CD condition under low voltage. In this way, increasing the electrolyte flow rate in a submerged power supply type electrolyzer capable of non-contact electrolysis is an issue, but in order to achieve high-speed processing, it is necessary to mix the electrolytes in the first electrolytic cell and the second electrolytic cell. In addition, liquid leakage and liquid scattering become a problem. In other words, when high-speed processing is attempted, the wire must run at high speed inside the electrolytic tank, so the method of bending the wire and running it inside the tank as shown in Figures 3 to 5 above prevents the liquid from scattering. As the situation becomes more intense, there will be more problems in actual operation. Therefore, as shown in Figure 7-8, it is necessary to use an electrolyzer that introduces the wire into the electrolytic cell in a straight line and pulls it out, but in this case, the wire introduction port, which has been a problem in the past In addition, liquid leakage from the wire outlet is becoming more serious, and these problems are being highlighted as problems that cannot be avoided in achieving high-speed processing.

本発明に係る線材電解処理装置は、こうした課題の全て
を解決したものであって、電解槽内に高速電解液流を形
成する為に、電解槽′を筒状体に形成し、且つその筒壁
を電極として電解セルを形成しており、電解セル内を線
材が走行する様にしている。そして該電解セルの線材導
入口若しくは線材排出口に線材走行方向と略直交する方
向から電解セル内へ液体を導入する液体導入部材を設け
ている。即ち該液体導入部材は、線材走行方向と略直交
する方向から(即ち筒状体の周りから)導入した液体を
線材導入側若しくは線材排出側へ誘導して筒状体の軸心
方向への流れに方向転換する液流強制部材であり、方向
転換に先立っであるいは方向転換の際に液流に旋回力を
与えることによって一旦中空状の液流を形成し、これを
軸方向へ流す間に中実液流に絞って電解液と線材を十分
に接触させつつ排出口へ電解液を送り出すものである。
The wire electrolytic treatment apparatus according to the present invention solves all of these problems, and in order to form a high-speed electrolyte flow in the electrolytic cell, the electrolytic cell is formed into a cylindrical body, and the cylindrical An electrolytic cell is formed using the wall as an electrode, and a wire runs inside the electrolytic cell. A liquid introducing member for introducing liquid into the electrolytic cell from a direction substantially perpendicular to the running direction of the wire is provided at the wire inlet or the wire outlet of the electrolytic cell. In other words, the liquid introducing member guides the liquid introduced from a direction substantially perpendicular to the wire running direction (i.e. from around the cylindrical body) to the wire introduction side or the wire discharge side, so that the liquid flows in the axial direction of the cylindrical body. This is a liquid flow forcing member that changes the direction of the liquid flow. Before or during the direction change, a swirling force is applied to the liquid flow to form a hollow liquid flow, and while the liquid flow is flowing in the axial direction, The electrolyte is sent to the discharge port while concentrating the flow of the actual liquid and bringing the electrolyte and the wire into sufficient contact.

この様な液体導入部材を採用することにより、液体導入
部では導入液体が中空状の一方向指向流となるので電解
液流速を高めても指向方向と反対方向へ電解液が洩れる
ことがない。又電解液を電解セル内へ強制的に導入する
ことができるので電解セル内の電解液流速は任意の速度
に高めることができ、筒状体内の発生ガスを流し去るこ
とにより電解電圧を低下させると共に、電解液の流動度
を高めて最大CDを高めることができる。かくして線材
走行速度の高速化即ち高速電解処理を実施することがで
きる。尚上記電解セルにおける電解液排出部に関しては
液洩れを防止しつつ線材走行方向と略直交する方向に液
を分離排出しなければならないが、液排出部については
液洩れの防止が比較的容易であり、電解セルの液排出部
に液洩れ防止カバーを設けたり、あるいは後述の排液ガ
イドを採用すればよい。
By employing such a liquid introduction member, the introduced liquid becomes a hollow unidirectional flow in the liquid introduction part, so that even if the electrolyte flow rate is increased, the electrolyte will not leak in the direction opposite to the directional direction. In addition, since the electrolytic solution can be forcibly introduced into the electrolytic cell, the electrolytic solution flow rate within the electrolytic cell can be increased to an arbitrary speed, and the electrolytic voltage can be lowered by flushing away the generated gas inside the cylindrical body. At the same time, the maximum CD can be increased by increasing the fluidity of the electrolytic solution. In this way, the wire running speed can be increased, that is, high-speed electrolytic treatment can be performed. Regarding the electrolytic solution discharge part in the electrolytic cell mentioned above, the liquid must be separated and discharged in a direction substantially perpendicular to the wire running direction while preventing liquid leakage, but it is relatively easy to prevent liquid leakage from the liquid discharge part. Alternatively, a liquid leakage prevention cover may be provided at the liquid discharge part of the electrolytic cell, or a liquid drainage guide described below may be employed.

本発明の電解処理装置は、上記電解セルを同軸状に少な
くとも2基連設してなり、上流側に位置する電解セルに
負電圧を印加すると共に、下流側に一位置する電解セル
に正電圧を印加することにより上流側電解セルにおいて
は線材表面の電解脱脂や電解酸洗等の電解処理を行ない
、こうして電解処理された(ただしスマットの残留する
)線材を下流側電解セルにおいて逆極性電解して線材表
面からH2を発生させ、このH2ガスによってスマット
を線材表面から離脱させて電解液流とともに洗い流す。
The electrolytic treatment apparatus of the present invention has at least two electrolytic cells arranged coaxially, and applies a negative voltage to the electrolytic cell located on the upstream side, and applies a positive voltage to the electrolytic cell located on the downstream side. By applying , electrolytic treatments such as electrolytic degreasing and electrolytic pickling are performed on the surface of the wire in the upstream electrolytic cell, and the electrolytically treated wire (with smut remaining) is subjected to reverse polarity electrolysis in the downstream electrolytic cell. H2 is generated from the wire surface, and the H2 gas causes the smut to be separated from the wire surface and washed away with the electrolyte flow.

これによって十分に電解処理され且つ清浄な線材を効率
良く経済的に得ることができる。又本発明装置において
は上流側電解セルと下流側電解セルにおける電解液の流
れを完全に独立させることができるので電解液同士が入
り混じることがなく、電解処理用電解液とスマット除去
用電解液を夫々専用のものとして夫々の処理効率を高め
ることができ、さらにスマット除去用電解セルより下流
側に電解めっき用セルを設置して、電解めっき工程を含
めて連続的に実施することもできる。尚前記電解セルに
おける線材走行方向と電解液流れ方向は向流とすること
が望ましいが順流であってもよく、又向流と順流の組合
せであってもよい。また電解セルから排出された電解液
はタンク等に回収され、送液ポンプ等によって再加圧し
て循環することが推奨される。
As a result, a wire rod that has been sufficiently electrolytically treated and is clean can be obtained efficiently and economically. In addition, in the device of the present invention, the flow of the electrolyte in the upstream electrolytic cell and the downstream electrolytic cell can be completely independent, so the electrolytic solutions do not mix with each other, and the electrolytic solution for electrolytic treatment and the electrolytic solution for smut removal can be separated. It is possible to increase the processing efficiency of each by using dedicated ones for each, and furthermore, it is also possible to install an electrolytic plating cell downstream of the smut removal electrolytic cell and perform the electrolytic plating process continuously. It is preferable that the wire running direction and the electrolyte flow direction in the electrolytic cell be countercurrent, but they may be forward current, or a combination of countercurrent and forward flow. Furthermore, it is recommended that the electrolytic solution discharged from the electrolytic cell be collected in a tank or the like, and re-pressurized and circulated using a liquid pump or the like.

ここで電解処理を進行させる上理由側電解セルとスマッ
ト除去処理を進行させる下流側電解セルの線材走行方向
長さについては特に制限を設けるものではないが、上流
側電解セルにおけるマイナス電解は効率良く進行し下理
由側電解セルにおけるプラス電解の効率より勝るので、
上流側電解セルを短かめとし下流側電解セルを眺めとす
ることが推奨され、線材走行速度にも左右されるが上流
側電解セルと下流側電解セルの長さの比率は1:1〜5
が望まれる。こ、の比率が1〜1未満の場合はH2ガス
によるスマット除去の為の時間が短くなりスマットが残
留する。又1:5を超えると上流側電解セルにおける電
流密度が低くなるためH22ガス生密度が低くなりスマ
ット除去効果が低下する。
Although there is no particular restriction on the length of the wire in the running direction of the electrolytic cell on the side where the electrolytic treatment proceeds and the electrolytic cell on the downstream side where the smut removal process proceeds, the negative electrolysis in the upstream electrolytic cell is efficient. Since the efficiency of the positive electrolysis in the lower electrolytic cell is superior to that of the lower electrolytic cell,
It is recommended that the upstream electrolytic cell be short and the downstream electrolytic cell visible, and the ratio of the lengths of the upstream electrolytic cell and downstream electrolytic cell is 1:1 to 5, depending on the wire running speed.
is desired. When the ratio is between 1 and less than 1, the time required for removing smut by H2 gas becomes shorter and smut remains. If the ratio exceeds 1:5, the current density in the upstream electrolytic cell becomes low, resulting in a low H22 gas raw density and a reduced smut removal effect.

[実施例] 第1図は本発明に係る電解処理装置を示す側面説明図で
あり、3aは第1電解セル、4aは第2電解セル、には
電解液導入ガイド、Hは電解液排出ガイドを夫々示して
いる。
[Example] Fig. 1 is an explanatory side view showing an electrolytic treatment apparatus according to the present invention, where 3a is a first electrolytic cell, 4a is a second electrolytic cell, numeral 3a is an electrolytic solution introduction guide, and H is an electrolytic solution discharge guide. are shown respectively.

本実施例装置は、図面上左から右へ線材Wを走行させて
おり、線材走行方向の上流側に第1電解セル3a、下流
側に第2電解セル4aを同軸状に連設している。電解セ
ルは、夫々チタンパイプの内面に通電性材料のコーティ
ングを施した筒状体を電解液走行部分としており、第1
電解セルにおいては筒状体の上流側端部に後述の電解液
導入ガイドKを取付け、下流端部は排出口Hに接続して
いる。一方第2電解セル4aにおいては筒状体Pの下流
側端部に後述の電解液導入ガイドKを取付け、上流側端
部は第1電解セルの電解液排出口を兼ねる排出口Hに接
続されている。そして排出口Hから回収される電解液は
タンクに集められ、ポンプPI 、P2によって再び加
圧されて夫々第1電解セル3a及び第2電解セル4aへ
循環供給されている。
In the device of this embodiment, the wire rod W is run from left to right in the drawing, and a first electrolytic cell 3a is coaxially arranged on the upstream side of the wire rod running direction, and a second electrolytic cell 4a is coaxially arranged on the downstream side. . Each electrolytic cell has a cylindrical body whose inner surface is coated with an electrically conductive material as a titanium pipe as an electrolyte running part.
In the electrolytic cell, an electrolyte introduction guide K, which will be described later, is attached to the upstream end of the cylindrical body, and the downstream end is connected to a discharge port H. On the other hand, in the second electrolytic cell 4a, an electrolytic solution introduction guide K, which will be described later, is attached to the downstream end of the cylindrical body P, and the upstream end is connected to a discharge port H that also serves as an electrolytic solution discharge port of the first electrolytic cell. ing. The electrolytic solution recovered from the discharge port H is collected in a tank, pressurized again by pumps PI and P2, and circulated and supplied to the first electrolytic cell 3a and the second electrolytic cell 4a, respectively.

第9図は上述の電解液導入ガイドの一例を示す斜視説明
図で、電解液導入ガイドには、導入部材13とアダプタ
14及び蓋板24からなり、導入部材13は、段差を有
する円筒体11の先端面に複数の螺旋状ガイド板12を
設けており、又アダプタ14は段差状円筒体の大径部1
4bに導入部材収納孔部15aを有すると共に該収納孔
部15aに連通して供給ラインLが接続されており、且
つ小径部14aには第10図(第9図におけるX−X線
断面矢視図)に示す様に線材通過用筒部21に対して放
射状の整流板16を設けている。尚整流板16は必ずし
も不可欠とはしない。
FIG. 9 is a perspective explanatory view showing an example of the above-mentioned electrolyte introduction guide. A plurality of spiral guide plates 12 are provided on the distal end surface of the adapter 14, and the adapter 14 is attached to the large diameter portion 1 of the stepped cylindrical body.
4b has an introducing member storage hole 15a, and a supply line L is connected to the storage hole 15a in communication with the small diameter portion 14a as shown in FIG. As shown in the figure, a radial rectifier plate 16 is provided for the wire passage tube portion 21. Note that the current plate 16 is not necessarily essential.

更に蓋板24は皿形状円板の中央部に線材通過孔22を
穿設している。この様な電解液導入ガイドKを筒状体P
に取付けるに当たっては、まず始めに筒状体Pの端部拡
径孔5aにアダプタ14の小径部14aを挿入した後、
アダプタ14の導入部材収納孔部15aに導入部材13
を図示する向きに収納し、その後蓋板24をアダプタ1
4の大径部14b端面に対設する様に嵌着する。
Furthermore, the lid plate 24 has a wire passing hole 22 formed in the center of the dish-shaped disk. Such an electrolyte introduction guide K is connected to a cylindrical body P.
When installing the adapter 14, first insert the small diameter part 14a of the adapter 14 into the end enlarged diameter hole 5a of the cylindrical body P, and then
The introduction member 13 is inserted into the introduction member storage hole 15a of the adapter 14.
is stored in the direction shown in the figure, and then the cover plate 24 is attached to the adapter 1.
It is fitted so as to be opposed to the end surface of the large diameter portion 14b of No. 4.

この様に構成される電解液導入ガイドに取付部において
は、供給ラインLから電解液を注入すると、電解液は導
入部材13の小径円筒部11aとアダプタ14の収納孔
部15a内壁の間に流入し、筒状体P側へ流れて螺旋状
ガイド板12に案内されて中心側へ流れ込む。このとき
電解液流には旋回性が付与され、液は遠心力によフて外
周側へ押し付けられた状態となる。次いでアダプタ小径
部14aの貫通孔15に入り、慣性力によって上記の如
く外周側へ押し付けられた状態を維持しつつ整流板15
によって整流され、中空状の直進流となり、さらにアダ
プタ14から筒状体Pへ穆るテーバ状縮径部分3bで絞
られて充実流となり、筒状体の貫通孔へ導入される。
At the attachment part of the electrolyte introduction guide configured in this way, when the electrolyte is injected from the supply line L, the electrolyte flows between the small diameter cylindrical part 11a of the introduction member 13 and the inner wall of the storage hole part 15a of the adapter 14. Then, it flows toward the cylindrical body P, is guided by the spiral guide plate 12, and flows toward the center. At this time, swirling properties are imparted to the electrolyte flow, and the liquid is forced toward the outer circumference by centrifugal force. Next, the adapter enters the through hole 15 of the small diameter portion 14a, and the rectifying plate 15 is kept pressed toward the outer circumference by inertia as described above.
The flow is rectified by the cylindrical body P, and is rectified into a hollow straight flow, which is further narrowed by the tapered diameter-reduced portion 3b extending from the adapter 14 to the cylindrical body P, and becomes a solid flow, which is introduced into the through hole of the cylindrical body.

電解液導入ガイドには上記の如く構成され、導入電解液
は外周側に押し付けられた状態で筒状体P方向へ流れる
ので線材が通過する中心部への電解液の流れ込みは防止
され、線材挿入側における電解液の漏れは防止される。
The electrolyte introduction guide is configured as described above, and the introduced electrolyte flows in the direction of the cylindrical body P while being pressed against the outer circumference, so that the electrolyte is prevented from flowing into the center where the wire passes, and the wire is inserted. Leakage of electrolyte on the side is prevented.

しかも絞り部分における中空流中心部分の空気は液が絞
り込まれて流れる方向と反対側へ押し戻されていくので
導入電解法に空気が巻込まれることもなく、空気巻込み
によってガス遮断抵抗が増大する恐れもない。その他の
電解液導入ガイドの例としては第11図に示す様な導入
部材13aの先端に取付けられた螺旋子1フをアダプタ
14の小径部14a内に挿入するものが挙げられ、該電
解液導入ガイドを用いることによって前記と同様の効果
を得ることができる。又上記導入部材13aの代わりに
、第12図に示す様に液流ガイド筒18をアダプタ14
の小径貫通孔20先端まで届く様に延設した導入部材1
3bを使用することもできる。但しこの場合には若干の
漏れが予想される。その他導入ガイドについては種々の
形状のものを適用することができる。
In addition, the air in the center of the hollow flow in the constriction part is squeezed and pushed back to the opposite side of the flow direction, so there is no risk of air being dragged into the introduction electrolysis method, which may increase gas cutoff resistance. Nor. Examples of other electrolyte introduction guides include a guide in which a spiral 1f attached to the tip of an introduction member 13a is inserted into the small diameter portion 14a of the adapter 14 as shown in FIG. By using a guide, effects similar to those described above can be obtained. Also, instead of the introduction member 13a, as shown in FIG.
The introduction member 1 is extended to reach the tip of the small diameter through hole 20.
3b can also be used. However, in this case, some leakage is expected. Other introduction guides may have various shapes.

上記構成からなる第1図例の電解処理装置において、第
1電解セル3aに電源Eの陰極ml、第2電解セル4a
に電源Eの陽極m、を夫々接続し、電解液を循環させつ
つ、線材Wを矢印方向に走行させると、第1電解セル3
a部分において線材Wの電解処理が進行し、第2電解セ
ル48部分において電解処理線材Wの表面に付着するス
マットが除去される。
In the electrolytic treatment apparatus of the example in FIG. 1 having the above configuration, the first electrolytic cell 3a has a cathode ml of the power source E, and the second electrolytic cell 4a
When the anodes m of the power source E are connected to and the wire W is run in the direction of the arrow while circulating the electrolyte, the first electrolytic cell 3
The electrolytic treatment of the wire W progresses in the portion a, and smut adhering to the surface of the electrolytically treated wire W is removed in the second electrolytic cell 48 portion.

溶融亜鉛めっきを行なう為の前処理として上記配列の電
解セルを4組直列に配置した線材電解装置を準備し下記
条件下に鋼線の電解酸洗を実施したところ、鋼線表面の
デスケーリングが十分に進行し、光沢ある鋼線を得るこ
とができた。
As a pretreatment for hot-dip galvanizing, we prepared a wire electrolyzer with four sets of electrolytic cells in the above arrangement arranged in series and electrolytically pickled the steel wire under the following conditions. As a result, descaling of the surface of the steel wire was observed. The process progressed satisfactorily and we were able to obtain a shiny steel wire.

(処理条件) 尚上記実施例では第1電解セルと第2電解セルの電解液
を合流させて循環使用したが、第13図に示す様に排出
口の略中央部にスリット付きの仕切りT、を設け、第1
電解セル3aからの排出電解液と第2電解セル4aから
の排出電解液を分離・独立させて回収する様にすれば第
1電解セル3aで電解酸洗等の前処理を行ない、第2電
解セル4aで電気めっきを連続的に実施することができ
る。
(Processing Conditions) In the above example, the electrolytes of the first electrolytic cell and the second electrolytic cell were combined and used for circulation, but as shown in FIG. 13, a partition T with a slit, and the first
If the electrolytic solution discharged from the electrolytic cell 3a and the electrolytic solution discharged from the second electrolytic cell 4a are collected separately and independently, pretreatment such as electrolytic pickling is performed in the first electrolytic cell 3a, and the electrolytic solution discharged from the second electrolytic cell 4a is recovered separately. Electroplating can be performed continuously in the cell 4a.

第14図は他の実施例を示す電解処理装置の側面説明図
であり、本実施例では第1電解セル3a及び第2電解セ
ル4aの双方で電解液と線材が向流接触する構成を採用
している。即ち第1電解セル3a及び第2電解セル4a
は、夫々筒状電極体Pの線材走行方向下流側端部に電解
液導入ガイドKを取り付ける一方、上流側端部に排出口
H1を設けてなり、該排出口H,の上流側部分には、電
解液導入ガイドKからの電解液流と対向する方向に電解
液を導入する電解液導入ガイドKlが組合されており、
対向電解液流の存在によって漏れを防止している。尚第
14図例の電解処理装置の排出口に、第15図に示す様
な電解液排出ガイドを設けることもできる。
FIG. 14 is an explanatory side view of an electrolytic treatment apparatus showing another embodiment, and this embodiment adopts a configuration in which the electrolyte and the wire are in countercurrent contact in both the first electrolytic cell 3a and the second electrolytic cell 4a. are doing. That is, the first electrolytic cell 3a and the second electrolytic cell 4a
, an electrolyte introduction guide K is attached to the downstream end of the cylindrical electrode body P in the wire running direction, and a discharge port H1 is provided at the upstream end. , is combined with an electrolyte introduction guide Kl that introduces the electrolyte in a direction opposite to the electrolyte flow from the electrolyte introduction guide K,
The presence of opposing electrolyte flows prevents leakage. It is also possible to provide an electrolytic solution discharge guide as shown in FIG. 15 at the discharge port of the electrolytic treatment apparatus shown in FIG. 14.

即ち該電解液排出ガイドについては第15図に示す様に
、螺旋流路21を有する回転子22を内蔵し、該回転子
22の軸相当部分の線材通過孔に回転方向と逆方向の螺
旋溝23を形成した電解液排出ガイドGを例示すること
ができる。該電解液排出ガイドGを用いることによって
円筒状陽極体3aの貫通孔5を通り送給されてきた電解
液は、流れに押されて自転する該回転子22によって遠
心側へ振り分けられ排出ラインRへ集められてタンク(
図示せず)へ戻される。このとき電解液排出ガイドGに
おける液漏れは上記遠心力による振り分は効果並びに逆
螺旋溝23による押し戻し効果によって回避される。
That is, as shown in FIG. 15, the electrolyte discharge guide has a built-in rotor 22 having a spiral flow path 21, and a wire passage hole in a portion corresponding to the shaft of the rotor 22 has a spiral groove in the opposite direction to the rotation direction. For example, an electrolytic solution discharge guide G having a structure 23 formed therein can be exemplified. By using the electrolyte discharge guide G, the electrolyte that has been fed through the through hole 5 of the cylindrical anode body 3a is distributed to the centrifugal side by the rotor 22, which rotates due to the flow, and is sent to the discharge line R. collected in the tank (
(not shown). At this time, liquid leakage in the electrolyte discharge guide G is avoided by the effect of the centrifugal force and the pushing back effect of the reverse spiral groove 23.

[発明の効果] 本発明は以上の様に構成されており、電解液の漏れ等を
起こすことなく経済的に高速電解処理を実施することが
できる。
[Effects of the Invention] The present invention is configured as described above, and high-speed electrolytic treatment can be carried out economically without causing electrolyte leakage or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.13.14図は本発明の実施例電解処理装置を示
す側面説明図、第2〜8図は従来の電解処理装置を示す
模式図、第9.11.12図は電解法導入ガイドを示す
斜視図、第10図は第9図におけるX−X線断面矢視図
、第15図は電解液排出ガイドを示す断面説明図である
Figures 1, 13, and 14 are side explanatory views showing an electrolytic treatment apparatus according to an embodiment of the present invention, Figures 2 to 8 are schematic diagrams showing conventional electrolytic treatment equipment, and Figures 9, 11, and 12 are electrolytic method introduction guides. FIG. 10 is a cross-sectional view taken along line X--X in FIG. 9, and FIG. 15 is a cross-sectional explanatory view showing the electrolyte discharge guide.

Claims (1)

【特許請求の範囲】 線材走行用貫通空間を軸方向に有すると共に一端側に線
材導入口、他端側に線材排出口を有し、且つ周方向から
の導入液体を旋回させた後に又は旋回させつつ該導入液
体の流れの向きを、線材導入口又は線材排出口のいずれ
かを兼ねる液体排出口方向に強制する回流形成部、並び
に液体排出口に向けられた前記導入液体の流れを絞って
中実液流にしてから液体排出口へ排出する中実液流形成
部を有する液体導入部材を、 線材及び中実液流走行用貫通孔を内包する筒状体の少な
くとも一端側に設けて電解セルを構成し該電解セルを、
同軸状に少なくとも2基連設して上流側電解セルに負電
圧を印加すると共に下流側電解セルに正電圧を印加する
様に構成してなることを特徴とする線材の電解処理装置
[Claims] It has a through space for running the wire in the axial direction, has a wire inlet at one end, and a wire outlet at the other end, and after or after swirling the liquid introduced from the circumferential direction. a circulation forming part that forces the direction of the flow of the introduced liquid in the direction of a liquid outlet that also serves as either a wire inlet or a wire outlet; A liquid introducing member having a solid liquid flow forming part that converts the liquid into a real liquid flow and then discharges it to a liquid discharge port is provided on at least one end side of a cylindrical body containing a wire rod and a through hole for running the solid liquid flow to form an electrolytic cell. The electrolytic cell is composed of
1. A wire electrolytic treatment apparatus characterized in that at least two units are coaxially arranged in series to apply a negative voltage to an upstream electrolytic cell and to apply a positive voltage to a downstream electrolytic cell.
JP29281487A 1987-11-19 1987-11-19 Electrolytic treatment of wire rod Pending JPH01137000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29281487A JPH01137000A (en) 1987-11-19 1987-11-19 Electrolytic treatment of wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29281487A JPH01137000A (en) 1987-11-19 1987-11-19 Electrolytic treatment of wire rod

Publications (1)

Publication Number Publication Date
JPH01137000A true JPH01137000A (en) 1989-05-30

Family

ID=17786695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29281487A Pending JPH01137000A (en) 1987-11-19 1987-11-19 Electrolytic treatment of wire rod

Country Status (1)

Country Link
JP (1) JPH01137000A (en)

Similar Documents

Publication Publication Date Title
US4772367A (en) Apparatus for and a method of electrochemically polishing pipe inside surfaces
CN106795645B (en) Method and apparatus for continuous application of nanolaminate metal coatings
JP2001508122A (en) Electrolytic method for cleaning and coating conductive surfaces
KR20170107494A (en) Ecological methods and related devices for continuous chrome plating of bars
US2431065A (en) Continuous wire and strip electro-processing machine
CN112663119A (en) Device and method for preventing conductive roller from being plated with copper
US5382335A (en) Process and apparatus for the electrolytic treatment of continuously advancing electrically conductive material
US3880744A (en) Apparatus for the electrochemical treatment of metal strip
US3718547A (en) Continuous electrolytic treatment for cleaning and conditioning aluminum surfaces
AT411906B (en) METHOD FOR GALVANIC COATING OF A CYLINDRICAL INTERIOR SURFACE OF A WORKPIECE, SIGNIFICANTLY EXTENDING OVER A SEMI-CIRCLE
DE1496727B2 (en) METHOD OF ELECTROLYTIC TREATMENT OF THE INTERNAL AND EXTERNAL SURFACE OF PIPES
JPH01137000A (en) Electrolytic treatment of wire rod
CH694619A5 (en) Method and apparatus for the electrochemical treatment.
US2399964A (en) Method of electrogalvanizing
US1322494A (en) Electrolytic method
DE19932523C1 (en) Method and device for electrochemical treatment
JPS6026689A (en) Method and device for producing metallic foil by electrodeposition
CN210030905U (en) A descaling bath for welding wire production
US6837973B1 (en) Apparatus for electrically coating a hot-rolled steel substrate
JPS633035B2 (en)
JP2535497B2 (en) Electrolytic plating method and electrolytic plating apparatus
JPH0427320B2 (en)
SU771183A1 (en) Set for continuous lead-coating of web
JPH0480400A (en) Electrochemically treating device for metal surface
JPS6017098A (en) Electrolytic treating method of steel strip