JPH01136837A - Control device for v-belt type continuously variable transmission - Google Patents

Control device for v-belt type continuously variable transmission

Info

Publication number
JPH01136837A
JPH01136837A JP62292735A JP29273587A JPH01136837A JP H01136837 A JPH01136837 A JP H01136837A JP 62292735 A JP62292735 A JP 62292735A JP 29273587 A JP29273587 A JP 29273587A JP H01136837 A JPH01136837 A JP H01136837A
Authority
JP
Japan
Prior art keywords
engine
thrust
generated torque
oil chamber
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62292735A
Other languages
Japanese (ja)
Inventor
Takumi Honda
匠 本多
Koji Kitano
孝二 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP62292735A priority Critical patent/JPH01136837A/en
Publication of JPH01136837A publication Critical patent/JPH01136837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PURPOSE:To prevent the over-thrust or under-thrust of a load thrust controlling side pulley by correcting an engine-generated torque estimated from a throttle opening and engine speed with the time changing ratio of the engine speed and regulating a load thrust controlling oil pressure in accordance with this. CONSTITUTION:A driving side pulley 12 linked to an engine 1 is connected to a driven side pulley 14 via a V-belt 15, and the feeding oil pressure to the change ratio controlling oil chamber 16 of a driving side pulley, the load thrust controlling oil chamber 17 of the driven side pulley and a starting clutch 20 is regulated by control valves 43-48 to carry out a defined speed change control. The feed of oil pressure to the load thrust controlling oil chamber is controlled based on the corrected engine-generated torque which is corrected to an engine-generated torque estimating value based on a throttle opening and an engine speed by means of the time differential of engine speed. Thereby, the slip of the belt due to over-thrust at the time of sudden acceleration or under-thrust at the time of sudden deceleration can be prevented obtaining the optimum load thrust corresponding to an actual traveling condition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はVベルト式無段変速機の制御装置、特に駆動側
プーリまたは従動側プーリの一方に負荷推力制御用油室
を設け、他方に変速比制御用油室を設けたVベルト式無
段変速機の制御装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a control device for a V-belt type continuously variable transmission, in particular, a control device for a V-belt type continuously variable transmission, in particular, a control device for a V-belt type continuously variable transmission, in which an oil chamber for controlling load thrust is provided on one of a driving pulley or a driven pulley, and an oil chamber is provided on the other side. The present invention relates to a control device for a V-belt continuously variable transmission provided with an oil chamber for speed ratio control.

〔従来技術とその問題点〕[Prior art and its problems]

従来、Vベルト式無段変速機の制御装置として、特開昭
55−65755号公報に記載のように、駆動側プーリ
に導かれる変速比制御油圧を、スロットル開度とエンジ
ン回転数との関係で動作する変速制御弁にて調整すると
ともに、従動側プーリに導かれるライン圧を実際の変速
比とエンジン回転数の関係で動作する圧力調整弁にて調
整するようにしたものが知られている。
Conventionally, as a control device for a V-belt type continuously variable transmission, as described in Japanese Patent Laid-Open No. 55-65755, the gear ratio control oil pressure guided to the drive side pulley is controlled by the relationship between the throttle opening and the engine rotation speed. It is known that the line pressure guided to the driven pulley is adjusted by a pressure regulating valve that operates according to the relationship between the actual gear ratio and engine speed. .

上記Vベルト式無段変速機において、従動側プーリに導
かれるライン圧はトルク伝達に必要なベルト張力を付与
するために調整されるが、■ベルトに伝達されるトルク
はエンジン発生トルクに応じて変動するので、エンジン
発生トルクに応じたライン圧に調圧するのが最も効率が
良く、かつ■ベルトの寿命の点でも好ましい、しかしな
がら、上記圧力調整弁はライン圧を変速比とエンジン回
転数に応じて機械的に調整するのみであるから、エンジ
ン発生トルクに応じたライン圧に調圧できず、過推力と
なったり推力不足となる問題がある。
In the above V-belt type continuously variable transmission, the line pressure led to the driven pulley is adjusted to provide the belt tension necessary for torque transmission, but the torque transmitted to the belt depends on the engine generated torque. Since the line pressure fluctuates, it is most efficient to adjust the line pressure according to the engine generated torque, and it is also preferable in terms of belt life. However, the above pressure regulating valve adjusts the line pressure according to the gear ratio and engine speed. Since the line pressure is only adjusted mechanically, it is not possible to adjust the line pressure to match the torque generated by the engine, resulting in problems such as excessive thrust or insufficient thrust.

−Cに、エンジン発生トルクはスロットル開度とエンジ
ン回転数とから、エンジン性能曲線に基づいて推定する
ことが可能であり、この推定されたエンジン発生トルク
に応じて負荷推力制御側プーリの油圧を電子制御にて調
圧すれば、上記の問題は解決できる。しかしながら、負
荷推力制御側プーリの油圧をエンジン発生トルクに応じ
て調圧した場合には、定常走行時には最適な推力を発生
し得るものの、象、加速時や急減速時のようにエンジン
回転数が急激に変化する場合には過推力や推力不足とな
り、Vベルトを劣化させたりベルトスリップを起こしや
すい。
-C, the engine generated torque can be estimated based on the engine performance curve from the throttle opening and engine speed, and the oil pressure of the load thrust control pulley can be adjusted according to this estimated engine generated torque. The above problem can be solved by electronically controlling the pressure. However, if the hydraulic pressure of the load thrust control pulley is regulated according to the engine generated torque, optimal thrust can be generated during steady running, but the engine speed may increase during acceleration or sudden deceleration. If there is a sudden change, there will be excessive thrust or insufficient thrust, which will easily deteriorate the V-belt and cause belt slip.

その原因は、エンジンと■ヘルド間に介在するフライホ
イールや駆動側プーリといった慣性体のために、エンジ
ン発生トルクが影響を受け、例えばエンジン回転数が上
昇する時には実際にVベルトに伝わるトルクはエンジン
発生トルクより低(なるため、過推力となり、一方エン
ジン回転数が降下する時には実際にVベルトに伝わるト
ルクはエンジン発生トルクより大きくなるため、推力不
足となるからである。
The reason for this is that the torque generated by the engine is affected by inertia bodies such as the flywheel and drive pulley that are interposed between the engine and the heald.For example, when the engine speed increases, the torque actually transmitted to the V-belt is This is because the torque is lower than the generated torque, resulting in excessive thrust. On the other hand, when the engine speed decreases, the torque actually transmitted to the V-belt becomes larger than the engine generated torque, resulting in insufficient thrust.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点に鑑みてなされたもので、その目的
は、負荷推力制御側プーリの推力をエンジン発生トルク
に応じた最適推力に調整でき、かつエンジンとVベルト
間に介在する慣性体の影響を取り除き、過推力や推力不
足を防止できるVベルト式無段変速機の制御装置を提供
することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to be able to adjust the thrust of the load thrust control pulley to the optimum thrust according to the engine generated torque, and to reduce It is an object of the present invention to provide a control device for a V-belt type continuously variable transmission that can eliminate the influence and prevent over-thrust or insufficient thrust.

(発明の構成) 上記目的を達成するために、本発明は、駆動側プーリま
たは従動側プーリの一方にトルク伝達に必要な負荷推力
を制?Oするための負荷推力制御用油室を設け、他方に
変速比を制御するための変速比制御用油室を設けたVベ
ルト式無段変速機において、スロットル開度およびエン
ジン回転数とからエンジン発生トルクを推定する手段と
、上記推定されたエンジン発生トルクをエンジン回転数
の時間変化率によって補正する手段と、負荷推力制御用
油室の油圧を上記補正されたエンジン発生トルクに応じ
た油圧に調整する手段とを設けたものである。
(Structure of the Invention) In order to achieve the above object, the present invention suppresses the load thrust necessary for torque transmission to either the driving pulley or the driven pulley. In a V-belt continuously variable transmission, which is equipped with an oil chamber for controlling the load thrust and an oil chamber for controlling the gear ratio for controlling the gear ratio, the engine means for estimating the generated torque; means for correcting the estimated engine generated torque based on the time rate of change in engine speed; and adjusting the oil pressure in the load thrust control oil chamber to the oil pressure in accordance with the corrected engine generated torque. It is provided with a means for adjusting.

〔実施例の説明] 第1図は本発明にがかるVベルト式無段変速機の概略構
造を示す。エンジン1のクランク軸2はフライホイール
3およびダンパ機構4を介して入力軸5に接続されてい
る。入力軸5の端部には外歯ギヤ6が固定されており、
この外歯ギヤ6は無段変速装置(10の駆動軸11に固
定された内歯ギヤ7と噛み合い、人力軸5の動力を減速
して駆動軸11に伝達している。
[Description of Embodiments] FIG. 1 shows a schematic structure of a V-belt type continuously variable transmission according to the present invention. A crankshaft 2 of an engine 1 is connected to an input shaft 5 via a flywheel 3 and a damper mechanism 4. An external gear 6 is fixed to the end of the input shaft 5.
This externally toothed gear 6 meshes with an internally toothed gear 7 fixed to a drive shaft 11 of a continuously variable transmission (10) to reduce the power of the human power shaft 5 and transmit it to the drive shaft 11.

無段変速装置10は駆動軸11に設けた駆動側ブー1月
2と、従動軸13に設けた従動側ブー電月4と、両プー
リ間に巻き掛けたVベルト15とで構成されている。駆
動側ブー1月2は固定シーブ12aと可動シーブ12b
とを有しており、可動シーブ12bの背後には変速比を
制御するための変速比制御用油室16が設けられている
。一方、従動側プーリ14も駆動側プーリ12と同様に
、固定シープ14aと可動シーブ14bとを有しており
、可動シーブ14bの背後にはトルク伝達に必要な推力
をVベルト15に与える負荷推力制御用油室17が設け
られている。上記変速比制御用油室16および負荷推力
制御用油室17の油圧は、後述する変速制御弁43およ
び負荷推力制御弁45にて制御される。
The continuously variable transmission 10 is composed of a driving side boot 2 provided on a drive shaft 11, a driven side boolean 4 provided on a driven shaft 13, and a V-belt 15 wound between both pulleys. . The drive side boot 2 has a fixed sheave 12a and a movable sheave 12b.
A gear ratio control oil chamber 16 for controlling the gear ratio is provided behind the movable sheave 12b. On the other hand, similarly to the driving pulley 12, the driven pulley 14 has a fixed sheave 14a and a movable sheave 14b, and behind the movable sheave 14b is a load thrust that provides the V-belt 15 with the thrust necessary for torque transmission. A control oil chamber 17 is provided. The oil pressure in the gear ratio control oil chamber 16 and the load thrust control oil chamber 17 is controlled by a gear change control valve 43 and a load thrust control valve 45, which will be described later.

従動軸13の外周には中空軸19が回転自在に支持され
ており、従動軸13と中空軸19とは湿式多板クラッチ
からなる発進クラッチ20によって断続される0発進ク
ラッチ20の油圧は後述する発進制御弁47によって制
御される。中空軸19には前進用ギヤ21と後進用ギヤ
22とが回転自在に支持されており、前後進切換用ドッ
グクラッチ2jによって前進用ギヤ21又は後進用ギヤ
22のいずれか一方を中空軸19と連結するようになっ
ている。後進用アイドラ軸24には後進用ギヤ22に噛
み合う後進用アイドラギヤ25と、別の後進用アイドラ
ギヤ2Gとが固定されている。また、カウンタ軸27に
は上記前進用ギャ21と後進用アイドラギヤ26とに同
時に噛み合うカウンタギヤ28と、終減速ギヤ29とが
固定されており、終減速ギヤ29はディファレンシャル
装置30のリングギヤ31に噛み合い、動力を出力軸3
2に伝達している。
A hollow shaft 19 is rotatably supported on the outer periphery of the driven shaft 13, and the driven shaft 13 and the hollow shaft 19 are connected and connected by a starting clutch 20 consisting of a wet multi-plate clutch.The oil pressure of the starting clutch 20 will be described later. It is controlled by a start control valve 47. A forward gear 21 and a reverse gear 22 are rotatably supported on the hollow shaft 19, and a forward/reverse switching dog clutch 2j connects either the forward gear 21 or the reverse gear 22 to the hollow shaft 19. It is designed to be connected. A reverse idler gear 25 that meshes with the reverse gear 22 and another reverse idler gear 2G are fixed to the reverse idler shaft 24. Further, a counter gear 28 that meshes with the forward gear 21 and the reverse idler gear 26 at the same time, and a final reduction gear 29 are fixed to the counter shaft 27, and the final reduction gear 29 meshes with the ring gear 31 of the differential device 30. , power output shaft 3
2.

調圧弁40は油溜41からオイルポンプ42によって吐
出された油圧を調圧し、ライン圧として変速制御弁43
、負荷推力制御弁45および発進制御弁47に出力して
いる。変速制御弁43、負荷推力制御弁45および発進
制御l弁47は電子制御装置60から出力される制御信
号(例えばデユーティ制御信号)によりソレノイド44
.46.48を作動させ、ライン圧を調圧してそれぞれ
油室16.17と発進クラッチ20とに制御油圧を出力
している。したがって、電子制御装置60からソレノイ
ド44,46.48への制御信号のみによって、無段変
速袋210の変速比、ベルト張力および発進クラッチ2
0のトルク伝達容量を自在に制御できる。
The pressure regulating valve 40 regulates the hydraulic pressure discharged from the oil reservoir 41 by the oil pump 42, and supplies it as line pressure to the speed change control valve 43.
, is output to the load thrust control valve 45 and the start control valve 47. The speed change control valve 43, the load thrust control valve 45, and the start control valve 47 are operated by the solenoid 44 in response to a control signal (for example, a duty control signal) output from the electronic control device 60.
.. 46 and 48 are operated to regulate the line pressure and output control oil pressure to the oil chambers 16 and 17 and the starting clutch 20, respectively. Therefore, the speed ratio of the continuously variable speed bag 210, the belt tension, and the starting clutch 2
0 torque transmission capacity can be freely controlled.

なお、上記制御弁43,45.47としては、例えばス
プール弁と電磁弁との組合せによって構成してもよく、
あるいはりニヤソレノイド弁などの1tM1弁単体で構
成してもよい、いずれにしても、ソレノイド44,46
.48に入力される信号に比例した油圧を出力できるも
のであればよい。
Note that the control valves 43, 45, and 47 may be configured, for example, by a combination of a spool valve and a solenoid valve.
Alternatively, it may be configured with a single 1tM1 valve such as a solenoid valve.In any case, the solenoids 44, 46
.. Any device that can output oil pressure proportional to the signal input to 48 may be used.

第2図は電子制御衾1!60の構造図を示し、図中、6
1はエンジン回転数N!、 (入力軸5の回転数)を検
出するセンサ、62は車速■(出力軸32の回転数)を
検出するセンサ、63は従動軸13の回転数Noat 
 (発進クラッチ20の入力回転数又は従動側プーリ1
4の回転数)を検出するセンサ、64はP、R。
Figure 2 shows a structural diagram of electronic control school 1!60, and in the figure, 6
1 is the engine rotation speed N! , (rotational speed of the input shaft 5), 62 is a sensor that detects the vehicle speed (rotational speed of the output shaft 32), 63 is the rotational speed of the driven shaft 13 Noat
(Input rotation speed of starting clutch 20 or driven pulley 1
4 rotation speed), and 64 are P and R.

N、D、Lの各シフト位置を検出するセンサ、65はス
ロットル開度を検出するセンサであり、上記センサ61
〜64の信号は入力インターフェース66に人力され、
センサ65の信号はA/D変換器67でデジタル信号に
変換される。68は中央演算処理装置(CPU)、69
は変速制御用ソレノイド44と負荷推力制御用ソレノイ
ド46と発進制御用ソレノイド48を制御するためのプ
ログラムやデータが格納されたリードオンリメモリ (
ROM)、70は各センサから送られた信号やパラメー
タを一時的に格納するランダムアクセスメモリ(RAM
) 、71は出力インターフェースであり、これらCP
U68、ROM69、RAM70.出力インターフェー
ス71、入力インターフェース66及びA/D変換器6
7はバス72によって相互に連絡されている。出力イン
ターフェース71の出力は、出力ドライバフ3を介して
上記変速制御用ソレノイド44と負荷推力制御用ソレノ
イド46と発進制御用ソレノイド48とに制御信号とし
て出力されている。
A sensor 65 detects the N, D, and L shift positions, and a sensor 65 detects the throttle opening.
~64 signals are manually input to the input interface 66,
The signal from the sensor 65 is converted into a digital signal by an A/D converter 67. 68 is a central processing unit (CPU), 69
is a read-only memory in which programs and data for controlling the speed change control solenoid 44, the load thrust control solenoid 46, and the start control solenoid 48 are stored (
ROM), 70 is a random access memory (RAM) that temporarily stores signals and parameters sent from each sensor.
), 71 are output interfaces, and these CP
U68, ROM69, RAM70. Output interface 71, input interface 66 and A/D converter 6
7 are interconnected by a bus 72. The output of the output interface 71 is output as a control signal to the shift control solenoid 44, the load thrust control solenoid 46, and the start control solenoid 48 via the output driver buffer 3.

第3図は上記電子制御装置60における負荷推力制御系
のブロック図を示す0図面において、エンジン発生トル
ク推定手段80は、スロットル開度とエンジン回転数N
1mとから予め実測データにより得られたエンジン性能
曲線(第4図参照)に基づいてエンジン発生トルクT、
を推定している。
FIG. 3 is a block diagram of the load thrust control system in the electronic control device 60. In FIG.
Based on the engine performance curve (see Figure 4) obtained from actual measurement data from 1 m, the engine generated torque T,
is estimated.

また、微分手段81はエンジン回転数N i mの時間
変化率(d N、、/dt )を演算しており、エンジ
ン発生トルク補正手段82は上記演算されたエンジン回
転数N!、、の時間変化率(dNrfi/dt)に係数
1を乗算し、次式のように補正エンジン発生トルクTc
を決定している。
Further, the differentiating means 81 calculates the rate of change over time (dN,,/dt) of the engine speed N i m, and the engine generated torque correcting means 82 calculates the above calculated engine speed N! The time rate of change (dNrfi/dt) of , , is multiplied by a coefficient 1, and the corrected engine generated torque Tc is calculated as follows:
has been decided.

Tc=f  (dNi、/d t)      ・・・
(1)上式において、係数!はエンジン1と■ベルト1
5間に介在するフライホイール3や駆動側プーリ12な
どの慣性体の慣性モーメントの和であり、負荷推力制御
用油室17が駆動側ブー1月2に設けられている場合に
は、その係数は上記係数Iより小さい値をとる。
Tc=f (dNi,/dt)...
(1) In the above equation, the coefficient! is engine 1 and belt 1
It is the sum of the moments of inertia of inertia bodies such as the flywheel 3 and drive pulley 12 that are interposed between takes a value smaller than the above coefficient I.

上記エンジン発生トルク推定手段80とエンジン発生ト
ルク補正手段82の出力信号の差ΔTは最適推力決定手
段83に入力される。
The difference ΔT between the output signals of the engine generated torque estimating means 80 and the engine generated torque correcting means 82 is input to the optimum thrust determining means 83.

ΔT−T、 −Tc −T、 −1(d Nt、l/d t )   ・・・
(2)最適推力決定手段83はこれら出力信号の差ΔT
と変速比とによって従動側ブー1月4に伝達されるトル
クを計算し、このトルクに適合した負荷推力制御用油室
17の最適油圧を得るための制御信号Sを負荷推力制御
弁45に出力する。
ΔT-T, -Tc-T, -1(dNt, l/dt)...
(2) The optimum thrust determining means 83 determines the difference ΔT between these output signals.
The torque to be transmitted to the driven side boolean 4 is calculated based on the and gear ratio, and a control signal S is output to the load thrust control valve 45 to obtain the optimum oil pressure of the load thrust control oil chamber 17 that matches this torque. do.

負荷推力制御弁45は上記制御信号Sを油圧に変換し、
負荷推力制御用油室17に上記エンジン発生トルクT、
と補正エンジン発生トルクTゎとの差に応した油圧Pを
供給する。   ′ 次に、上記構成からなる本発明の制御装置の動作を説明
する。
The load thrust control valve 45 converts the control signal S into oil pressure,
The engine generated torque T,
The hydraulic pressure P corresponding to the difference between the corrected engine generated torque T and the corrected engine generated torque T is supplied. 'Next, the operation of the control device of the present invention having the above configuration will be explained.

定常走行時にはエンジン回転数N、、lの時間変化が殆
どないので、エンジン回転数N+++の時間変化率(d
Nf、/dt)がほぼ0となり、負荷推力制御用油室1
7にはエンジン発生トルクに応じた油圧が導かれる。
During steady driving, there is almost no change in the engine speed N,,l over time, so the rate of change over time of the engine speed N+++ (d
Nf, /dt) becomes almost 0, and the load thrust control oil chamber 1
7, the oil pressure corresponding to the torque generated by the engine is introduced.

一方、2.加速時には(2)式におけるエンジン回転数
N i nの時間変化率(dNi、/dt)が正の値と
なるので、負荷推力制御用油室17にはエンジン発生ト
ルクと補正エンジン発生トルクとの差に応じた油圧が導
かれる。つまり、エンジン回転数N r v+の上昇時
には、エンジン1と■ベルト15間に介在する慣性体の
影響により過推力となりやすいので、エンジン発生トル
クに応じた油圧より低い油圧を負荷推力制御用油室I7
に導き、過推力を防止して■ベルト15の劣化を防止で
きる。
On the other hand, 2. During acceleration, the time rate of change (dNi, /dt) of the engine rotational speed N i n in equation (2) takes a positive value, so the load thrust control oil chamber 17 has a balance between the engine generated torque and the corrected engine generated torque. Hydraulic pressure is derived according to the difference. In other words, when the engine speed N r v+ increases, over-thrust is likely to occur due to the influence of the inertia body interposed between the engine 1 and the belt 15, so a hydraulic pressure lower than the hydraulic pressure corresponding to the engine generated torque is applied to the load thrust control oil chamber. I7
(1) Deterioration of the belt 15 can be prevented by preventing excessive thrust.

また、急減速時には(2)式におけるエンジン回転数N
 i nの時間変化率(dNi、/dt)が負の値とな
るので、負荷推力制御用油室17にはエンジン発生トル
クと補正エンジン発生トルクとの和に応じた油圧が導か
れる。つまり、エンジン回転数Ni、lの降下時には、
エンジン1と■ベルト15間に介在する慣性体の影響に
より推力不足となりやすいので、エンジン発生トルクに
応じた油圧より高い油圧を負荷推力制御用油室17に導
き、ベルトスリップを防止できる。
Also, during sudden deceleration, the engine speed N in equation (2)
Since the time rate of change (dNi,/dt) of in is a negative value, oil pressure corresponding to the sum of the engine generated torque and the corrected engine generated torque is introduced into the load thrust control oil chamber 17. In other words, when the engine speed Ni,l decreases,
Since the thrust is likely to be insufficient due to the influence of the inertial body interposed between the engine 1 and the belt 15, belt slip can be prevented by introducing oil pressure higher than the oil pressure corresponding to the engine generated torque to the load thrust control oil chamber 17.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明によればスロット
ル開度およびエンジン回転数とから推定されるエンジン
発生トルクをエンジン回転数の時間変化率によって補正
し、負荷推力制御用油室の油圧を上記補正されたエンジ
ン発生トルクに応した油圧に調整するようにしたので、
エンジンと■ベルト間に介在する慣性体による影響を除
去し、負荷推力制御側プーリの過推力や推力不足を防止
できる。したがって、エンジン回転数の変化に伴うベル
トスリップや■ベルトの劣化を防止できる。
As is clear from the above explanation, according to the present invention, the engine generated torque estimated from the throttle opening and the engine speed is corrected based on the time rate of change of the engine speed, and the oil pressure in the oil chamber for load thrust control is adjusted. Since the oil pressure is adjusted according to the corrected engine torque,
Eliminating the influence of the inertial body interposed between the engine and the belt, it is possible to prevent over-thrust or insufficient thrust on the load-thrust control pulley. Therefore, it is possible to prevent belt slip and belt deterioration due to changes in engine speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にがかる■ベルト式無段変速機の一例の
概略図、第2図は電子制御装置の構成図、第3図は電子
制御装置における負荷推力制御系のブロック図、第4図
はエンジン性能曲線図である。 1・・・エンジン、10・・・無段変速装置、12・・
・駆動側プーリ、14・・・従動側プーリ、15・・・
■ベルト、16・・・変速比制御用油室、17・・・負
荷推力制御用油室、43・・・変速制御弁、44・・・
変速制御用ソレノイド、45・・・負荷推力制御弁、4
6・・・負荷推力制御用ソレノイド、60・・・電子制
御装置、80・・・エンジン発生トルク推定” 手段、
81・・・微分手段、82・・・エンジン発生トルク補
正手段、83・・・最適推力決定手段。 第1図 第2図
Fig. 1 is a schematic diagram of an example of a belt-type continuously variable transmission according to the present invention, Fig. 2 is a configuration diagram of an electronic control device, Fig. 3 is a block diagram of a load thrust control system in the electronic control device, and Fig. 4 is a block diagram of a load thrust control system in the electronic control device. The figure is an engine performance curve diagram. 1... Engine, 10... Continuously variable transmission, 12...
・Drive side pulley, 14... Driven side pulley, 15...
■Belt, 16... Oil chamber for speed ratio control, 17... Oil chamber for load thrust control, 43... Speed change control valve, 44...
Solenoid for speed change control, 45...Load thrust control valve, 4
6... Solenoid for load thrust control, 60... Electronic control device, 80... Means for estimating engine generated torque,
81...Differentiating means, 82...Engine generated torque correction means, 83...Optimum thrust determining means. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】  駆動側プーリまたは従動側プーリの一方にトルク伝達
に必要な負荷推力を制御するための負荷推力制御用油室
を設け、他方に変速比を制御するための変速比制御用油
室を設けたVベルト式無段変速機において、 スロットル開度およびエンジン回転数とからエンジン発
生トルクを推定する手段と、上記推定されたエンジン発
生トルクをエンジン回転数の時間変化率によって補正す
る手段と、負荷推力制御用油室の油圧を上記補正された
エンジン発生トルクに応じた油圧に調整する手段とを設
けたことを特徴とするVベルト式無段変速機の制御装置
[Scope of Claims] A load thrust control oil chamber is provided on one of the driving pulley or the driven pulley to control the load thrust necessary for torque transmission, and the other is provided with a gear ratio control oil chamber for controlling the gear ratio. In a V-belt continuously variable transmission provided with an oil chamber, means for estimating engine generated torque from throttle opening and engine speed, and correcting the estimated engine generated torque based on a time rate of change in engine speed. A control device for a V-belt type continuously variable transmission, comprising: means for adjusting the oil pressure in the oil chamber for load thrust control to an oil pressure in accordance with the corrected engine generated torque.
JP62292735A 1987-11-19 1987-11-19 Control device for v-belt type continuously variable transmission Pending JPH01136837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62292735A JPH01136837A (en) 1987-11-19 1987-11-19 Control device for v-belt type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62292735A JPH01136837A (en) 1987-11-19 1987-11-19 Control device for v-belt type continuously variable transmission

Publications (1)

Publication Number Publication Date
JPH01136837A true JPH01136837A (en) 1989-05-30

Family

ID=17785647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62292735A Pending JPH01136837A (en) 1987-11-19 1987-11-19 Control device for v-belt type continuously variable transmission

Country Status (1)

Country Link
JP (1) JPH01136837A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020364A1 (en) * 1994-12-28 1996-07-04 Robert Bosch Gmbh System for adjusting the tension of the contact part of a belt drive mechanism
JP2010078020A (en) * 2008-09-25 2010-04-08 Honda Motor Co Ltd Control device of continuously variable transmission
JP2019065889A (en) * 2017-09-28 2019-04-25 ダイハツ工業株式会社 Control device of transmission

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020364A1 (en) * 1994-12-28 1996-07-04 Robert Bosch Gmbh System for adjusting the tension of the contact part of a belt drive mechanism
US6050913A (en) * 1994-12-28 2000-04-18 Robert Bosch Gmbh System for adjusting the tension of the belt drive of a belt transmission
JP2010078020A (en) * 2008-09-25 2010-04-08 Honda Motor Co Ltd Control device of continuously variable transmission
JP2019065889A (en) * 2017-09-28 2019-04-25 ダイハツ工業株式会社 Control device of transmission

Similar Documents

Publication Publication Date Title
JPH01169166A (en) Speed change controller for continuously variable transmission
JPH0548389B2 (en)
JPH0262467A (en) Oil pressure control device for transmission
JPH03189456A (en) Speed change control device for continuously variable transmission
JPH01136837A (en) Control device for v-belt type continuously variable transmission
JPH01115741A (en) Control device of automatic starting clutch
JPH01279155A (en) Device for controlling v-belt type continuously variable transmission
JPH04181057A (en) Speed change control device in transmission for vehicle
JP3226625B2 (en) Hydraulic control device for hydraulically operated transmission
JPS63240436A (en) Reverse movement preventing device for vehicle
JPH01141264A (en) V-belt type continuously variable transmission
JP2629026B2 (en) Control device for automatic transmission
JPH01116365A (en) Control device for speed change of v-belt type continuously variable transmission
JP2805148B2 (en) Slip control device for torque converter
JPH01164632A (en) Speed change control device for v belt type continuously variable transmission
JPH0674847B2 (en) Shift control device for continuously variable transmission
JP2737352B2 (en) Control device for vehicle lock-up clutch
JPH01108454A (en) Speed change control of v-belt type continuously variable transmission
JPS63269741A (en) Speed change control method of continuously variable transmission for vehicle
JPH0481646B2 (en)
JPH03189455A (en) Control device for continuously variable transmission
JPH01126439A (en) Control method for automatic starting clutch
JPH01116364A (en) Control device for v-belt type continuously variable transmission
JPH0464759A (en) Control device for continuously variable transmission
JPS63162342A (en) Control device for automatic starting clutch