JPH01129947A - Rolled body of chromium-base alloy and its production - Google Patents

Rolled body of chromium-base alloy and its production

Info

Publication number
JPH01129947A
JPH01129947A JP28736087A JP28736087A JPH01129947A JP H01129947 A JPH01129947 A JP H01129947A JP 28736087 A JP28736087 A JP 28736087A JP 28736087 A JP28736087 A JP 28736087A JP H01129947 A JPH01129947 A JP H01129947A
Authority
JP
Japan
Prior art keywords
chromium
rolling
rolled
based alloy
base alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28736087A
Other languages
Japanese (ja)
Inventor
Hiroaki Hidaka
樋高 宏昭
Tsutomu Kuniya
勉 國谷
Koichi Hanawa
浩一 花輪
Tomoyuki Oikawa
智之 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP28736087A priority Critical patent/JPH01129947A/en
Publication of JPH01129947A publication Critical patent/JPH01129947A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve malleability and ductility of the title alloy by rolling an ingot of Cr-base alloy in which prescribed percentages of metals selected from lanthanide are incorporated under the prescribed conditions. CONSTITUTION:A Cr-base alloy having a composition consisting of 0.01-10atomic% of one or more metals selected from lanthanide and the balance Cr is refined. The ingot of this Cr-base alloy is subjected to cross rolling at a temp. in the vicinity of the ductile-brittle transition temp., 200-700 deg.C, at a superslow speed of 0.05-1m/min, followed by warm rolling. By this method, a rolled body of Cr-base alloy having >=20% elongation among tensile characteristics at room temp. can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本、発明はクロム基合金圧延体およびその製造法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rolled chromium-based alloy and a method for manufacturing the same.

金属クロムは高温においても耐酸性、耐アルカリ性等の
耐薬品性に優れ、かつ耐候性に優れており、極めて有用
な金属の一つである。しかしながら、このような優れた
性質をもつにもかかわらず低温で靭性が低く加工が困難
であるために金属クロム及びクロム基合金の圧延体はほ
とんど実用化されていない状況にある。さらに実用化が
試みられた圧延体についても実用材としては充分な特性
を有しているとは言いがたい。
Metallic chromium has excellent chemical resistance such as acid resistance and alkali resistance even at high temperatures, and excellent weather resistance, making it an extremely useful metal. However, despite having such excellent properties, rolled bodies of metallic chromium and chromium-based alloys have hardly been put into practical use because they have low toughness and are difficult to process at low temperatures. Furthermore, it is difficult to say that the rolled bodies that have been put into practical use have sufficient properties as practical materials.

本発明は金属クロム本来の特性を生かしたクロム基合金
圧延体ならびにその製造法を提供するものである。
The present invention provides a chromium-based alloy rolled body that takes advantage of the inherent characteristics of metallic chromium, and a method for producing the same.

[従来の技術及びその問題点コ これまでに金属クロム及びクロム基合金の成型加工方法
としては次の方法が知られている。
[Prior art and its problems] The following methods have been known as methods for forming metal chromium and chromium-based alloys.

1)金属粉末を粉末圧延(冷間)、焼結、再圧延。1) Powder rolling (cold), sintering, and re-rolling of metal powder.

焼鈍という工程を経て板状とする方法(特開昭58−5
5502号)。
A method of forming a plate through a process called annealing (Japanese Unexamined Patent Publication No. 58-5
No. 5502).

2)70重量%以上のクロムを含有する合金打粉末を金
属容器中に、10   torr以下の減圧下、150
〜800℃の温度範囲内の温度で真空封入し、次いで、
200 kg / cmの不活性ガス圧下で、1000
〜1400℃に加熱保持し加圧焼結し、次いで800〜
1350℃の温度範囲で圧延する方法(特公昭60−5
8289号)。
2) An alloy powder containing 70% by weight or more of chromium was placed in a metal container under a reduced pressure of 10 torr or less at 150
Vacuum encapsulation at a temperature within the temperature range of ~800°C, then
1000 under inert gas pressure of 200 kg/cm
Heat and hold at ~1400℃ and sinter under pressure, then 800℃~
Method of rolling in a temperature range of 1350℃
No. 8289).

3)純度99%以上の金属クロムの粉末または成形体を
密封容器に封入し、真空処理し、これを600〜100
0℃で加熱圧延することを特徴とする相対密度が95%
以上である金属クロム圧延体の製造法(特開昭62−1
03303号)。
3) A powder or molded body of metallic chromium with a purity of 99% or more is sealed in a sealed container, vacuum treated, and
Relative density is 95%, characterized by hot rolling at 0℃
The method for manufacturing a rolled metal chromium body as described above (Japanese Unexamined Patent Publication No. 62-1
No. 03303).

しかしながら、上記従来技術にはそれぞれ次のような問
題点がある。
However, each of the above conventional techniques has the following problems.

すなわち、1)の方法は多工程を要し、操作が繁雑であ
り、冷間圧延では粉末粒子間の隙間がある程度少なくな
るが粉末粒子自体の変型が進みに<<、かつ、得られる
成形体の相対密度が低いなどの問題点がある。
That is, method 1) requires multiple steps and is complicated to operate, and although cold rolling reduces the gaps between powder particles to some extent, the deformation of the powder particles themselves progresses. There are problems such as low relative density.

また2)の方法は800〜1350℃という高温で圧延
するために、金属クロム自体が空気中の酸素や窒素と反
応し、高純度の金属クロム圧延体が得られない。これら
の反応を抑制するために雰囲気制御、密封溶器中で加工
する方法も考えられるがこれらの反応を完全に抑制する
ことは困難であるし、また任意の形状に加工するのは実
質上不可能である。さらに3)の方法では得られる成形
体の相対密度が低いという問題点がある。
Further, in the method 2), since rolling is carried out at a high temperature of 800 to 1350° C., metallic chromium itself reacts with oxygen and nitrogen in the air, making it impossible to obtain a highly pure metallic chromium rolled body. In order to suppress these reactions, a method of controlling the atmosphere and processing in a sealed melter is considered, but it is difficult to completely suppress these reactions, and it is virtually impossible to process the material into an arbitrary shape. It is possible. Furthermore, method 3) has the problem that the relative density of the obtained molded product is low.

[問題点を解決するための手段] 本発明者らは上記問題点を解決するために鋭意研究を重
ねた結果、金属クロムの脆性を改善し得る添加元素を見
出し、更にこのクロム基合金塊の圧延法を工夫すること
により、圧延体を得ることができることを見出し本発明
に至った。
[Means for Solving the Problems] As a result of extensive research in order to solve the above problems, the present inventors discovered an additive element that can improve the brittleness of metallic chromium, and further improved the chromium-based alloy ingot. The inventors have discovered that a rolled body can be obtained by devising a rolling method, leading to the present invention.

すなわち本発明は、ランタノイド(L a SCe s
P r、Nd、Pms Sm5Eus Gd、、Tb5
Dy、Ho5Er、Tm、Ybs Lu)から選ばれた
一種又は二種以上の金属0.01〜1Qat%および残
部実質的にクロムからなるクロム基合金圧延体およびラ
ンタノイドから選ばれた一種又は二種以上の金属0.0
1〜10at%および残部が実質的にクロムからなるク
ロム基合金塊を、初期圧延として延性脆性遷移温度付近
の温度(200〜700℃)で超微速度(0,05〜1
tn / m i n )のクロス圧延をし、次いで温
間圧延(常温以上、再結晶温度以下における圧延)を行
なうことを特徴とするクロム基合金圧延体の製造方法を
提供するものである。
That is, the present invention uses lanthanoids (L a SCe s
P r, Nd, Pms Sm5Eus Gd,, Tb5
a chromium-based alloy rolled body consisting of 0.01 to 1 Qat% of one or more metals selected from Dy, Ho5Er, Tm, Ybs Lu) and the remainder substantially chromium; and one or more selected from lanthanoids. metal 0.0
A chromium-based alloy ingot consisting of 1 to 10 at% chromium and the remainder being substantially chromium is initially rolled at an ultralow speed (0.05 to 1
The present invention provides a method for manufacturing a chromium-based alloy rolled body, which comprises cross rolling at a temperature of tn/min) and then warm rolling (rolling at room temperature or higher and lower than recrystallization temperature).

金属クロムの難加工性の原因は結晶構造が体心立方であ
るために酸素、窒素、炭素等の不純物元素により脆化す
ることであると考えられている。
It is thought that the reason for the difficulty of processing chromium metal is that it has a body-centered cubic crystal structure, which makes it embrittled by impurity elements such as oxygen, nitrogen, and carbon.

本発明のクロム基合金圧延体に含まれるランタノイドは
金属クロムが不可避的に含有している不純物酸素及び不
純物窒素と化合して酸化物及び窒化物を形成し、クロム
母相から不純物酸素及び不純物窒素を取り除くものであ
り、これによりクロム基合金圧延体の脆化が防止される
。また、圧延体中に形成される酸化物及び窒化物は、微
細に分散するので破壊の起点とはならず、室温の引張特
性に、おいて20%以上の伸びを有するクロム基合金圧
延体を得ることが可能となる。更に、圧延率70%以上
の圧延を施した圧延体は組織の調整が成され、より優れ
た引っ張り特性を示す。
The lanthanoids contained in the rolled chromium-based alloy of the present invention combine with the impurity oxygen and impurity nitrogen that metallic chromium inevitably contains to form oxides and nitrides, and the lanthanoids form oxides and nitrides from the chromium matrix. This prevents embrittlement of the rolled chromium-based alloy. In addition, since the oxides and nitrides formed in the rolled product are finely dispersed, they do not become a starting point for fracture, and the chromium-based alloy rolled product has an elongation of 20% or more in terms of tensile properties at room temperature. It becomes possible to obtain. Furthermore, a rolled body rolled at a rolling rate of 70% or more has a well-adjusted structure and exhibits better tensile properties.

本発明の圧延体の製造方法において、原料としてランタ
ノイドを添加した合金を用い、該合金を延性脆性遷移温
度付近の温度(200〜700℃)で超微速度(0,0
5〜1m/m L n)のり0ス圧延を行うことにより
、クロム基合金塊の組織の調整がなされ、圧延体の方向
性が解消される。従ってこの後、上記温度領域で温間圧
延を繰り返し行っても金属に割れが生ずることがなり、
所望の板厚のクロム基合金圧延体を得ることができる。
In the method for manufacturing a rolled body of the present invention, an alloy to which lanthanoids are added is used as a raw material, and the alloy is heated at an ultralow speed (0,0
By performing the zero-glue rolling (5 to 1 m/m L n), the structure of the chromium-based alloy ingot is adjusted and the orientation of the rolled body is eliminated. Therefore, even after repeated warm rolling in the above temperature range, cracks may occur in the metal.
A chromium-based alloy rolled body having a desired thickness can be obtained.

また、この温間圧延は圧延率70%以上まで繰返し行う
ことが好ましい。これによって得られる圧延体には優れ
た引っ張り特性が生ずる。さらに、この温度領域では圧
延体への窒素、酸素の侵入が極力少なくすることができ
るので高靭性の圧延体が得られる。
Further, it is preferable that this warm rolling is repeatedly performed up to a rolling reduction of 70% or more. The resulting rolled body has excellent tensile properties. Furthermore, in this temperature range, the intrusion of nitrogen and oxygen into the rolled body can be minimized, so that a rolled body with high toughness can be obtained.

また、クロス圧延は通常の圧延機を用い複数方向へ繰返
しクロス状に圧延することにより行うことができるが、
このときの圧延率は1回の圧延について1〜5%である
ことが好ましい。圧延率が1%より小さい場合は金属の
表面のみが圧延され内部の組織調整がなされず、一方、
5%より大きい場合金属に割れが生ずるおそれがある。
In addition, cross rolling can be performed by repeatedly rolling in a cross shape in multiple directions using a normal rolling mill.
The rolling rate at this time is preferably 1 to 5% per rolling. When the rolling rate is less than 1%, only the surface of the metal is rolled and the internal structure is not adjusted;
If it is greater than 5%, there is a risk that cracks will occur in the metal.

本発明の製造方法において用いられる金属クロムおよび
添加用金属は純度99.9%以上であることが好ましく
、炭素、窒素、酸素などの不純物の混入は極力避けるべ
きである。これらの不純物を除去することにより圧延体
の靭性を増大させることができるからである。かかる高
純度の金属クロムはクロム塩溶液を電解して得られた金
属クロム、またはクロム塩溶液を溶媒抽出法により精製
し、得られたクロム塩溶液もしくはこの溶液から得たク
ロム塩を酸化して得たクロム酸を水素還元法などにより
還元して得た金属クロムなどを用いることができる。
The metal chromium and additive metal used in the production method of the present invention preferably have a purity of 99.9% or more, and contamination with impurities such as carbon, nitrogen, and oxygen should be avoided as much as possible. This is because by removing these impurities, the toughness of the rolled product can be increased. Such high-purity metallic chromium can be obtained by electrolyzing a chromium salt solution, or by purifying a chromium salt solution by a solvent extraction method and oxidizing the obtained chromium salt solution or the chromium salt obtained from this solution. Metallic chromium obtained by reducing the obtained chromic acid by a hydrogen reduction method or the like can be used.

圧延に供するためのクロム基合金塊の製造法は炭素、窒
素、酸素などの不純物による汚染を防1Fできる方法で
あれば、とくに限定されない。−例として不活性ガス中
でアーク溶解することによりクロム基合金塊を製造する
方法がある。
The method for producing a chromium-based alloy ingot for rolling is not particularly limited as long as it can prevent contamination by impurities such as carbon, nitrogen, and oxygen. - An example is the production of chromium-based alloy ingots by arc melting in an inert gas.

[発明の効果コ 本発明の圧延体は従来公知の金属クロム圧延体ならびに
クロム基合金圧延体と比較し、展性、延性に富み、二次
加工が容易になり、更に任意の形状の物品に加工するこ
とができる。従って、このクロム基合金圧延体は、その
まま又は二次加工され、高温でしかも強酸1強アルカリ
等の苛酷な条件のもとでも充分に使用に耐えるものとな
る。また、本発明の製造法によれば比較的簡単な操作で
靭性を有するクロム基合金圧延体が得られる。
[Effects of the Invention] Compared to conventionally known metal chromium rolled bodies and chromium-based alloy rolled bodies, the rolled body of the present invention has high malleability and ductility, is easy to secondary process, and can be formed into articles of any shape. Can be processed. Therefore, this chromium-based alloy rolled body can be used as it is or subjected to secondary processing, and can be used satisfactorily even at high temperatures and under severe conditions such as strong acids and strong alkalis. Further, according to the manufacturing method of the present invention, a rolled chromium-based alloy body having toughness can be obtained with a relatively simple operation.

また、圧延率の大きな圧延を行っても金属に割れが生ず
ることがないので、板厚の薄い圧延体も得ることができ
る。
Further, even if rolling is performed at a high rolling rate, cracks do not occur in the metal, so a rolled body with a thin plate thickness can be obtained.

[実施例コ 以下本発明を実施例により説明するが、本発明は、これ
らに同等限定されるものではない。なお実施例中%はす
べて重量%をしめす。
[Examples] The present invention will be explained below using Examples, but the present invention is not limited to these examples. In addition, all percentages in the examples indicate weight percentages.

実施例1 不純物としてF e ; 0.015%、  C: 0
.003%、O:0.030%、 N : 0.004
%、  S i : 0.[112%を含む金属クロム
300gと純度99.9%の金属ランタン0.3gの混
合物を不活性ガス−アーク溶解炉(Max、100OA
  20v)を用いて1気圧アルゴンガス下で溶解し2
85gのインゴットを得、このインゴットから3 cm
 x S■X 1 cmの大きさのクロム基合金塊を作
成した。
Example 1 Fe as impurity; 0.015%, C: 0
.. 003%, O: 0.030%, N: 0.004
%, Si: 0. [A mixture of 300 g of metallic chromium containing 112% and 0.3 g of metallic lanthanum with a purity of 99.9% was melted in an inert gas-arc melting furnace (Max, 100OA
20v) under 1 atm argon gas.
Obtained an 85g ingot, and from this ingot 3 cm
A chromium-based alloy ingot with a size of 1 cm was prepared.

次いで、ロール径が200■φの加熱圧延装置に前記ク
ロム基合金塊を挿入し、温度450℃に加熱し、圧延速
度0.1m/minでクロス状に5回圧延を行った。こ
のとき、圧下率は1回につき3%とした。その後、温度
400℃で圧下率を原料のクロム基合金から95%とな
る迄圧延し、冷却し、クロム基合金圧延体を取り出した
。このクロム基合金圧延体から引張り試験片を切出し、
室温で引張り試験を実施したところ、25%の伸びを示
した。
Next, the chromium-based alloy ingot was inserted into a hot rolling device with a roll diameter of 200 mm, heated to a temperature of 450° C., and rolled five times in a cross shape at a rolling speed of 0.1 m/min. At this time, the rolling reduction rate was 3% per roll. Thereafter, it was rolled at a temperature of 400° C. until the rolling reduction was 95% from the raw chromium-based alloy, cooled, and the chromium-based alloy rolled body was taken out. A tensile test piece was cut out from this chromium-based alloy rolled body,
A tensile test at room temperature showed an elongation of 25%.

実施例2−7 出発原料として実施例1と同様の金属クロムおよび純度
99.9%の添加用金属を用い、実施例1と同様の手法
により表1に示す添加金属及び添加量のクロム基合金塊
を作成し、表2に示す条件の下にクロス圧延を行った。
Example 2-7 Using the same chromium metal as in Example 1 and an additive metal with a purity of 99.9% as starting materials, a chromium-based alloy with the additive metals and amounts shown in Table 1 was prepared in the same manner as in Example 1. A block was prepared and cross-rolled under the conditions shown in Table 2.

得られた圧延体の引張特性を表3に示す。Table 3 shows the tensile properties of the obtained rolled product.

表1 表2 表3Table 1 Table 2 Table 3

Claims (4)

【特許請求の範囲】[Claims] (1)ランタノイドから選ばれた一種又は二種以上の金
属0.01〜10at%および残部が実質的にクロムか
らなるクロム基合金圧延体。
(1) A rolled body of a chromium-based alloy consisting of 0.01 to 10 at% of one or more metals selected from lanthanoids and the remainder substantially chromium.
(2)圧延率が70%以上である特許請求の範囲第1項
に記載のクロム基合金圧延体。
(2) The chromium-based alloy rolled body according to claim 1, which has a rolling reduction of 70% or more.
(3)室温の引張り特性において20%以上の伸びを有
する特許請求の範囲第1項または第2項に記載のクロム
基合金圧延体。
(3) The chromium-based alloy rolled product according to claim 1 or 2, which has an elongation of 20% or more in tensile properties at room temperature.
(4)ランタノイドから選ばれた一種又は二種以上の金
属0.01〜10at%および残部が実質的にクロムか
らなるクロム基合金塊を、初期圧延として延性脆性遷移
温度付近の温度(200〜700℃)で超微速度(0.
05〜1m/min)のクロス圧延をし、次いで温間圧
延を行なうことを特徴とするクロム基合金圧延体の製造
方法。
(4) A chromium-based alloy ingot consisting of 0.01 to 10 at% of one or more metals selected from lanthanoids and the balance being substantially chromium is initially rolled at a temperature near the ductile-brittle transition temperature (200 to 700 °C) at ultralow velocity (0.
1. A method for producing a chromium-based alloy rolled body, comprising cross rolling at a speed of 0.05 to 1 m/min and then warm rolling.
JP28736087A 1987-11-16 1987-11-16 Rolled body of chromium-base alloy and its production Pending JPH01129947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28736087A JPH01129947A (en) 1987-11-16 1987-11-16 Rolled body of chromium-base alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28736087A JPH01129947A (en) 1987-11-16 1987-11-16 Rolled body of chromium-base alloy and its production

Publications (1)

Publication Number Publication Date
JPH01129947A true JPH01129947A (en) 1989-05-23

Family

ID=17716358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28736087A Pending JPH01129947A (en) 1987-11-16 1987-11-16 Rolled body of chromium-base alloy and its production

Country Status (1)

Country Link
JP (1) JPH01129947A (en)

Similar Documents

Publication Publication Date Title
CA1174083A (en) Process for the preparation of alloy powders which can be sintered and which are based on titanium
US6805758B2 (en) Yttrium modified amorphous alloy
EP1416061B1 (en) Tantalum modified amorphous alloy
EP2388346B1 (en) Production of fine grain niobium products by micro-alloying and ingot metallurgy
EP3441497B1 (en) Lightweight steel sheet with enhanced elastic modulus, and manufacturing method thereof
CN111411285A (en) Al and Ti microalloyed high-strength and high-toughness medium-entropy alloy and preparation method thereof
CN110396619A (en) A kind of copper-iron alloy wire rod and preparation method thereof
KR20030001543A (en) High purity niobium and products containing the same, and methods of making the same
JPH03500188A (en) Method for producing oxide dispersion hardened sintered alloy
EP0411537B1 (en) Process for preparing titanium and titanium alloy materials having a fine equiaxed microstructure
EP0434069A1 (en) Process for preparing titanium and titanium alloy having fine acicular microstructure
EP0388830A1 (en) Process for production of titanium and titanium alloy materials having fine equiaxial microstructure
RU2228382C2 (en) Tantalum-silicon alloy, products containing it, and a method for preparing alloys
JPH01129947A (en) Rolled body of chromium-base alloy and its production
CN111394636B (en) High-strength high-plasticity high-entropy alloy with martensite phase transformation and preparation method thereof
US5236661A (en) Chromium-based weld material
JPH01129946A (en) Rolled body of chromium-base alloy and its production
KR101963428B1 (en) Titanium alloy and fabrication method of titanium alloy
JPH01129943A (en) Rolled body of chromium-base alloy and its production
JPH01129945A (en) Rolled body of chromium-base alloy and its production
CN111945032A (en) 3D printing fine-grain titanium alloy and preparation method thereof
JPH01129944A (en) Rolled body of chrominum-base alloy and its production
JPS63317202A (en) Highly pure metallic chrome rolled body and its manufacturing method
JPS63317641A (en) Chromium based alloy rolled body and its production
JP3395042B2 (en) Mo alloy single crystal and method for producing the same