JPH01133354A - Semiconductor integrated circuit and manufacture thereof - Google Patents

Semiconductor integrated circuit and manufacture thereof

Info

Publication number
JPH01133354A
JPH01133354A JP29241887A JP29241887A JPH01133354A JP H01133354 A JPH01133354 A JP H01133354A JP 29241887 A JP29241887 A JP 29241887A JP 29241887 A JP29241887 A JP 29241887A JP H01133354 A JPH01133354 A JP H01133354A
Authority
JP
Japan
Prior art keywords
lower electrode
region
conductivity type
thin film
dielectric thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29241887A
Other languages
Japanese (ja)
Other versions
JP2725773B2 (en
Inventor
Yoshiaki Sano
佐野 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62292418A priority Critical patent/JP2725773B2/en
Publication of JPH01133354A publication Critical patent/JPH01133354A/en
Application granted granted Critical
Publication of JP2725773B2 publication Critical patent/JP2725773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To make exceedingly easy control of hFE of an NPN transistor and simplify process control for each device, by forming a lower electrode region having MIS type capacity and a dielectric thin film and after that, in addition to performing emitter diffusion, by arranging lower electrodes at the lower electrode region in the form of the teeth of a comb. CONSTITUTION:A part of the surface of a lower electrode region 26 of an oxide film 27 which is formed at the surface of an epitaxial layer 23 is exposed and a resist pattern is formed by depositing a nitriding silicon film Si3N4 and then, its pattern is coated with a dielectric thin film 28 to deposit an oxide film 27. Holes of the oxide film 27 are made at the surfaces of a base region 32 and islands 25 and N<+> type emitter and collector contact regions 33 and 34 are formed by diffusing selectively phosphorus P. The resist pattern is formed on the oxide film 27 and contact holes are made so as to perform electrical connection at desired parts. An aluminum layer is formed at the whole surface of the epitaxial layer 23 and electrodes 35 having desired forms, an upper electrode 29 on the dielectric thin film 28 as well as a lower electrode 30 are formed by performing a patterning step again.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はイオン注入法による抵抗素子を組み込んだ半導
体集積回路の、NPN)ランジスタのh■制御を容易な
らしめた製造方法に間する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention provides a manufacturing method that facilitates the h-control of an NPN transistor in a semiconductor integrated circuit incorporating a resistance element formed by ion implantation.

(ロ)従来の技術 バイポーラ型ICは、フレフタとなる半導体層表面にベ
ース・エミッタを2重拡散して形成した縦型のNPNト
ランジスタを主体として構成されている。その為、前部
NPNトランジスタを製造するベース及びエミッタ拡散
工程は必要不可欠の工程であり、コレクタ直列抵抗を低
減する為の高濃度埋込層形成工程やエピタキシャル層成
長工程、各素子を接合分離する為の分離領域形成工程や
電気的接続の為の電極形成工程等と並んでバイポーラ型
ICを製造するのに欠かせない工程(基本工程)である
(b) Conventional technology A bipolar IC is mainly composed of a vertical NPN transistor formed by doubly diffusing a base and an emitter on the surface of a semiconductor layer serving as a flip-flop. Therefore, the base and emitter diffusion process for manufacturing the front NPN transistor is an essential process, as well as the high concentration buried layer formation process and epitaxial layer growth process to reduce the collector series resistance, and the junction isolation of each element. This is an indispensable process (basic process) for manufacturing bipolar ICs, along with the isolation region formation process for electrical connection and the electrode formation process for electrical connection.

一方、回路的な要求から他の素子、例えばPNPトラン
ジスタ、抵抗、容量、ツェナーダイオード等を同一基板
上に組み込みたい要求がある。この場合、工程の簡素化
という点から可能な限り前記基本工程を流用した方が好
ましいことは言うまでもない。しかしながら、前記ベー
ス及びエミッタ拡11に工程はNPNトランジスタの特
性を最重要視して諸条件が設定される為、前記基本工程
だけでは集積化が困難な場合が多い。そこで、基本的な
NPN )ランジスタの形成を目的とせず、他の素子を
組み込む為もしくは他素子の特性を向上することを目的
として新規な工程を追加することがある。例えば前記エ
ミッタ拡散によるカソード領域とでツェナーダイオード
のツェナー電圧を制御するアノード領域を形成する為の
P1拡散工程、ベース領域とは比抵抗が異る抵抗領域を
形成する為のR拡散工程やインプラ抵抗形成工程、MO
S型よりも大きな容量が得られる窒化膜容量を形成する
為の窒化膜形成工程、NPN トランジスタのコレクタ
直列抵抗を更に低減する為のコレクタ低抵抗領域形成工
程等がそれであり、全てバイポーラICの用途や目的及
びコスト的な面から検討して追加するか否かが決定され
る工程(オブション工程)である。
On the other hand, due to circuit requirements, there is a demand for incorporating other elements such as PNP transistors, resistors, capacitors, Zener diodes, etc. on the same substrate. In this case, it goes without saying that it is preferable to utilize the basic steps as much as possible in terms of process simplification. However, since the process conditions for the base and emitter expansion 11 are set with the utmost importance placed on the characteristics of the NPN transistor, it is often difficult to integrate the base and emitter expansion 11 using only the basic process. Therefore, a new process may be added not for the purpose of forming a basic NPN transistor, but for the purpose of incorporating other elements or improving the characteristics of other elements. For example, the P1 diffusion process to form an anode region that controls the Zener voltage of the Zener diode with the cathode region by the emitter diffusion, the R diffusion process to form a resistance region with a different resistivity from the base region, and the implant resistance. Forming process, M.O.
These include the nitride film formation process to form a nitride film capacitor that provides a larger capacitance than S-type, and the collector low resistance region formation process to further reduce the collector series resistance of NPN transistors, all of which are used for bipolar ICs. This is a step (optional step) in which it is decided whether or not to add it after consideration from the viewpoint of purpose, cost, and cost.

上記オブション工程を利用して形成したMIS型容量を
第3図に示す、同図において、(1)はP型半導体基板
、(2)はN型エピタキシャル層、(3)はN0型埋込
層、(4)はP+型分離領域、(5)はアイランド、(
6)はエミッタ拡散によるN+型の下部電極領域、(7
)は高誘電率絶縁体としてのシリコン窒化膜(Si、N
4)、(8)はアルミニウム材料から成る上部電極、(
9)は酸化膜、(10)は電極である。尚、窒化膜を利
用したMIS型容量としては、例えば特開昭60−24
4056号公報に記載されている。
The MIS type capacitor formed using the above optional process is shown in Figure 3. In the figure, (1) is a P-type semiconductor substrate, (2) is an N-type epitaxial layer, and (3) is an N0-type buried layer. , (4) is a P+ type isolation region, (5) is an island, (
6) is an N+ type lower electrode region by emitter diffusion, (7
) is a silicon nitride film (Si, N
4), (8) are upper electrodes made of aluminum material, (
9) is an oxide film, and (10) is an electrode. Incidentally, as an MIS type capacitor using a nitride film, for example, Japanese Patent Application Laid-Open No. 60-24
It is described in Publication No. 4056.

(ハ)発明が解決しようとする問題点 しかしながら、従来のMIS型容量は下部電極としてN
PN トランジスタのエミッタ拡散工程を利用している
為、エミッタ領域形成用のN型不純物をデボした後に窒
化膜を形成し、その後でN型不純物のドライブインを行
わなければならない。
(c) Problems to be solved by the invention However, the conventional MIS type capacitor uses N as the lower electrode.
Since the emitter diffusion process of a PN transistor is used, a nitride film must be formed after N-type impurities for forming an emitter region are deposited, and then the N-type impurities must be driven in.

すると、窒化膜のデポ時に使用する800°C前後の熱
処理がエミッタ領域を再拡散させる為、NPNトランジ
スタのh□(電流増幅率)のばらつきが大きく、hat
のフントロールが難しい欠点があった。
Then, the heat treatment at around 800°C used when depositing the nitride film re-diffuses the emitter region, resulting in large variations in the h□ (current amplification factor) of the NPN transistor.
It had the disadvantage that it was difficult to hunt down.

また、窒化膜の形成に必要なオブション工程を追加した
か否かでエミッタ領域の熱処理条件を変更する必要があ
る為、機種別の工程管理が必要であり、管理の共通化が
できない欠点があった。
In addition, it is necessary to change the heat treatment conditions for the emitter region depending on whether or not an optional process necessary for forming the nitride film is added, so process management is required for each model, and there is a drawback that management cannot be standardized. Ta.

(ニ)問題点を解決するための手段 本発明は衛士した欠点に鑑みてなされ、MIS型容量を
組み込んだ半導体集積回路の製造方法において、アイラ
ンド表面にNPN)ランジスタのエミッタ拡散に先立っ
てMIS型容量の下部電極領域(26)と誘電体薄膜(
28)を形成し、その後NPNトランジスタのエミッタ
拡散を行うと共に、下部電極領域(26)にオーミック
コンタクトする下部電極(30)を櫛歯状に配設したこ
゛とを特徴とする。
(d) Means for Solving the Problems The present invention has been made in view of the serious drawbacks, and in a method of manufacturing a semiconductor integrated circuit incorporating an MIS type capacitor, the MIS type capacitor is The lower electrode area of the capacitor (26) and the dielectric thin film (
28) is formed, and then the emitter of the NPN transistor is diffused, and a lower electrode (30) is arranged in a comb-like shape to make ohmic contact with the lower electrode region (26).

(ホ)作、用 本発明によれば、下部電極としてエミッタ拡散を利用せ
ずエミッタ領域(30)形成前に形成した領域を使用し
、窒化膜をデポした後にエミッタ拡散を行うので、エミ
ッタ領域(30)形成以後のNPNトランジスタのha
tに影響する熱処理工程を排除することができる。
(E) Operation and Use According to the present invention, the region formed before forming the emitter region (30) is used as the lower electrode without using emitter diffusion, and the emitter diffusion is performed after depositing the nitride film. (30) ha of NPN transistor after formation
A heat treatment step that affects t can be eliminated.

また、下部電極領域(26)の形成をプロセスの前半に
配置した為、下部電極領域(26)表面の不純物濃度が
低下して下部電極(30)の取出し抵抗が増大するもの
の、本願によれば下部電極(30)を櫛歯状に配設した
ので下部電極(30)の取出し抵抗を減じることができ
る。
Furthermore, since the formation of the lower electrode region (26) is arranged in the first half of the process, the impurity concentration on the surface of the lower electrode region (26) decreases and the extraction resistance of the lower electrode (30) increases. Since the lower electrode (30) is arranged in a comb-teeth shape, the resistance to take out the lower electrode (30) can be reduced.

(へ)実施例 以下、本発明の一実施例を図面を参照しながら詳細に説
明する。
(F) Example Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図A及び第1図Bは本発明の半導体集積回路を示し
、(21)はP型シリコン基板、(22)は基板(21
)表面に設けたN′″型の埋込層、(23)は基板(2
1)全面の上に積層して形成したN型エピタキシャル層
、(24)はエピタキシャル層(23)を貫通するP+
型の分離領域、(25)は分離領域(24)によってエ
ピタキシャル層(23)を島状に形成したアイランド、
(26)はアイランド(25)表面に形成したP型又は
N型のMIS型容量の下部電極領域、(27)はエピタ
キシャル層(23)表面を覆うシリコン酸化膜(SiO
*)、(28)は露出させた下部電極領域(26)の表
面に堆積して形成したシリコン窒化膜(sisNa)か
ら成る誘電体薄膜、(29)は下部電極領域(26)の
表面に設けたアルミニウム層から成る上部電極、(30
)は下部電極領域(26)とコンタクトホール(31)
を介してオーミックコンタクトする下部電極である。
1A and 1B show the semiconductor integrated circuit of the present invention, (21) is a P-type silicon substrate, (22) is a substrate (21).
) N′″ type buried layer provided on the surface, (23) is the substrate (2
1) N-type epitaxial layer laminated on the entire surface, (24) is a P+ layer that penetrates the epitaxial layer (23)
The isolation region of the mold (25) is an island in which the epitaxial layer (23) is formed into an island shape by the isolation region (24);
(26) is the lower electrode region of the P-type or N-type MIS type capacitor formed on the surface of the island (25), and (27) is the silicon oxide film (SiO2) covering the surface of the epitaxial layer (23).
*), (28) is a dielectric thin film made of a silicon nitride film (sisNa) deposited on the surface of the exposed lower electrode region (26), and (29) is a dielectric thin film formed on the surface of the lower electrode region (26). upper electrode consisting of a layer of aluminum (30
) are the lower electrode area (26) and the contact hole (31)
This is the lower electrode that makes ohmic contact through the .

下部電極領域(26)は−例として分離領域(24)形
成工程を利用したものを示しである0分離領域(24)
は高不純物濃度拡散によって形成するものの、かなり深
く拡散する為とプロセスの前半に形成する為に表面濃度
が低下してしまう、すると、従来例の様にエミッタ拡散
を使用したものよりは下部電極の取出し抵抗が増大し、
MIS型容量の電圧依存性、周波数依存性、ヒステリシ
ス特性共に劣化してしまう、その為、本願の特徴とする
如く下部電極(30)を櫛歯状に配設することで下部電
極(30)の取出し抵抗を減少させ、緒特性の劣化を防
止する。
The lower electrode region (26) is an example of the isolation region (24) forming process.
Although it is formed by high impurity concentration diffusion, the surface concentration decreases because it is diffused quite deeply and because it is formed in the first half of the process. Removal resistance increases,
The voltage dependence, frequency dependence, and hysteresis characteristics of the MIS type capacitor deteriorate. Therefore, by arranging the lower electrode (30) in a comb-like shape as a feature of the present application, the lower electrode (30) can be improved. Reduces extraction resistance and prevents deterioration of cable characteristics.

そして本願の構造によれば、分離領域(24)を利用し
てMIS型容量の下部電極領域(26)を形成すること
によってエミッタ拡散の前に誘電体薄膜(28)のデポ
ジットを行うことが可能になる。
According to the structure of the present application, by forming the lower electrode region (26) of the MIS type capacitor using the isolation region (24), it is possible to deposit the dielectric thin film (28) before emitter diffusion. become.

以下、本願の製造方法を第2図A乃至第2図Fを用いて
説明する。
Hereinafter, the manufacturing method of the present application will be explained using FIGS. 2A to 2F.

先ず第2図Aに示す如く、P型のシリコン半導体基板(
21)の表面にアンチモン(Sb)又はヒ素(As)等
のN型不純物を選択的にドープしてN+型埋込層(22
)を形成し、基板(21)全面に厚さ5〜10μのN型
のエピタキシャル層(23)を積層する。
First, as shown in FIG. 2A, a P-type silicon semiconductor substrate (
The surface of the N+ type buried layer (22) is selectively doped with N type impurities such as antimony (Sb) or arsenic (As).
), and an N-type epitaxial layer (23) with a thickness of 5 to 10 μm is laminated on the entire surface of the substrate (21).

次に第2図Bに示す如く、基板(21)表面からボロン
(B)を選択的に拡散することによって、埋込層(22
)を夫々取囲むようにエピタキシャル層(23)を貫通
するP+型の分離領域(24)を形成する0分離領域(
24)で囲まれたエピタキシャル層(23)が夫々の回
路素子を形成する為のアイランド(25)となる。と同
時に、分離領域(24)拡散工程のボロン(B)をアイ
ランド(25)表面の埋込層(22)に対応する領域に
も拡散し、エピタキシャル層(23)表面から埋込層(
22)に到達する下部電極領域(26)を形成する。下
部電極領域(26)の底部は全て埋込層(22)と接す
る様に形成し、埋込層(22)によって下部電極領域(
26)を基板(21)の接地電位から電気的に絶縁する
。その為、MIS型容量は電気的に独立するので、回路
構成上の制約が無い。分離領域(24)の拡散は飽和拡
散で行うが、エピタキシャル層(23)を貫通させるの
で下部電極領域(26)の表面濃度は10’″atOI
IIS−cITI−ffi前後となる。
Next, as shown in FIG. 2B, by selectively diffusing boron (B) from the surface of the substrate (21), the buried layer (22
) to form P+ type isolation regions (24) penetrating the epitaxial layer (23) so as to surround the
The epitaxial layer (23) surrounded by 24) becomes an island (25) for forming each circuit element. At the same time, boron (B) from the separation region (24) diffusion process is also diffused into the region corresponding to the buried layer (22) on the surface of the island (25), and the buried layer (22) is diffused from the surface of the epitaxial layer (23).
A lower electrode region (26) is formed that reaches 22). The entire bottom of the lower electrode region (26) is formed so as to be in contact with the buried layer (22), and the lower electrode region (26) is formed so as to be in contact with the buried layer (22).
26) is electrically insulated from the ground potential of the substrate (21). Therefore, since the MIS type capacitor is electrically independent, there are no restrictions on the circuit configuration. The separation region (24) is diffused by saturated diffusion, but since it penetrates the epitaxial layer (23), the surface concentration of the lower electrode region (26) is 10'''atOI.
It will be around IIS-cITI-ffi.

次に第2図Cに示す如く、下部電極領域(26)を形成
したアイランド(25)とは別のアイランド(25)の
表面にボロン(B)を選択的にイオン注入又は拡散する
ことによってNPNトランジスタのベースとなるベース
領域(32)を形成する。この時下部電極領域(26)
表面にもボロン(B)を拡散すれば、下部電極領域(2
6)の表面濃度を向上することができる。
Next, as shown in FIG. 2C, boron (B) is selectively ion-implanted or diffused into the surface of an island (25) different from the island (25) on which the lower electrode region (26) is formed. A base region (32) that will become the base of the transistor is formed. At this time, the lower electrode area (26)
If boron (B) is also diffused on the surface, the lower electrode region (2
6) The surface concentration can be improved.

次に第2図りに示す如く、エピタキシャル層(23)表
面に形成した熱酸化又はCVD酸化膜(27)を選択的
にエツチング除去して下部電極領域(26)表面の一部
を露出させ、エピタキシャル層(23)全面に常圧CV
D法等の技術を用いて膜厚数百〜千般百人のシリコン窒
化膜(sisNa)を堆積させる。シリコン窒化膜はシ
リコン酸化膜よりも高い誘電率を示すので、大容量を形
成することが可能である。そして、前記シリコン窒化膜
表面に周知のレジストパターンを形成し、RWE等のド
ライエッチ技術を利用して前記露出した下部電極領域(
26)の表面を覆う誘電体薄膜(28)を形成する。そ
の後、誘電体薄膜(28)を覆う様にCVD法による酸
化膜(27)を堆積させる。
Next, as shown in the second diagram, the thermal oxidation or CVD oxide film (27) formed on the surface of the epitaxial layer (23) is selectively etched away to expose a part of the surface of the lower electrode region (26), and Normal pressure CV on the entire layer (23)
Using a technique such as the D method, a silicon nitride film (sisNa) is deposited to a thickness of several hundred to several hundred. Since a silicon nitride film exhibits a higher dielectric constant than a silicon oxide film, it is possible to form a large capacitance. Then, a well-known resist pattern is formed on the surface of the silicon nitride film, and a dry etching technique such as RWE is used to form the exposed lower electrode region (
A dielectric thin film (28) is formed to cover the surface of (26). Thereafter, an oxide film (27) is deposited by CVD so as to cover the dielectric thin film (28).

次に第2図Eに示す如く、今度はNPNトランジスタの
ベース領域(32)表面とアイランド(25)表面の酸
化膜(27)を開孔し、この酸化膜(27)をマスクと
してリン(P)を選択拡散することによりN′″型のエ
ミッタ領域(33)とフレフタコンタクト領域(34)
を形成する。
Next, as shown in FIG. 2E, holes are opened in the oxide film (27) on the surface of the base region (32) and the surface of the island (25) of the NPN transistor, and using this oxide film (27) as a mask, ) by selectively diffusing the
form.

次に第2図Fに示す如く、酸化膜(27)上にネガ又は
ポジ型のフォトレジストによるレジストパターンを形成
し、ウェット又はドライエツチングによって誘電体薄膜
(28)上の酸化膜(27)を除去し、さらに酸化膜(
27)の所望の部分に電気的接続の為のコンタクトホー
ル(31)を開孔する。そして、エピタキシャルJff
l(23)全面に周知の蒸着又はスパッタ技術によりア
ルミニウム層を形成し、このアルミニウム層を再度バタ
ーニングすることによって所望形状の電極(35)と誘
電体薄膜(28)上の上部電極(29)及び下部電極(
30)を形成する。
Next, as shown in FIG. 2F, a resist pattern of negative or positive photoresist is formed on the oxide film (27), and the oxide film (27) on the dielectric thin film (28) is removed by wet or dry etching. Remove the oxide film (
27) A contact hole (31) for electrical connection is opened in a desired portion. And epitaxial Jff
An aluminum layer is formed on the entire surface of l (23) by a well-known vapor deposition or sputtering technique, and this aluminum layer is patterned again to form an electrode (35) of a desired shape and an upper electrode (29) on the dielectric thin film (28). and the lower electrode (
30).

衛士した本願の製造方法によれば、MIS型容量の下部
電極領域(26)として分離領域(24)の拡散工程に
よって形成した拡散領域を使用したので、誘電体薄膜(
28)の製造工程をエミッタ拡散工程の前に配置するこ
とができる。すると、エミッタ領域(33)形成用のリ
ン(P)のデポジットからリン(P)のドライブインの
前にMIS型容量形成の為の熱処理を配置する必要が無
く、デポジットによってリン(P)が初期拡散された状
態から即NPNトランジスタのす、(’M流増幅率)コ
ントロールの為の熱処理(ドライブイン)工程を行うこ
とができる。その為、NPNトランジスタのh□のばら
つきが少く、MIS型容量を組み込んだことによるhF
Iコントロールの難しさを解消できる。また、MIS型
容量を組み込む組み込まないにかかわらずエミッタ領域
(33)の熱処理条件を一本化することができるので、
機種別の工程管理が極めて容易になる。
According to the manufacturing method of the present application, since the diffusion region formed by the diffusion process of the isolation region (24) is used as the lower electrode region (26) of the MIS type capacitor, the dielectric thin film (
The manufacturing step 28) can be placed before the emitter diffusion step. Then, there is no need to perform heat treatment for forming the MIS type capacitor from the phosphorus (P) deposit for forming the emitter region (33) to the phosphorus (P) drive-in, and the phosphorus (P) is initialized by the deposit. A heat treatment (drive-in) process for controlling the NPN transistor ('M current amplification factor) can be performed immediately from the diffused state. Therefore, there is little variation in h□ of NPN transistors, and hF by incorporating MIS type capacitance
It can solve the difficulty of I-control. Furthermore, the heat treatment conditions for the emitter region (33) can be unified regardless of whether MIS type capacitance is incorporated.
Process management by model becomes extremely easy.

本願の下部電極領域(26)は様々な実施態様をとる0
例えば上下分離技術を使用したもの、上下分離技術の上
側の拡散領域だけを使用したもの、−ベース領域(32
)より深く高不純物濃度でツェナーダイオードのアノー
ド形成用のP+型拡散領域を使用したもの、エピタキシ
ャル層(23)表面から埋込層(22)まで達するNP
N トランジスタのコレクタ抵抗低減を目的としたN型
のコレクタ低抵抗領域を使用したもの等である。いずれ
もエミッタ拡散の前に行うので、その表面濃度はエミッ
タ領域(33)よりも低下してしまう。
The lower electrode region (26) of the present application takes various embodiments.
For example, one using upper and lower separation technology, one using only the upper diffusion region of upper and lower separation technology, - base region (32
) using a P+ type diffusion region for forming the anode of a Zener diode with a deeper impurity concentration, NP reaching from the surface of the epitaxial layer (23) to the buried layer (22)
These include those using an N-type collector low resistance region for the purpose of reducing collector resistance of an N transistor. Since both are performed before emitter diffusion, the surface concentration thereof will be lower than that of the emitter region (33).

(ト)発明の詳細 な説明した如く、本発明によればMISJI容縫をオプ
ションデバイスとして追加したことによるNPN トラ
ンジスタのhFFのばらつきが僅と無い、NPNトラン
ジスタのhFえのコントロールが極めて容易な半導体集
積回路の製造方法を提供できる利点を有する。また、M
IS型容量を組み込んだ機種とそうでない機種とでエミ
ッタ領域(33)の処理条件を一本化できるので、機種
別の工程管理を簡略化でき、さらには異る機種のウェハ
ーを同一拡散炉内で熱処理するといった多機種少量生産
が可能となる利点をも有する。
(g) As described in detail, according to the present invention, by adding MISJI as an optional device, there is little variation in hFF of NPN transistors, and the hF of NPN transistors can be extremely easily controlled. It has the advantage of providing a method for manufacturing integrated circuits. Also, M
Processing conditions for the emitter area (33) can be unified for models with IS-type capacitance and models without, simplifying process management for each model, and even allowing wafers of different models to be placed in the same diffusion furnace. It also has the advantage of being able to produce a wide variety of products in small quantities by heat treatment.

そして本願によれば、下部電極(30)を櫛歯状とする
ことにより下部電極(30)の取出し抵抗を低減したの
で、下部電極領域(26)として表面濃度がエミッタ領
域(33)より低い拡散領域を使用したにもかかわらず
、MIS型容量の特性劣化を防止できる利点をも有する
According to the present application, the extraction resistance of the lower electrode (30) is reduced by forming the lower electrode (30) into a comb-like shape, so the lower electrode region (26) has a lower surface concentration than the emitter region (33). It also has the advantage that deterioration of the characteristics of the MIS type capacitor can be prevented even though the area is used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A及び第1図Bは夫々本発明を説明する為の平面
図及びAA線断面図、第2図A乃至第2図Fは夫々本発
明の製造方法を説明する為の断面図、第3図は従来例を
説明する為の断面図である。 (21)は半導体基板、 (26)は下部電極領域、〈
28〉は誘電体薄膜、 (29)は上部電極、 (30
)は下部電極である。
1A and 1B are a plan view and a sectional view taken along line AA, respectively, for explaining the present invention, and FIGS. 2A to 2F are sectional views, respectively, for explaining the manufacturing method of the present invention, FIG. 3 is a sectional view for explaining a conventional example. (21) is the semiconductor substrate, (26) is the lower electrode region,
28〉 is a dielectric thin film, (29) is an upper electrode, (30
) is the bottom electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)一導電型半導体基板の上に形成した逆導電型のエ
ピタキシャル層と、前記基板表面に形成した逆導電型の
埋込層と、この埋込層を夫々取囲むようにエピタキシャ
ル層を分離する一導電型の分離領域と、該分離領域によ
って複数個形成したアイランドと、このアイランド表面
に縦型バイポーラトランジスタのエミッタ拡散に先立っ
て形成した一導電型又は逆導電型のMIS型容量の下部
電極領域と、該下部電極領域を覆う様に前記エミッタ拡
散に先立って堆積して形成した誘電体薄膜と、前記誘電
体薄膜の表面にオーミックコンタクトするMIS型容量
の下部電極と、前記誘電体薄膜を挾んで前記下部電極領
域と対向するように前記誘電体薄膜上に配設した上部電
極とを具備し、前記下部電極を櫛歯状に配設したことを
特徴とする半導体集積回路。
(1) An epitaxial layer of the opposite conductivity type formed on a semiconductor substrate of one conductivity type, a buried layer of the opposite conductivity type formed on the surface of the substrate, and the epitaxial layers are separated so as to surround each of the buried layers. an isolation region of one conductivity type, a plurality of islands formed by the isolation region, and a lower electrode of an MIS type capacitor of one conductivity type or an opposite conductivity type formed on the surface of this island prior to emitter diffusion of a vertical bipolar transistor. a dielectric thin film deposited prior to the emitter diffusion to cover the lower electrode region, a lower electrode of an MIS type capacitor in ohmic contact with the surface of the dielectric thin film, and a dielectric thin film deposited to cover the lower electrode region; A semiconductor integrated circuit comprising an upper electrode disposed on the dielectric thin film so as to sandwich and face the lower electrode region, and the lower electrode is disposed in a comb-like shape.
(2)一導電型半導体基板の所望の領域に逆導電型の埋
込層を形成する工程、 前記基板の上に逆導電型のエピタキシャル層を形成する
工程、 前記エピタキシャル層を分離して複数個のアイランドを
形成する工程、 1つのアイランド表面にMIS型容量の下部電極となる
一導電型又は逆導電型の下部電極領域を形成する工程、 前記下部電極領域表面の一部の領域を露出し、前記MI
S型容量の誘電体薄膜を堆積して櫛歯状に形成する工程
、 前記誘電体薄膜を形成した後、逆導電型の不純物を選択
的に拡散することによって縦型バイポーラトランジスタ
の逆導電型のエミッタ領域を形成する工程、 全面に導電体膜を形成し、前記誘電体薄膜の上に前記M
IS型容量の上部電極を、前記下部電極領域表面には前
記下部電極領域とオーミックコンタクトする電極を櫛歯
状に配設する工程とを具備することを特徴とする半導体
集積回路の製造方法。
(2) a step of forming a buried layer of an opposite conductivity type in a desired region of a semiconductor substrate of one conductivity type; a step of forming an epitaxial layer of an opposite conductivity type on the substrate; and a step of separating the epitaxial layer into a plurality of layers. a step of forming a lower electrode region of one conductivity type or an opposite conductivity type to serve as a lower electrode of a MIS type capacitor on the surface of one island; exposing a part of the surface of the lower electrode region; Said MI
A step of depositing a dielectric thin film of S-type capacitance to form a comb-teeth shape, after forming the dielectric thin film, selectively diffusing impurities of the opposite conductivity type to form the reverse conductivity type of the vertical bipolar transistor. Step of forming an emitter region: forming a conductive film on the entire surface, and forming the M on the dielectric thin film.
A method for manufacturing a semiconductor integrated circuit, comprising the step of disposing an upper electrode of an IS type capacitor in a comb-teeth shape on the surface of the lower electrode region in ohmic contact with the lower electrode region.
JP62292418A 1987-11-19 1987-11-19 Semiconductor integrated circuit and manufacturing method thereof Expired - Fee Related JP2725773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62292418A JP2725773B2 (en) 1987-11-19 1987-11-19 Semiconductor integrated circuit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62292418A JP2725773B2 (en) 1987-11-19 1987-11-19 Semiconductor integrated circuit and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01133354A true JPH01133354A (en) 1989-05-25
JP2725773B2 JP2725773B2 (en) 1998-03-11

Family

ID=17781531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62292418A Expired - Fee Related JP2725773B2 (en) 1987-11-19 1987-11-19 Semiconductor integrated circuit and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2725773B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486056B2 (en) * 1998-05-18 2002-11-26 Lsi Logic Corporation Process for making integrated circuit structure with thin dielectric between at least local interconnect level and first metal interconnect level
US6974744B1 (en) 2000-09-05 2005-12-13 Marvell International Ltd. Fringing capacitor structure
US6980414B1 (en) 2004-06-16 2005-12-27 Marvell International, Ltd. Capacitor structure in a semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656681A (en) * 1979-10-01 1981-05-18 Trw Inc Mos condenser
JPS58159367A (en) * 1982-03-17 1983-09-21 Matsushita Electronics Corp Mos capacitor device
JPS60166155U (en) * 1984-04-11 1985-11-05 三洋電機株式会社 Junction type capacitor
JPS6113656A (en) * 1984-06-28 1986-01-21 Toshiba Corp Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656681A (en) * 1979-10-01 1981-05-18 Trw Inc Mos condenser
JPS58159367A (en) * 1982-03-17 1983-09-21 Matsushita Electronics Corp Mos capacitor device
JPS60166155U (en) * 1984-04-11 1985-11-05 三洋電機株式会社 Junction type capacitor
JPS6113656A (en) * 1984-06-28 1986-01-21 Toshiba Corp Manufacture of semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486056B2 (en) * 1998-05-18 2002-11-26 Lsi Logic Corporation Process for making integrated circuit structure with thin dielectric between at least local interconnect level and first metal interconnect level
US6974744B1 (en) 2000-09-05 2005-12-13 Marvell International Ltd. Fringing capacitor structure
US9017427B1 (en) 2001-01-18 2015-04-28 Marvell International Ltd. Method of creating capacitor structure in a semiconductor device
US6980414B1 (en) 2004-06-16 2005-12-27 Marvell International, Ltd. Capacitor structure in a semiconductor device
US7116544B1 (en) 2004-06-16 2006-10-03 Marvell International, Ltd. Capacitor structure in a semiconductor device
US7578858B1 (en) 2004-06-16 2009-08-25 Marvell International Ltd. Making capacitor structure in a semiconductor device
US7988744B1 (en) 2004-06-16 2011-08-02 Marvell International Ltd. Method of producing capacitor structure in a semiconductor device
US8537524B1 (en) 2004-06-16 2013-09-17 Marvell International Ltd. Capacitor structure in a semiconductor device

Also Published As

Publication number Publication date
JP2725773B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
JPH0123949B2 (en)
JPS6322070B2 (en)
JPH01133354A (en) Semiconductor integrated circuit and manufacture thereof
JPH02101747A (en) Semiconductor integrated circuit and manufacture thereof
JP2740177B2 (en) Semiconductor integrated circuit
JPH01130553A (en) Manufacture of semiconductor integrated circuit
JPH01133344A (en) Semiconductor integrated circuit and manufacture thereof
JP2614519B2 (en) Method of manufacturing semiconductor integrated circuit incorporating MIS capacitance element
JPH02135770A (en) Semiconductor integrated circuit
JPH01133350A (en) Manufacture of semiconductor integrated circuit
JPH01133346A (en) Manufacture of semiconductor integrated circuit
JPH01133347A (en) Semiconductor integrated circuit and manufacture thereof
JPH02137257A (en) Semiconductor integrated circuit
JPH01133348A (en) Manufacture of semiconductor integrated circuit
JP2707646B2 (en) Method for manufacturing semiconductor device
JPH01175252A (en) Manufacture of semiconductor integrated circuit
JPH0583192B2 (en)
JPH02137258A (en) Manufacture of semiconductor integrated circuit device
JPH01184944A (en) Semiconductor integrated circuit
JPH01161749A (en) Manufacture of semiconductor integrated circuit
JPH01133349A (en) Manufacture of semiconductor integrated circuit
JPH061812B2 (en) Method for manufacturing semiconductor integrated circuit
JPH01161764A (en) Manufacture of semiconductor integrated circuit
JPH0317374B2 (en)
JPH01133352A (en) Manufacture of semiconductor integrated circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees