JPH0113274Y2 - - Google Patents

Info

Publication number
JPH0113274Y2
JPH0113274Y2 JP1980027224U JP2722480U JPH0113274Y2 JP H0113274 Y2 JPH0113274 Y2 JP H0113274Y2 JP 1980027224 U JP1980027224 U JP 1980027224U JP 2722480 U JP2722480 U JP 2722480U JP H0113274 Y2 JPH0113274 Y2 JP H0113274Y2
Authority
JP
Japan
Prior art keywords
inner cylinder
water chamber
tube
fuselage
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980027224U
Other languages
Japanese (ja)
Other versions
JPS56128992U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980027224U priority Critical patent/JPH0113274Y2/ja
Publication of JPS56128992U publication Critical patent/JPS56128992U/ja
Application granted granted Critical
Publication of JPH0113274Y2 publication Critical patent/JPH0113274Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 (技術分野) 本考案は、シエルアンドチユーブ式の油冷却用
熱交換器に関する。
[Detailed Description of the Invention] (Technical Field) The present invention relates to a shell and tube type oil cooling heat exchanger.

(従来技術) 第1図および2図は、従来の一般的な油冷却用
の2パスのシエルアンドチユーブ式熱交換器を示
す。冷却水は、矢印Aのように冷却水入口1、下
部第一水室2、多数の伝熱管3からなる管束4の
半分、上部水室5、管束4の他の半分、下部第二
水室6、冷却水出口7の経路を通つて流れる(な
お、図面では、前記多数の伝熱管3の一部のみを
表示しているが、実際には第2図に示す網目の各
交点にそれぞれ伝熱管3が配置されている)。
(Prior Art) Figures 1 and 2 show a conventional two-pass shell-and-tube heat exchanger for oil cooling. The cooling water is supplied to the cooling water inlet 1, the lower first water chamber 2, half of the tube bundle 4 consisting of a large number of heat transfer tubes 3, the upper water chamber 5, the other half of the tube bundle 4, and the lower second water chamber as shown by arrow A. 6. The cooling water flows through the path of the cooling water outlet 7 (note that only a part of the large number of heat transfer tubes 3 is shown in the drawing, but in reality, the cooling water flows through each intersection of the mesh shown in FIG. 2). heat tube 3 is arranged).

一方、冷却されるべき高温の潤滑油等の油は、
胴体入口9から胴体8内に流入し、この胴体8内
において、前記冷却水により管束4を介して冷却
された後、胴体出口10から胴体8外へ取り出さ
れる。
On the other hand, oil such as high-temperature lubricating oil that should be cooled,
The water flows into the fuselage 8 from the fuselage inlet 9, is cooled in the fuselage 8 by the cooling water via the tube bundle 4, and is then taken out of the fuselage 8 from the fuselage outlet 10.

しかし、第1図のような従来の熱交換器では、
冷却されるべき油が低粘度の場合には、ほぼ理論
計算値通りの熱交換能力を得られるが、冷却され
るべき油が高粘度の場合には、理論計算値を大幅
に下回る劣悪な熱交換能力しか得られないという
欠点があつた。
However, in the conventional heat exchanger as shown in Figure 1,
If the oil to be cooled has a low viscosity, it will be possible to obtain a heat exchange capacity almost in line with the theoretically calculated value, but if the oil to be cooled has a high viscosity, the heat exchange capacity will be much lower than the theoretically calculated value. The drawback was that you could only gain the ability to exchange.

このような欠点が生じるのは、次の理由によ
る。
The reason for this drawback is as follows.

すなわち、シエルアンドチユーブ式の熱交換器
には、大別して、管束4の両端部を取り付けられ
る2つの管板13,14を共に胴体8に固定して
しまう固定管板式のものと、スライドチユーブシ
ート式やフローテイングヘツド式等のように、管
束4と胴体88との熱膨脹差に対する対策のた
め、一方の管板14を胴体8に対し移動自在とす
る形式のものとの2種類がある(第1図はスライ
ドチユーブシート式のものを示す)。
That is, shell-and-tube heat exchangers can be roughly divided into fixed tube sheet types, in which two tube sheets 13 and 14 to which both ends of the tube bundle 4 are attached are fixed to the body 8, and sliding tube sheet types. There are two types, such as type and floating head type, in which one tube sheet 14 is movable with respect to the body 8, in order to counter the difference in thermal expansion between the tube bundle 4 and the body 88. (Figure 1 shows a slide tube sheet type).

そして、後者の場合は、一方の管板14を移動
自在とするため、さらには点検、清掃等の目的で
管束4を胴体8外に引き出せるようにするため、
構造上、管束4の外周と胴体8の内周面との間に
比較的大きな環状の空間12を設けざるを得なか
つた。また、同じ理由から邪魔板15の外周の円
弧部と胴体8の内周面との間にも間隙16を設け
ざるを得なかつた。
In the latter case, in order to make one tube plate 14 movable, and furthermore, to make it possible to pull out the tube bundle 4 outside the body 8 for the purpose of inspection, cleaning, etc.
Due to the structure, it is necessary to provide a relatively large annular space 12 between the outer circumference of the tube bundle 4 and the inner circumference of the body 8. Furthermore, for the same reason, it was necessary to provide a gap 16 between the arcuate portion of the outer periphery of the baffle plate 15 and the inner peripheral surface of the body 8.

したがつて、冷却されるべき油が高粘度である
場合は、管束4内の空間11に至つた油は、管束
4により冷却されて一層粘度が高くなり、そのま
ま該空間11に停滞してしまい、その後胴体8内
に流入して来る高温の油の障害物となる一方、前
記環状の空間12に至つた油は、管束4による冷
却効果をあまり受けないので、温度が低下せず、
前記管束4内の空間11に停滞している低温の油
に比較すれば低粘度で、流動しやすい状態を維持
することとなつていた。
Therefore, if the oil to be cooled has a high viscosity, the oil that reaches the space 11 in the tube bundle 4 will be cooled by the tube bundle 4 and become even more viscous, and will remain in the space 11 as it is. , which becomes an obstacle for the high-temperature oil that subsequently flows into the body 8, while the oil that has reached the annular space 12 is not greatly affected by the cooling effect of the tube bundle 4, so its temperature does not drop.
Compared to the low-temperature oil stagnant in the space 11 within the tube bundle 4, the oil had a low viscosity and was supposed to maintain a fluidized state.

このため、胴体8に流入する高温の油の大部分
は、管束4内の空間11を通ることなく、矢印B
のように、間隙16を含む空間12のみを通過し
て、十分に冷却されないまま、胴体8外に流出し
てしまう。この結果、第1図および2図のような
従来の熱交換器では、前述のように冷却されるべ
き油が高粘度の場合は、理論計算値を大幅に下回
る劣悪な熱交換能力しか得られなかつた。
Therefore, most of the high-temperature oil flowing into the body 8 does not pass through the space 11 in the tube bundle 4, and instead flows through the arrow B
As shown in the figure, the liquid passes only through the space 12 including the gap 16 and flows out of the fuselage 8 without being sufficiently cooled. As a result, in the conventional heat exchanger shown in Figures 1 and 2, when the oil to be cooled has a high viscosity as described above, only a poor heat exchange capacity can be obtained, which is significantly lower than the theoretically calculated value. Nakatsuta.

また、一般に、前記第1図および2図の熱交換
器のような複数パスの熱交換器では、第2図に示
すように、管板と水室カバーとの間に形成される
空間を複数個の水室に仕切る仕切板19が存在す
る関係上、この仕切板19上に沿つて、胴体8内
に管束4の存在しない空間30が必然的に生じ
る。したがつて、第2図の一点鎖線で示すよう
に、胴体入口9および胴体出口10を仕切板19
と同方向に設けると、油の多くが前記空間30を
通過してしまい、管束4内の空間11を通過する
油の量が少なくなるので、管束4の伝熱面積を十
分有効に利用できない。このため、第2図の実線
で示されるように、胴体入口9および胴体出口1
0を仕切板19に対し直角方向に設けることが好
ましい。
Generally, in a multi-pass heat exchanger such as the heat exchanger shown in FIGS. 1 and 2, as shown in FIG. Due to the presence of the partition plate 19 that partitions the individual water chambers, a space 30 where the tube bundle 4 does not exist is inevitably created in the body 8 along the partition plate 19. Therefore, as shown by the dashed line in FIG.
If they are provided in the same direction, much of the oil will pass through the space 30 and the amount of oil passing through the space 11 in the tube bundle 4 will be reduced, making it impossible to utilize the heat transfer area of the tube bundle 4 sufficiently effectively. Therefore, as shown by the solid line in FIG. 2, the fuselage inlet 9 and the fuselage outlet 1
0 is preferably provided in a direction perpendicular to the partition plate 19.

しかし、配管等の関係上、前記のように胴体入
口9および胴体出口10を仕切板19と同方向に
設けざるを得ない場合があり、従来はそのような
場合には、前記事情により熱交換能力が低下する
という欠点もあつた。
However, due to piping, etc., there are cases where the fuselage inlet 9 and the fuselage outlet 10 have to be installed in the same direction as the partition plate 19 as described above. It also had the disadvantage of reduced performance.

また、従来、ドーナツ型邪魔板の外周に薄い金
属板を巻き付け、この板の要所を金属製バンドで
締めることにより、胴体の内周面と邪魔板との間
の間隙をなくす構造の熱交換器もあつたが、この
場合には、金属板の巻き付けの合わせ目より流体
が漏洩する虞があり、しかも多数のバンド掛け作
業は多大の時間を必要とし、かつ繁雑であるとい
う欠点があつた。
In addition, conventional heat exchangers have a structure in which a thin metal plate is wrapped around the outer circumference of a donut-shaped baffle plate, and the key points of this plate are tightened with metal bands to eliminate the gap between the inner peripheral surface of the fuselage and the baffle plate. However, in this case, there was a risk of fluid leaking from the seams where the metal plates were wrapped, and the work of attaching multiple bands required a large amount of time and was complicated. .

さらに、実開昭47−26055号は、前記金属板を
巻き付ける構造の熱交換器の欠点を解消できるも
のとして、「冷媒流体の入口及び出口を有する中
空の胴体と、この胴体中空部にそれぞれ挿通され
た多数本の管と、これら管に固定支持され且それ
ぞれが交互に配置された複数個のドーナツ形バツ
フル及びデイスク形バツフルと、前記ドーナツ形
バツフルのそれぞれの外周部分に密着され且つそ
の外周壁を沿つて流れる前記冷媒流体を阻止する
ように設けられた熱可塑性樹脂の円筒とを具備し
て成る熱交換器」を提案している。
Furthermore, Utility Model Application Publication No. 47-26055 describes a heat exchanger that can solve the drawbacks of the heat exchanger having a structure in which metal plates are wrapped around it, and describes a ``hollow body having an inlet and an outlet for refrigerant fluid, and a body that is inserted into the hollow part of the body.'' a plurality of donut-shaped buttfuls and a plurality of disk-shaped buttfuls fixedly supported by these tubes and arranged alternately, and a plurality of donut-shaped buttfuls and a plurality of disc-shaped buttfuls that are in close contact with the outer peripheral portion of each of the donut-shaped buttfuls and the outer peripheral wall thereof; and a cylinder of thermoplastic resin arranged to prevent the refrigerant fluid from flowing along the heat exchanger.

しかし、この実開昭47−26055号に開示されて
いる熱交換器では、前記熱可塑性樹脂の円筒の両
端を、構造上、管板から大きく離間しなければな
らなかつたため、前記入口および出口付近におい
ては、前記第1図の熱交換器における油の場合と
同様に、大部分の冷媒流体は抵抗の多い管束内の
空間を通らず、管束の外周と胴体の内面との間に
形成される環状の空間を通過してしまうので、前
記入口および出口付近における管束の伝熱面積が
有効に使われず、これにより熱交換能力が著しく
低下するという欠点があつた。
However, in the heat exchanger disclosed in Japanese Utility Model Application Publication No. 47-26055, both ends of the thermoplastic resin cylinder had to be separated from the tube plate by a large distance due to the structure, so In this case, as in the case of oil in the heat exchanger shown in FIG. Since the tube passes through an annular space, the heat transfer area of the tube bundle near the inlet and outlet is not used effectively, resulting in a disadvantage that the heat exchange capacity is significantly reduced.

また、前記熱可塑性樹脂の円筒は、まずその内
部にバツフル(邪魔板)を挿通された後、外周よ
り加熱されて収縮させられることにより、前記バ
ツフルの外周に密着されるので、前記円筒をすべ
てのバツフルの外周に密着させるには、前記円筒
全体を一定温度に加熱する必要があるが、実際に
は、そのようなことは困難であるという欠点もあ
つた。
In addition, the thermoplastic resin cylinder is first inserted with a baffle (baffle plate) inside it, and then heated from the outer periphery and contracted, so that the thermoplastic resin cylinder is brought into close contact with the outer periphery of the buttful. In order to bring the cylinder into close contact with the outer periphery of the buttful, it is necessary to heat the entire cylinder to a constant temperature, but this has the drawback of being difficult in practice.

また、前記実開昭47−26055号の構造の熱交換
器を複数パスの熱交換器とした場合には、前記熱
可塑性樹脂の円筒の両端部が管板から大きく離間
されているため、前記胴体の入口および出口の方
向によつては、前記胴体の入口および出口付近に
おいて、前記第1図の従来の熱交換器の場合と同
様に、冷媒流体が、仕切板に沿つて胴体内に形成
される管束の存在しない空間を通過してしまい、
より一層、熱交換能力が低下するという欠点もあ
つた。
Furthermore, when the heat exchanger having the structure of Utility Model Application Publication No. 47-26055 is made into a multi-pass heat exchanger, both ends of the thermoplastic resin cylinder are separated from the tube plate by a large distance. Depending on the direction of the inlet and outlet of the body, refrigerant fluid may form in the body along the partition plate near the inlet and outlet of the body, similar to the conventional heat exchanger of FIG. It passes through a space where there is no tube bundle,
Another drawback was that the heat exchange ability was further reduced.

さらに、胴体内に高温の油を通す油冷却用の熱
交換器においては、前記実開昭47−26055号のよ
うな構造とすると、 (イ) 前記熱可塑性樹脂の円筒が高温により変形す
る。
Furthermore, in an oil cooling heat exchanger that passes hot oil into the body, if the structure is as in the above-mentioned Utility Model Application No. 47-26055, (a) the thermoplastic resin cylinder will deform due to high temperature.

(ロ) 前記熱可塑性樹脂の円筒が前記油等によつて
膨潤する。
(b) The thermoplastic resin cylinder swells with the oil or the like.

(ハ) 前記油等の種類によつては、前記熱可塑性樹
脂の円筒が溶解する。
(c) Depending on the type of the oil, the thermoplastic resin cylinder may dissolve.

等の欠点も生じる。Other disadvantages also arise.

(考案の目的) 本考案は、前記従来の種々の欠点を解消するこ
とのできる油冷却用の熱交換器を提供することを
目的とする。
(Object of the invention) An object of the present invention is to provide an oil-cooled heat exchanger that can eliminate the various drawbacks of the conventional technology.

(考案の構成) 本考案による油冷却用熱交換器は、胴体と、こ
の胴体の周壁に設けられ、該胴体内に冷却すべき
油を流入させる胴体入口と、前記胴体の周壁に設
けられ、該胴体内から前記油を流出させる胴体出
口と、前記胴体の上下端部にそれぞれ配された上
部管板および下部管板と、前記胴体の上端部に取
り付けられ、前記上部管板との間に上部水室を形
成する上部水室カバーと、前記胴体の下端部に取
り付けられ、前記下部管板との間に下部水室を形
成する下部水室カバーと、前記上部水室または
(および)前記下部水室を複数個の水室に仕切る
仕切板と、前記上部水室または前記下部水室にそ
れぞれ連通された冷却水入口および冷却水出口
と、前記胴体内において上端部を前記上部管板
に、下端部を前記下部管板に取付けられ、前記上
部水室と前記下部水室とを連通する管束と、前記
胴体内に収容され、前記管束を取り囲む内筒と、
前記管束に貫通された状態で、前記内筒内に収容
された複数の邪魔板と、前記胴体入口と前記胴体
出口との間において前記胴体の内周面と前記内筒
の外周面との間をシールするシール材とを有して
なる複数パスの油冷却用熱交換器において、前記
邪魔板は欠円状とされ、前記内筒は、前記邪魔板
の外周の円弧部に金属板を巻き付け、この金属板
の継ぎ目を溶接することにより構成され、前記内
筒の上下端部は前記各管板に接続されるかまたは
近接され、前記内筒の周壁の両端部付近には、そ
れぞれ該内筒の内外を連通する内筒入口および内
筒出口が前記仕切板に対し直角方向に設けられて
おり、前記シール材は環状をなし、前記内筒の外
周面に取り付けられたシール取付座に支持されて
いることを特徴とするものである。
(Structure of the invention) The oil cooling heat exchanger according to the invention includes a body, a body inlet provided on a peripheral wall of the body, and a body inlet through which oil to be cooled flows into the body, and a body inlet provided on the peripheral wall of the body, A fuselage outlet that drains the oil from within the fuselage; an upper tube plate and a lower tube plate respectively disposed at the upper and lower ends of the fuselage; and a fuselage outlet installed at the upper end of the fuselage and between the upper tube plate. an upper water chamber cover forming an upper water chamber; a lower water chamber cover attached to the lower end of the body and forming a lower water chamber between the lower tube plate; and the upper water chamber or/and the lower water chamber cover. a partition plate that partitions the lower water chamber into a plurality of water chambers; a cooling water inlet and a cooling water outlet that communicate with the upper water chamber or the lower water chamber, respectively; , a tube bundle having a lower end attached to the lower tube plate and communicating the upper water chamber and the lower water chamber; an inner cylinder housed in the body and surrounding the tube bundle;
between a plurality of baffle plates housed in the inner cylinder while being penetrated by the tube bundle, and an inner circumferential surface of the body and an outer circumferential surface of the inner cylinder between the body inlet and the body outlet; In the multi-pass oil cooling heat exchanger comprising a sealing material for sealing, the baffle plate has an omitted circular shape, and the inner cylinder has a metal plate wrapped around an arcuate portion of the outer periphery of the baffle plate. , is constructed by welding the joints of the metal plates, the upper and lower ends of the inner cylinder are connected to or close to each of the tube sheets, and the inner cylinder is provided near both ends of the peripheral wall of the inner cylinder, respectively. An inner cylinder inlet and an inner cylinder outlet that communicate the inside and outside of the cylinder are provided in a direction perpendicular to the partition plate, and the seal material has an annular shape and is supported by a seal mounting seat attached to the outer peripheral surface of the inner cylinder. It is characterized by the fact that

(実施例) 以下、本考案を図面に示す実施例に基づいてさ
らに詳細に説明する。
(Example) Hereinafter, the present invention will be explained in more detail based on an example shown in the drawings.

第3図および4図は、本考案を油冷却用の2パ
スのスライドチユーブシート式熱交換器に適用し
た実施例を示す。
3 and 4 show an embodiment in which the present invention is applied to a two-pass slide tube sheet heat exchanger for oil cooling.

胴体8は中空円筒状をなし、下端部付近に胴体
入口9を、また上端部付近に胴体出口10をそれ
ぞれ設けられている。前記胴体8の上端部には、
上部水室カバー17が図示しないボルトにより着
脱自在に取り付けられている。
The body 8 has a hollow cylindrical shape, and is provided with a body inlet 9 near its lower end and a body outlet 10 near its upper end. At the upper end of the body 8,
An upper water chamber cover 17 is removably attached with bolts (not shown).

前記胴体8の下端部には、下部管板13および
下部水室カバー18が図示しないボルトより着脱
自在に取り付けられている。
A lower tube plate 13 and a lower water chamber cover 18 are detachably attached to the lower end of the body 8 using bolts (not shown).

前記下部管板13は胴体8と下部水室カバー1
8との間に挟持された状態となつており、該下部
管板13は胴体8内の空間と下部水室カバー18
内の空間とを仕切つている。前記下部水室カバー
18内の空間は、さらに仕切板19により下部第
一水室2と下部第二水室6とに仕切られている。
前記下部水室カバー18には、冷却水入口1およ
び冷却水出口7が前記仕切板19と直角方向に設
けられ、これらの冷却水入口1、冷却水出口7
は、それぞれ下部第一水室2、下部第二水室6に
臨まされている。
The lower tube plate 13 includes the body 8 and the lower water chamber cover 1.
8, and the lower tube plate 13 is sandwiched between the space inside the body 8 and the lower water chamber cover 18.
It separates it from the inner space. The space within the lower water chamber cover 18 is further partitioned into a lower first water chamber 2 and a lower second water chamber 6 by a partition plate 19.
The lower water chamber cover 18 is provided with a cooling water inlet 1 and a cooling water outlet 7 in a direction perpendicular to the partition plate 19.
are faced to the lower first water chamber 2 and the lower second water chamber 6, respectively.

前記下部管板13には、管束4を構成する多数
の伝熱管3の下端部が取り付けられており、これ
らの伝熱管3の半数はその下端部開口を下部第一
水室2に臨まされ、残りの半数の伝熱管3の下端
部開口は下部第二水室6に臨まされている。前記
各伝熱管3は胴体8内を鉛直方向に延びており、
その上端部は上部管板14に取り付けられてい
る。なお、図面では、前記多数の伝熱管3の一部
のみを表示しているが、実際には第4図に示す網
目の各交点にそれぞれ伝熱管3が配置されてい
る。
The lower ends of a large number of heat exchanger tubes 3 constituting the tube bundle 4 are attached to the lower tube plate 13, and half of these heat exchanger tubes 3 have their lower end openings facing the lower first water chamber 2, The lower end openings of the remaining half of the heat exchanger tubes 3 face the lower second water chamber 6. Each of the heat exchanger tubes 3 extends vertically within the body 8,
Its upper end is attached to the upper tube plate 14. Although only a part of the large number of heat exchanger tubes 3 is shown in the drawing, in reality, the heat exchanger tubes 3 are arranged at each intersection of the mesh shown in FIG. 4.

前記上部管板14の外周は、胴体8と上部水室
カバー17との合わせ目に支持されたOリング2
0に摺接されるようになつており、これにより該
管板14は、胴体8および上部水室カバー17に
対して移動自在な状態で、胴体8内の空間と上部
水室カバー17内に形成される上部水室5とを仕
切つている。前記上部水室5には、各伝熱管3の
上端部開口が臨まされている。
The outer periphery of the upper tube plate 14 is covered with an O-ring 2 supported at the joint between the body 8 and the upper water chamber cover 17.
0, so that the tube plate 14 is movable relative to the body 8 and the upper water chamber cover 17, and is inserted into the space inside the body 8 and the upper water chamber cover 17. It is separated from the upper water chamber 5 to be formed. The upper end opening of each heat transfer tube 3 faces the upper water chamber 5 .

前記下部管板13には、複数の固定棒21が立
設され、これらの固定棒21には、適当数の欠円
状の邪魔板15が、各伝熱管3に貫通された状態
で、取り付けられている。
A plurality of fixing rods 21 are erected on the lower tube plate 13, and an appropriate number of occluded circular baffle plates 15 are attached to these fixing rods 21 with each heat transfer tube 3 passing through them. It is being

前記各邪魔板15の外周の円弧部には、内筒2
2がきつく嵌合されている。この内筒22の上端
部は上部管板14に、溶接で点付けされることに
より接続されている。他方、前記内筒22の下端
部は下部管板13に近接されているが、該管板1
3から浮いた状態となつている。なお、前記内筒
22は、邪魔板15の外周の円弧部に鉄板を巻き
付け、この鉄板の継ぎ目を溶接することにより製
作されている。
An inner cylinder 2 is provided at the arcuate portion of the outer periphery of each baffle plate 15.
2 are tightly fitted. The upper end of this inner cylinder 22 is connected to the upper tube plate 14 by welding. On the other hand, the lower end of the inner cylinder 22 is close to the lower tube sheet 13;
It is floating from 3. Note that the inner cylinder 22 is manufactured by wrapping an iron plate around an arcuate portion of the outer periphery of the baffle plate 15 and welding the seam of this iron plate.

前記内筒22の外周面のうち、胴体入口9より
やや上方の部分には、シール取付座23が取り付
けられている。このシール取付座23には環状の
シール材24が取り付けられており、該シール材
24は胴体8の内周面に当接されて、胴体8の内
周面と内筒22の外周面との間をシールしてい
る。
A seal mounting seat 23 is attached to a portion of the outer peripheral surface of the inner cylinder 22 slightly above the body inlet 9. An annular sealing material 24 is attached to the seal mounting seat 23, and the sealing material 24 is brought into contact with the inner circumferential surface of the body 8 so as to connect the inner circumferential surface of the body 8 and the outer circumferential surface of the inner cylinder 22. It seals the gap.

前記内筒22の周壁のうち、シール取付座23
より下方の部分には、内筒入口25が設けられて
いる。また、前記内筒22の周壁の上端部付近に
は、内筒出口26が設けられている。なお、前記
内筒入口25および内筒出口26は、仕切板19
と直角方向(したがつて仕切板19上に沿つて胴
体8内に形成される管束4の存在しない空間30
に対しても直角方向)に設けられている。
Of the peripheral wall of the inner cylinder 22, the seal mounting seat 23
An inner cylinder inlet 25 is provided in the lower part. Furthermore, an inner cylinder outlet 26 is provided near the upper end of the peripheral wall of the inner cylinder 22 . Note that the inner cylinder inlet 25 and the inner cylinder outlet 26 are connected to the partition plate 19.
(Thus, the space 30 where the tube bundle 4 does not exist is formed in the body 8 along the partition plate 19.
(also perpendicular to).

この熱交換器では、冷却水は、前記第1図の従
来の熱交換器と同様に矢印Aのように、冷却水入
口1、下部第一水室2、管束4の半数、上部水室
5、管束4の残りの半数、下部第二水室6の経路
を通つて流れる。
In this heat exchanger, as in the conventional heat exchanger shown in FIG. , the other half of the tube bundle 4 flows through the path of the lower second water chamber 6.

他方、冷却されるべき油の流れについてみる
と、シール材24が設けられているため、胴体入
口9から胴体8内に流入した前記油は、内筒22
内を経ることなく、胴体8の内周面と内筒22の
外周面との間に形成される環状の空間27のみを
通過して胴体出口10に達することは不可能であ
る。
On the other hand, regarding the flow of oil to be cooled, since the sealing material 24 is provided, the oil flowing into the body 8 from the body inlet 9 flows through the inner cylinder 22.
It is impossible to reach the body outlet 10 by passing only through the annular space 27 formed between the inner circumferential surface of the body 8 and the outer circumferential surface of the inner cylinder 22 without passing through the inside.

したがつて、冷却されるべき油は、必ず矢印C
のように胴体入口9から胴体8内に流入した後、
さらに内筒入口25を経て内筒22内に流入し、
管束4内の空間11を邪魔板15の存在のために
蛇行しながら通過し、この間に管束4を介して冷
却水に十分熱を奪われ、しかる後に内筒出口26
から内筒22外へ出て、さらに胴体出口10から
胴体8外へ流出することになる。
Therefore, the oil to be cooled is always in the direction of arrow C.
After flowing into the fuselage 8 from the fuselage entrance 9 as shown,
Further, it flows into the inner cylinder 22 through the inner cylinder inlet 25,
It passes through the space 11 inside the tube bundle 4 while meandering due to the presence of the baffle plate 15, and during this time, sufficient heat is absorbed by the cooling water through the tube bundle 4, and then the inner tube outlet 26
It flows out from the inner cylinder 22 and further out from the fuselage outlet 10 to the outside of the fuselage 8.

なお、内筒22は、前記のように欠円状の邪魔
板15の外周の円弧部にきつく嵌合されているた
め、前記油が内筒22の内周面と邪魔板15の外
周の円弧部との間から漏洩することがなく、すべ
ての油が内筒22の内周面と邪魔板15の外周の
直線部との間を通過するので、前記油の蛇行が完
全に行われる。
In addition, since the inner cylinder 22 is tightly fitted to the circular arc portion of the outer periphery of the baffle plate 15 having an occluded circular shape as described above, the oil flows between the inner peripheral surface of the inner cylinder 22 and the circular arc of the outer periphery of the baffle plate 15. Since all the oil passes between the inner peripheral surface of the inner cylinder 22 and the straight part of the outer periphery of the baffle plate 15 without leaking between the parts, the meandering of the oil is completed.

また、この熱交換器では、前記のように内筒2
2の両端部が管板13,14に接続または近接さ
れているで、前記実開昭47−26055号の場合のよ
うに、胴体入口9および胴体出口10付近におい
て、管束4内の空間11を通過せずに、胴体8の
内周面と管束4の外周との間に形成される環状の
空間27を通過してしまうようなことがない。し
たがつて、胴体入口9および胴体出口10付近に
おいても、管束4の伝熱面積を最大限有効に利用
できる。
In addition, in this heat exchanger, as described above, the inner cylinder 2
Both ends of the tube bundle 2 are connected to or close to the tube sheets 13 and 14, and as in the case of the above-mentioned Utility Model Application No. 47-26055, the space 11 in the tube bundle 4 is closed near the fuselage inlet 9 and the fuselage outlet 10. There is no possibility that the tube passes through the annular space 27 formed between the inner circumferential surface of the body 8 and the outer circumference of the tube bundle 4 without passing through. Therefore, the heat transfer area of the tube bundle 4 can be utilized as effectively as possible also near the fuselage inlet 9 and the fuselage outlet 10.

以上の結果、この熱交換器では、冷却されるべ
き油が高粘度であつても、従来の理論計算値をむ
しろ上回るような極めて優れた熱交換能力を得る
ことができる。
As a result of the above, even if the oil to be cooled has a high viscosity, this heat exchanger can obtain an extremely excellent heat exchange ability that actually exceeds the conventional theoretically calculated value.

また、この熱交換器では、前記のように内筒2
2の両端部が管板13,14に接続または近接さ
れており、かつ内筒入口25および内筒出口26
が仕切板19に対し直角方向に設けられているの
で、仮に第1図の一点鎖線で示されるように、胴
体入口9および胴体出口10が仕切板19と同方
向に設けられても、内筒入口25から内筒22内
に流入する油の流れおよび内筒出口26から内筒
22外に流出する油の流れは、仕切板19上に沿
つて胴体8内に形成された管束4の存在しない空
間30に対して直角方向となるので、従来のよう
に油の多くが前記空間30を通過してしまい、熱
交換能力の低下を招くことがない。
In addition, in this heat exchanger, as described above, the inner cylinder 2
Both ends of 2 are connected to or close to the tube sheets 13 and 14, and the inner cylinder inlet 25 and the inner cylinder outlet 26
are provided in a direction perpendicular to the partition plate 19, so even if the fuselage inlet 9 and the fuselage outlet 10 are provided in the same direction as the partition plate 19, as shown by the dashed line in FIG. The flow of oil flowing into the inner cylinder 22 from the inlet 25 and the flow of oil flowing out of the inner cylinder 22 from the inner cylinder outlet 26 are caused by the absence of the tube bundle 4 formed in the body 8 along the partition plate 19. Since the direction is perpendicular to the space 30, much of the oil does not pass through the space 30 as in the conventional case, thereby preventing a decrease in heat exchange ability.

換言すれば、この熱交換器においては、熱交換
能力を低下させることなく、胴体入口9および胴
体口10の方向を自由に選択することができる。
In other words, in this heat exchanger, the directions of the fuselage inlet 9 and the fuselage opening 10 can be freely selected without reducing the heat exchange capacity.

また、この熱交換器では、内筒22は、邪魔板
15の外周の円弧部に金属板(鉄板)を巻き付
け、この金属板の継ぎ目を溶接することにより製
作されているので、邪魔板の外周に薄い金属板を
巻き付け、この板の要所を金属製バンドで締める
前記従来の熱交換器のような欠点を生じることが
ない。すなわち、前記金属板の合せ目から油が漏
洩する虞がなく、しかも製作に多大の時間を必要
とすることもなく、生産性が良い。
In addition, in this heat exchanger, the inner cylinder 22 is manufactured by wrapping a metal plate (iron plate) around the arcuate portion of the outer periphery of the baffle plate 15 and welding the joints of this metal plate. This does not cause the drawbacks of the conventional heat exchanger, which involves wrapping a thin metal plate around the body and tightening the metal band at key points of the plate. That is, there is no risk of oil leaking from the joints of the metal plates, and the manufacturing process does not require a large amount of time, resulting in good productivity.

また、上述のようにして内筒22を構成し、こ
の内筒22の外周面にシール取付座23を取り付
け、該シール取付座23にリング状のシール材2
4を支持させるのみで、既存の熱交換器を本考案
による熱交換器に改造できるので、既存の熱交換
器を極めて簡単に本考案よる熱交換器に改造する
ことができる。
In addition, the inner cylinder 22 is configured as described above, the seal mounting seat 23 is attached to the outer peripheral surface of the inner cylinder 22, and a ring-shaped sealing material 2 is attached to the seal mounting seat 23.
Since an existing heat exchanger can be modified into a heat exchanger according to the present invention by simply supporting the heat exchanger 4, an existing heat exchanger can be modified into a heat exchanger according to the present invention very easily.

また、内筒22が金属で製作されるので、前記
実開昭47−26055号の如く内筒を熱可塑性樹脂で
構成する場合のように、高温により内筒が変形し
たり、該内筒に接触する油により該内筒が膨潤し
たり、溶解したりする虞がない。
In addition, since the inner cylinder 22 is made of metal, the inner cylinder may be deformed due to high temperatures or the inner cylinder may There is no risk that the inner cylinder will swell or dissolve due to the oil it comes into contact with.

なお、前記実施例では、点検、清掃等の際は、
前記ボルトを取り外し、上部水室カバー17、胴
体8および下部水室カバー18を分解すれば、管
束4を管板13,14、邪魔板15および内筒2
2とともに胴体8から取り出すことができる。
In addition, in the above embodiment, during inspection, cleaning, etc.
By removing the bolts and disassembling the upper water chamber cover 17, body 8, and lower water chamber cover 18, the tube bundle 4 can be separated into tube plates 13, 14, baffle plate 15, and inner tube 2.
2 can be taken out from the body 8.

また、内筒22は上部管板14にのみ固着され
ているので、内筒22と管束4との間の熱膨脹差
により不都合を生じることはない。
In addition, since the inner cylinder 22 is fixed only to the upper tube plate 14, there is no problem caused by the difference in thermal expansion between the inner cylinder 22 and the tube bundle 4.

また、前記実施例では、シール材24を胴体入
口9付近に設けているが、胴体出口10より下方
であるならば、シール材24を、より上方に設け
ても前記と全く同じ効果が得られる。
Further, in the above embodiment, the sealing material 24 is provided near the fuselage inlet 9, but as long as it is located below the fuselage exit 10, the same effect as described above can be obtained even if the sealing material 24 is provided higher. .

また、胴体8と内筒22との間に複数のシール
を介装し、これらの複数のシール材と胴体8との
内筒22との間に形成される空間を、胴体8内の
他の空間と非連通状態としてもよい。
Further, a plurality of seals are interposed between the body 8 and the inner cylinder 22, and the space formed between the plurality of seal materials and the inner cylinder 22 of the body 8 is used to connect other parts of the body 8. It may also be in a state of no communication with space.

また、前記実施例では、内筒22を上部管板1
4に接続しているが、内筒22を下部管板13の
方に接続してもよいし、いずれの管板13,14
にも接続しないようにしてもよい。
Further, in the above embodiment, the inner cylinder 22 is connected to the upper tube plate 1.
Although the inner cylinder 22 is connected to the lower tube sheet 13, the inner cylinder 22 may be connected to the lower tube sheet 13, or either tube sheet 13, 14
You may also choose not to connect to it.

また、本考案による熱交換器は、前記のように
して、胴体内に流入した流体が必ず管束部分の空
間を通過してから胴体外へ流出する構成とされて
いるので、前記実施例のように胴体に高粘度の油
を通過させる場合のみならず、胴体に低粘度の油
を通過させる場合にも、従来より熱交換能力を向
上させることができる。
Furthermore, the heat exchanger according to the present invention is configured such that the fluid that has flowed into the body always passes through the space of the tube bundle portion before flowing out of the body. The heat exchange ability can be improved compared to the conventional method not only when high viscosity oil is passed through the body, but also when low viscosity oil is passed through the body.

さらに、本考案は、前記実施例のようなスライ
ドチユーブシート式の熱交換器のみならず、他の
形式の熱交換器にも適用できるものである。
Furthermore, the present invention can be applied not only to the slide tube sheet type heat exchanger as in the embodiment described above, but also to other types of heat exchangers.

(考案の効果) 以上のように本考案による油冷却用熱交換器
は、 (a) 邪魔板の外周の円弧部に金属板を巻き付け、
この金属板の継ぎ目を溶接することにより、内
筒を構成するので、前記金属板の合わせ目より
流体が漏洩することがなく、かつ生産性が良
い。
(Effects of the invention) As described above, the oil cooling heat exchanger according to the invention consists of: (a) wrapping a metal plate around the arcuate portion of the outer periphery of the baffle plate;
Since the inner cylinder is constructed by welding the joints of the metal plates, fluid does not leak from the joints of the metal plates, and productivity is high.

(b) 上述のようにして内筒を構成し、この内筒の
外周面にシール取付座を取り付け、該シール取
付座にリング状のシール材を支持させるのみ
で、既存の熱交換器を本考案による熱交換器に
改造できるので、既存の熱交換器を極めて簡単
に本考案よる熱交換器に改造することができ
る。
(b) By configuring the inner cylinder as described above, attaching a seal mounting seat to the outer peripheral surface of this inner cylinder, and supporting a ring-shaped sealing material on the seal mounting seat, an existing heat exchanger can be completely replaced. Since the heat exchanger according to the invention can be modified, an existing heat exchanger can be extremely easily modified into the heat exchanger according to the invention.

(c) 内筒の両端部が管板に接続されるかまたは近
接され、かつ内筒の両端付近に、該内筒の内外
を連通する内筒入口と内筒出口とが仕切板と直
角方向に設けられているので、熱交換能力を低
下させることなく、胴体入口および胴体出口の
方向を自由に選択することができる。
(c) Both ends of the inner cylinder are connected to or close to the tube plate, and near both ends of the inner cylinder, an inner cylinder inlet and an inner cylinder outlet that communicate the inside and outside of the inner cylinder are arranged in a direction perpendicular to the partition plate. , the direction of the fuselage inlet and fuselage outlet can be freely selected without reducing the heat exchange capacity.

(d) 内筒が金属板で構成されるので、内筒を熱可
塑性樹脂で構成する場合のように、高温より内
筒が変形したり、該内筒に接触する流体により
該内筒が膨潤したり、溶解したりする虞がな
い。等の優れた効果を得ることができるもので
ある。
(d) Since the inner cylinder is made of a metal plate, unlike when the inner cylinder is made of thermoplastic resin, the inner cylinder may deform due to high temperatures or swell due to the fluid that comes into contact with the inner cylinder. There is no risk of the product melting or melting. It is possible to obtain excellent effects such as.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱交換器を示す縦断面図、第2
図は第1図の−線における断面図、第3図は
本考案による熱交換器の一実施例を示す縦断面
図、第4図は第3図の−線における断面図で
ある。 4……管束、8……胴体、9……胴体入口、1
0……胴体出口、13,14……管板、15……
邪魔板、19……仕切板、22……内筒、23…
シール取付座、24……シール材、25……内筒
入口、26……内筒出口。
Figure 1 is a vertical cross-sectional view showing a conventional heat exchanger;
1, FIG. 3 is a vertical sectional view showing an embodiment of the heat exchanger according to the present invention, and FIG. 4 is a sectional view taken along the line - in FIG. 3. 4...tube bundle, 8...body, 9...body entrance, 1
0...Body outlet, 13, 14...Tube plate, 15...
Baffle plate, 19... Partition plate, 22... Inner cylinder, 23...
Seal mounting seat, 24... Seal material, 25... Inner cylinder inlet, 26... Inner cylinder outlet.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 胴体と、この胴体の周壁に設けられ、該胴体内
に冷却すべき油を流入させる胴体入口と、前記胴
体の周壁に設けられ、該胴体内から前記油を流出
させる胴体出口と、前記胴体の上下端部にそれぞ
れ配された上部管板および下部管板と、前記胴体
の上端部に取り付けられ、前記上部管板との間に
上部水室を形成する上部水室カバーと、前記胴体
の下端部に取り付けられ、前記下部管板との間に
下部水室を形成する下部水室カバーと、前記上部
水室または(および)前記下部水室を複数個の水
室に仕切る仕切板と、前記上部水室または前記下
部水室にそれぞれ連通された冷却水入口および冷
却水出口と、前記胴体内において上端部を前記上
部管板に、下端部を前記下部管板に取り付けら
れ、前記上部水室と前記下部水室とを連通する管
束と、前記胴体内に収容され、前記管束を取り囲
む内筒と、前記管束に貫通された状態で、前記内
筒内に収容された複数の邪魔板と、前記胴体入口
と前記胴体出口との間において前記胴体の内周面
と前記内筒の外周面との間をシールするシール材
とを有してなる複数パスの油冷却用熱交換器にお
いて、前記邪魔板は欠円状とされ、前記内筒は、
前記邪魔板の外周の円弧部に金属板を巻き付け、
この金属板の継ぎ目を溶接することにより構成さ
れ、前記内筒の上下端部は前記各管板に接続され
るかまたは近接され、前記内筒の周壁の両端部付
近には、それぞれ該内筒の内外を連通する内筒入
口および内筒出口が前記仕切板に対し直角方向に
設けられており、前記シール材は環状をなし、前
記内筒の外周面に取り付けられたシール取付座に
支持されていることを特徴とする油冷却用熱交換
器。
a fuselage inlet provided on the peripheral wall of the fuselage for allowing oil to be cooled to flow into the fuselage; a fuselage outlet provided on the peripheral wall of the fuselage for causing the oil to flow out from within the fuselage; An upper tube plate and a lower tube plate respectively arranged at the upper and lower ends; an upper water chamber cover attached to the upper end of the body and forming an upper water chamber between the upper tube plate; and a lower end of the body. a lower water chamber cover that is attached to the lower tube plate and forms a lower water chamber between the lower tube plate; a partition plate that partitions the upper water chamber and/or the lower water chamber into a plurality of water chambers; a cooling water inlet and a cooling water outlet communicating with the upper water chamber or the lower water chamber, respectively; and the upper water chamber having an upper end attached to the upper tube plate and a lower end attached to the lower tube plate within the body. and a tube bundle that communicates with the lower water chamber; an inner cylinder that is housed in the body and surrounds the tube bundle; and a plurality of baffle plates that are penetrated by the tube bundle and housed in the inner tube; In the multi-pass oil cooling heat exchanger, the multi-pass oil cooling heat exchanger includes a sealing material for sealing between the inner circumferential surface of the body and the outer circumferential surface of the inner cylinder between the body inlet and the body outlet. The baffle plate has an occluded circular shape, and the inner cylinder is
Wrapping a metal plate around an arcuate portion of the outer periphery of the baffle plate,
It is constructed by welding the joints of the metal plates, and the upper and lower ends of the inner cylinder are connected to or close to each of the tube sheets, and the inner cylinder is provided near both ends of the peripheral wall of the inner cylinder, respectively. An inner cylinder inlet and an inner cylinder outlet that communicate between the inside and outside of the inner cylinder are provided in a direction perpendicular to the partition plate, and the seal material has an annular shape and is supported by a seal mounting seat attached to the outer peripheral surface of the inner cylinder. An oil cooling heat exchanger characterized by:
JP1980027224U 1980-03-04 1980-03-04 Expired JPH0113274Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980027224U JPH0113274Y2 (en) 1980-03-04 1980-03-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980027224U JPH0113274Y2 (en) 1980-03-04 1980-03-04

Publications (2)

Publication Number Publication Date
JPS56128992U JPS56128992U (en) 1981-09-30
JPH0113274Y2 true JPH0113274Y2 (en) 1989-04-18

Family

ID=29623191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980027224U Expired JPH0113274Y2 (en) 1980-03-04 1980-03-04

Country Status (1)

Country Link
JP (1) JPH0113274Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997389U (en) * 1982-12-21 1984-07-02 石川島播磨重工業株式会社 Heat exchanger
US7243711B2 (en) * 2004-03-30 2007-07-17 Caterpillar Inc. Efficient heat exchanger and engine using same
JP2011117656A (en) * 2009-12-02 2011-06-16 Tokyo Titanium Co Ltd Shell and tube heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4726055U (en) * 1971-04-07 1972-11-24

Also Published As

Publication number Publication date
JPS56128992U (en) 1981-09-30

Similar Documents

Publication Publication Date Title
US4871014A (en) Shell and tube heat exchanger
US3552488A (en) Plate-fin heat exchanger
US3490521A (en) Tube and shell heat exchanger
US2612350A (en) Expansion compensated countercurrent heat exchanger
US3568764A (en) Heat exchanger
US3894581A (en) Method of manifold construction for formed tube-sheet heat exchanger and structure formed thereby
US3587732A (en) Heat exchanger formed by modules
US4178991A (en) Heat exchanger and a heat exchanger element therefor
US2236976A (en) Method of making heat exchangers
GB2095389A (en) Shell and tube exchanger
US3020024A (en) Heat exchanger construction
JPH0113274Y2 (en)
JP5323858B2 (en) Spiral heat exchanger
EP0245465A1 (en) Shell and tube heat exchanger
CA2969595A1 (en) Improved spiral plate heat exchanger
NZ243797A (en) Opposed bayonet heat exchanger with spaced baffles: baffles formed by
EP0760082B1 (en) Plate heat exchanger
US3887003A (en) Bayonet tube heat exchanger
US3763930A (en) Heat exchanger
US3650322A (en) Heat exchanger
US2133249A (en) High pressure heat exchanger
JP2749957B2 (en) Multi-tube heat exchanger
GB1418732A (en) Heat exchangers
JPH0717954Y2 (en) Heat exchanger
JPH0313517B2 (en)