JPH01129915A - Prereduction furnace for smelting reduction - Google Patents

Prereduction furnace for smelting reduction

Info

Publication number
JPH01129915A
JPH01129915A JP62288150A JP28815087A JPH01129915A JP H01129915 A JPH01129915 A JP H01129915A JP 62288150 A JP62288150 A JP 62288150A JP 28815087 A JP28815087 A JP 28815087A JP H01129915 A JPH01129915 A JP H01129915A
Authority
JP
Japan
Prior art keywords
ore
furnace
reduction
reducing gas
discharge pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62288150A
Other languages
Japanese (ja)
Other versions
JP2620793B2 (en
Inventor
Takuya Maeda
卓也 前田
Keikichi Murakami
村上 慶吉
Susumu Yamada
山田 邁
Mitsuharu Kishimoto
岸本 充晴
Kenichi Yajima
健一 矢島
Yoshihiko Takemura
良彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP28815087A priority Critical patent/JP2620793B2/en
Priority to ZA888247A priority patent/ZA888247B/en
Priority to AU24742/88A priority patent/AU596758B2/en
Priority to KR1019880014715A priority patent/KR910008113B1/en
Priority to CA000582690A priority patent/CA1301453C/en
Priority to MX013743A priority patent/MX169583B/en
Priority to AT88118877T priority patent/ATE102258T1/en
Priority to ES88118877T priority patent/ES2051285T3/en
Priority to BR888805903A priority patent/BR8805903A/en
Priority to EP88118877A priority patent/EP0316819B1/en
Priority to DE3888096T priority patent/DE3888096T2/en
Priority to CN88107813A priority patent/CN1014996B/en
Priority to US07/272,053 priority patent/US4886246A/en
Publication of JPH01129915A publication Critical patent/JPH01129915A/en
Application granted granted Critical
Publication of JP2620793B2 publication Critical patent/JP2620793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To use granulated ore in the title prereduction furnace without any screening by charging the granulated ore having wide grain size distribution into the furnace and constituting the furnace so as to introduce high temp. reducing gas through dispersing plate from lower part. CONSTITUTION:The granurated ore having wide grain size distribution is charged into the prereduction furnace 1 and the high temp. reducing gas is sent from an introducing pipe 3 at lower part through the dispersing plate 6 at suitable flow speed. By the method, the whole ore is reduced and coarse and middle grain sizes in the ore discharged from a discharging pipe 4 and fine grain size in the ore is discharged from a discharging pipe 10c. That is, the coarse grain ore is formed into a moving layer 7 on the dispersing plate 7 and the middle grain ore is formed into a bubble fluidized bed 7a is a columnar part 1b, respectively. On the other hand, the fine grain ore carries the fluidized bed 7b further upward and high speed circulating fluidized bed 7c is formed and reduced in the circulating passage from the columnar part 1a having large opening area and the exhaust gas discharging pipe 5 to the furnace 1 through a circulating pipe 10b and in order discharged 10c.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、金属酸化物を含有する鉱石(以下、鉱石と
いう)の溶融還元に使用する予備還元炉に関するもので
、とくに幅広い粒度分布を有する粉粒状鉱石を使用でき
る予備還元炉に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a pre-reduction furnace used for melting and reducing ores containing metal oxides (hereinafter referred to as ores), which have a particularly wide particle size distribution. This invention relates to a preliminary reduction furnace that can use powdered ore.

(従来の技術) 溶融還元法は、酸化鉄(鉄鉱石)などの鉱石を溶融状態
で還元して鉄やフェロアロイを製造する方法であり、将
来の原料およびエネルギー事情に適応するとして最近注
目されるようになり、実用化のための研究開発が進めら
れている技術である。この方法に期待される特長はつぎ
の点にある。すなわち、製鉄法としては、高炉法と比べ
て、安価な原料の使用、粉鉱の塊成化などの事前処理工
程の省略、設備の小型化などを実現できること、またフ
ェロアロイの製造法としては、電力に依存しないプロセ
スの実用化が可能であることなどである。
(Conventional technology) The smelting reduction method is a method for manufacturing iron and ferroalloys by reducing ores such as iron oxide (iron ore) in a molten state, and has recently attracted attention as it is adaptable to future raw material and energy situations. This technology is currently being researched and developed for practical use. The expected features of this method are as follows. In other words, compared to the blast furnace method, as a steel manufacturing method, it is possible to use cheaper raw materials, omit pre-processing steps such as agglomeration of fine ore, and downsize equipment, and as a method for manufacturing ferroalloys, For example, it is possible to put a process that does not depend on electricity into practical use.

溶融還元法には種々のプロセスが提案されており還元工
程から大別すると、溶融還元炉のみからなるものと、予
備還元炉と溶融還元炉から構成されるものとがあるが、
後者が一般的である。後者は、鉱石を固体状態で予備還
元したのちに溶融還元するもので、炉の形式や熱の発生
法などが異なる多くのプロセスが含まれる。こういった
プロセスには、溶融還元炉において金属浴中へ石炭など
を吹き込み、還元にともなって生成した、還元力のある
高温ガスを予備還元炉に導入して鉱石を予備還元するな
ど、溶融還元炉の排ガスが有する熱と還元力を有効に利
用できる利点がある。
Various processes have been proposed for the smelting reduction method, and roughly divided according to the reduction process, there are those that consist only of a smelting reduction furnace, and those that consist of a preliminary reduction furnace and a smelting reduction furnace.
The latter is common. The latter involves preliminary reduction of ore in a solid state and then melting and reduction, and includes many processes that differ in furnace type and heat generation method. These processes involve blowing coal into a metal bath in a smelting reduction furnace, and introducing high-temperature gas with reducing power generated during reduction into a pre-reduction furnace to pre-reduce the ore. It has the advantage of being able to effectively utilize the heat and reducing power of the furnace exhaust gas.

予備還元炉は、装入される鉱石と還元ガスとの接触態様
によって、流動層式や移動層式(いわゆるシャフト炉)
などに分類されるが、鉱石が粉粒状である場合には流動
層式が好適であるとされ、各種の流動層式予備還元炉が
開発されている。すなわち、流動層においては粉粒体が
あたかも流体のように流れやすくなるので粉粒体の連続
処理に適していること、粉粒体層全体の温度を均一に保
てること、および粉粒体とガスとの接触がよいことなど
がその理由である。
The pre-reduction furnace can be a fluidized bed type or a moving bed type (so-called shaft furnace) depending on the contact mode between the charged ore and the reducing gas.
However, when the ore is in the form of powder, the fluidized bed type is considered suitable, and various fluidized bed type pre-reduction furnaces have been developed. In other words, in a fluidized bed, powder and granules flow easily as if they were fluids, so they are suitable for continuous processing of powder and granules, the temperature of the entire powder bed can be maintained uniformly, and the powder and gas The reason for this is that there is good contact with people.

従来の予備還元炉の一例を第2図に示す。図において、
円筒状の予備還元炉51には鉱石の供給管52、高温の
還元ガスの導入管53、予備還元鉱石(以下、予備還元
鉄という)の排出管54および排ガスの排出管55が、
それぞれ図の位置に接続され、炉内には還元ガスを整流
するための通孔56aを有する分散板56が、導入管5
3の上部に水平に設置されている。予備還元炉lに粉粒
状鉱石を装入し、下方の導入管53より分散板56を介
して適当な流速で還元ガスを送り込むと、分散板56上
の粉粒状鉱石は流動層57を形成して混合撹拌され、こ
の状態で還元ガスと接触・反応して予備還元される。な
お、ここで形成される流動層57は、あたかも流体が沸
騰しているかのようにガス流が気泡となって粉粒体中を
立ちのぼる、いわば気泡流動層である。予備還元された
鉱石は、排出管54を経て次工程の溶融還元炉へ移送さ
れる(、特開昭58−217615参照)。
An example of a conventional preliminary reduction furnace is shown in FIG. In the figure,
The cylindrical preliminary reduction furnace 51 includes an ore supply pipe 52, a high temperature reducing gas introduction pipe 53, a preliminary reduced ore (hereinafter referred to as preliminary reduced iron) discharge pipe 54, and an exhaust gas discharge pipe 55.
A dispersion plate 56, which is connected to the position shown in the figure and has a through hole 56a for rectifying the reducing gas in the furnace, is connected to the introduction pipe 5.
It is installed horizontally on the top of 3. When granular ore is charged into the pre-reduction furnace 1 and reducing gas is fed through the dispersion plate 56 from the lower introduction pipe 53 at an appropriate flow rate, the granule ore on the dispersion plate 56 forms a fluidized bed 57. The mixture is mixed and stirred, and in this state it contacts and reacts with the reducing gas to undergo preliminary reduction. Note that the fluidized bed 57 formed here is a so-called bubble fluidized bed in which the gas flow becomes bubbles and rises through the powder and granular material as if the fluid were boiling. The pre-reduced ore is transferred to the next process, the smelting reduction furnace, via the discharge pipe 54 (see JP-A-58-217615).

(発明が解決しようとする問題点) 上述した従来の予備還元炉においては、円滑な流動層を
形成させるために、原料としての鉱石の粒度が厳しく制
限される。すなわち粉粒体が適正な流動層を形成するた
めのガス流速は、粉粒体の径によって規制されるため、
広範囲な粒度分布を有する鉱石を処理することは出来な
い。したがって、上記のような予備還元炉に装入される
鉱石の粒度は、一般に3g+a以下に制限され、プロセ
スや鉱石の種類によってはこのうえに平均粒径や微粉粒
鉱石の含有量についても制限を受ける場合がある。 一
方、たとえば製鉄原料としてわが国に輸入される鉄鉱石
には、3nm以上の粒度を有するものがかなり(一般に
30%程度)含まれ、また、10fflIIlを超える
ものも皆無ではない。
(Problems to be Solved by the Invention) In the conventional pre-reduction furnace described above, in order to form a smooth fluidized bed, the particle size of ore as a raw material is strictly limited. In other words, the gas flow rate for the powder to form an appropriate fluidized bed is regulated by the diameter of the powder.
It is not possible to process ores with a wide particle size distribution. Therefore, the particle size of the ore charged into the above-mentioned pre-reduction furnace is generally limited to 3g+a or less, and depending on the process and type of ore, there may also be restrictions on the average particle size and the content of fine ore. You may receive it. On the other hand, for example, iron ore imported into Japan as a raw material for iron manufacturing contains a considerable amount (generally about 30%) having a particle size of 3 nm or more, and some of the iron ore exceeds 10 fflIIl.

そこで、従来の流動層式の予備還元炉では、装入する鉱
石を事前にふるい分けし、粗粒鉱石は規定粒径以下にな
るように粉砕しておく必要があった。あるいは、ふるい
分けされた粗粒鉱石を粉砕しないで使用する場合はシャ
フト炉など、他の還元設備によって処理しなければなら
なかった。いずれにしても、調達した鉱石を100%使
用するためには、スクリーンやクラッシャー、または別
の還元設備を使用する必要があり、設備上の負担や工程
の増加を招いていた。
Therefore, in conventional fluidized bed pre-reduction furnaces, it was necessary to sieve the ore to be charged in advance and crush the coarse ore to a specified particle size or less. Alternatively, if the screened coarse ore is to be used without being crushed, it must be processed using other reduction equipment such as a shaft furnace. In any case, in order to use 100% of the procured ore, it is necessary to use a screen, crusher, or other reduction equipment, which increases the burden on equipment and the number of processes.

(発明の目的) 本発明は上記した種々の問題点を解消するためになされ
たもので、幅広い粒度分布を有する粉粒状鉱石を、従来
のように事前にふるい分けしたり粉砕したりすることな
く、原料としてそのまま使用することのできる予備還元
炉を提供しようとするものである。
(Objective of the Invention) The present invention has been made to solve the various problems described above, and it is possible to process powdery ore having a wide particle size distribution without sifting or crushing it in advance as in the past. The purpose is to provide a preliminary reduction furnace that can be used as a raw material as is.

(問題点を解決するための手段) 上記した目的を達成するためのこの発明の要旨とすると
ころは、金属酸化物を含有する鉱石を炉体上部または中
腹部より装入し、炉体底部より導入した高温の還元ガス
と接触させることにより鉱石を還元する予備還元炉にお
いて、多数の還元ガス通孔が穿設され、中央部又は傾斜
低位置に排出口を開設した漏斗状又は傾斜板状の分散板
を前記炉体内の底部寄りに配設し、炉体上部に還元ガス
の排出管を接続して該排出管にサイクロンセパレータを
介装したことである。
(Means for Solving the Problems) The gist of the present invention to achieve the above-mentioned object is that ore containing metal oxides is charged from the top or middle of the furnace body, and from the bottom of the furnace body. In the preliminary reduction furnace, which reduces ore by contacting it with the introduced high-temperature reducing gas, a funnel-shaped or inclined plate-shaped furnace is used, which has many reducing gas holes and an outlet in the center or at a lower inclined position. A dispersion plate is disposed near the bottom of the furnace body, a reducing gas discharge pipe is connected to the upper part of the furnace body, and a cyclone separator is interposed in the discharge pipe.

また、鉱石中に0.5mm以下の微粉を含む場合は、前
記セパレータ下部にさらに二方向払出しバルブを接続し
、該バルブに微粉状鉱石の排出管を接続すると共に、微
粉粒状鉱石の循環管を炉体の中腹部に接続するようにし
たことである。
In addition, if the ore contains fine powder of 0.5 mm or less, a two-way discharge valve is further connected to the lower part of the separator, and a discharge pipe for the fine powder ore is connected to the valve, and a circulation pipe for the fine powder ore is connected to the valve. It was designed to connect to the midsection of the furnace body.

(作用) この発明の予備還元炉によれば、炉内に幅広い粒径分布
を有する粉粒状鉱石を装入し、下方の還元ガス導入管よ
り分散板を介して適当な流速で高温の還元ガスを導入す
ることにより、a)前記鉱石のうち粗粒状のものは、流
動化されずに重力落下して分散板上に−たん堆積し、分
散板の排出口からの鉱石の排出にともなって、傾斜した
分散板上をゆっくりと移動する、いわゆる移動層を形成
し、この間に還元ガスに接触・反応して予備還元され、
排出される。
(Function) According to the pre-reduction furnace of the present invention, powdery ore having a wide particle size distribution is charged into the furnace, and high-temperature reducing gas is supplied from the lower reducing gas introduction pipe through the dispersion plate at an appropriate flow rate. By introducing the above, a) the coarse particles of the ore are not fluidized but fall under gravity and are deposited on the dispersion plate, and as the ore is discharged from the discharge port of the dispersion plate, It moves slowly on an inclined dispersion plate, forming a so-called moving layer, during which time it contacts and reacts with the reducing gas and is pre-reduced.
It is discharged.

b)中粒状のものは、炉内中腹部において流動層(気泡
流動層)を形成して混合撹拌され、この状態で還元ガス
と接触・反応して予備還元され、前記粗粒状鉱石ととも
に分散板の排出口から排出される。
b) Medium-sized ores are mixed and stirred to form a fluidized bed (bubble fluidized bed) in the middle part of the furnace, and in this state are contacted and reacted with reducing gas to be pre-reduced, and are sent to the dispersion plate together with the coarse-grained ores. is discharged from the outlet.

C)微粉粒状のものは、前記b)の気泡流動層からとび
出し、排ガスとともにサイクロンセパレータに移送され
、ここで分離捕集された後、二方向払出しバルブを介し
循環管を経て炉内へ循環される。この状態も一種の流動
化状態であり、高速循環流動層などと呼ばれているが、
微粉粒鉱石はこの循環を操り返す間に予備還元され、そ
の一部は前記二方向払出しバルブより逐次排出される。
C) Fine particles are ejected from the bubbling fluidized bed in b) above and transferred to a cyclone separator together with the exhaust gas, where they are separated and collected, and then circulated into the furnace via a two-way discharge valve and a circulation pipe. be done. This state is also a kind of fluidized state, and is called a high-speed circulating fluidized bed.
The fine ore is pre-reduced during this circulation, and a portion of it is sequentially discharged from the two-way discharge valve.

(実施例) 以下、この発明の実施例を図面に基づいて説明する。第
1図はこの発明の実施例を示す予備還元炉の縦断面図で
ある。
(Example) Hereinafter, an example of the present invention will be described based on the drawings. FIG. 1 is a longitudinal sectional view of a preliminary reduction furnace showing an embodiment of the present invention.

予備還元炉lは、耐火材を内張すした円筒状の炉体から
なり、還元ガスの排出管5が炉体上部に、鉱石の供給管
2が炉体の中腹部に、並びに還元ガスの導入管3および
予備還元鉱石の排 。
The preliminary reduction furnace 1 consists of a cylindrical furnace body lined with a refractory material, with a reducing gas discharge pipe 5 at the top of the furnace body, an ore supply pipe 2 at the midsection of the furnace body, and a reducing gas discharge pipe 5 at the middle of the furnace body. Inlet pipe 3 and discharge of pre-reduced ore.

出管4が炉体底部にそれぞれ接続されており、炉内には
還元ガスを整流するための多数の通孔6aを穿設した分
散板6が導入管3上方の炉体底部寄りに配設されている
Outlet pipes 4 are respectively connected to the bottom of the furnace body, and inside the furnace, a dispersion plate 6 having a large number of through holes 6a for rectifying the reducing gas is arranged above the inlet pipe 3 near the bottom of the furnace body. has been done.

そして、本実施例では、前記分散板6を逆円錐形の漏斗
状に形成し、また、その傾斜面は炉内に装入される鉱石
の安息角以上の傾斜角Aを持たせたうえ、分散板6の中
央部に排出口6bを側設して前記排出管4を接続してい
る。また、排出管5にはサイクロンセパレータ8を介装
し、排ガスダクト11へ送られる途中の還元ガスから、
前記セパレータ8により分離捕集された微粉粒鉱石の移
送管10aを、セパレータ8下部のホッパ一部に連接し
ている。さらに、この移送管10aの下端に、二方向払
出しバルブ9を接続し、二方向払出しバルブ9には予備
還元炉lの中腹部へ接続される循環管10bおよび微粉
粒鉱石の排出管10cをそれぞれ接続している。なお、
二方向払出しバルブ9としては、還元ガスが予備還元炉
lからセパレータ8へ逆流しないよう、いわゆる粉体シ
ール機能を有する装置が望ましい。
In this embodiment, the dispersion plate 6 is formed in the shape of an inverted conical funnel, and its inclined surface has an angle of repose A greater than or equal to the angle of repose of the ore charged into the furnace. A discharge port 6b is provided at the center of the distribution plate 6, and the discharge pipe 4 is connected to the discharge port 6b. In addition, a cyclone separator 8 is installed in the exhaust pipe 5, and from the reducing gas on the way to the exhaust gas duct 11,
A transfer pipe 10a for the fine ore separated and collected by the separator 8 is connected to a part of the hopper below the separator 8. Furthermore, a two-way payout valve 9 is connected to the lower end of this transfer pipe 10a, and a circulation pipe 10b connected to the middle part of the preliminary reduction furnace l and a fine ore discharge pipe 10c are connected to the two-way payout valve 9, respectively. Connected. In addition,
The two-way discharge valve 9 is preferably a device having a so-called powder sealing function so that the reducing gas does not flow back from the preliminary reduction furnace 1 to the separator 8.

一方、予備還元炉l内は、開口断面積のやや小さい空塔
部1bを分散板6の上方付近に設けて、分散板6直上部
の空塔速度を上げることにより粒径の大きい鉱石の流動
化を可能にする一方、その上方にこれよりも開口断面積
を大きくした空塔部1aを設けて前記空塔速度を減じる
ことにより炉外に飛散する微粉の粒径を規制するように
考慮している。
On the other hand, inside the pre-reduction furnace l, a hollow column part 1b with a slightly smaller opening cross-sectional area is provided near the upper part of the dispersion plate 6, and by increasing the superficial velocity directly above the dispersion plate 6, ore with a large particle size can flow. At the same time, consideration was given to regulating the particle size of the fine powder scattered outside the furnace by providing a void column section 1a with a larger opening cross-sectional area above it to reduce the superficial velocity. ing.

以上のように構成した予備還元炉1に、幅広い粒度分布
を有する粉粒状鉱石を装入し、下方の導入管3より分散
板6を介して高温の還元ガスを適当な流速で送り込むと
、前述した作用によって、すべての鉱石が還元され、粗
粒状および中粒状のものは排出管4から、微粉粒状のも
のは排出管10cからそれぞれ排出される。すなわち、
粗粒鉱石は分散板6上で移動層7aを、中粒鉱石は開口
断面積が小さくガス流速が比較的高い空塔部1bで気泡
流動層7bを、それぞれ形成して還元されると共に、微
粉粒鉱石は流動層7bのさらに上方へとび出して、開口
断面積の大きい空塔部1aおよび排ガス排出管5から循
環管lObを経て予備還元炉lに至る循環経路内で高速
循環流動層7cを形成して還元され、排出管10cより
逐次排出される。
When granular ore having a wide particle size distribution is charged into the preliminary reduction furnace 1 configured as described above, and high-temperature reducing gas is fed at an appropriate flow rate from the lower introduction pipe 3 through the dispersion plate 6, the above-mentioned result is obtained. By this action, all the ores are reduced, and coarse and medium-sized ores are discharged from the discharge pipe 4, and fine-grained ores are discharged from the discharge pipe 10c. That is,
Coarse-grained ore is reduced by forming a moving bed 7a on the dispersion plate 6, and medium-grained ore is reduced by forming a bubble fluidized bed 7b in the cavity section 1b with a small opening cross-sectional area and a relatively high gas flow rate. The granular ore protrudes further upwards from the fluidized bed 7b and passes through the high-speed circulation fluidized bed 7c in the circulation path from the empty column 1a with a large opening cross-sectional area and the exhaust gas discharge pipe 5 to the pre-reduction furnace l via the circulation pipe lOb. It is formed and reduced, and is sequentially discharged from the discharge pipe 10c.

なお、前記実施例では、中位鉱石は粗粒鉱石とともに排
出管4から排出されるように構成したが、予備還元炉1
の空塔部lbの炉壁に別の排出管を接続して、この排出
管から中粒鉱石だけを分離して排出させるようにしても
よい。また、分散板6から炉体上方に向かって開口断面
積が漸増するように形成してもよい。さらに、漏斗状分
散板6に代えて傾斜板状の分散板(図示せず)を用いて
もよい。
In the embodiment described above, the medium-sized ore was configured to be discharged from the discharge pipe 4 together with the coarse-grained ore, but the preliminary reduction furnace 1
Another discharge pipe may be connected to the furnace wall of the empty tower section lb, and only the medium-grained ore may be separated and discharged from this discharge pipe. Alternatively, the opening cross-sectional area may be formed to gradually increase from the distribution plate 6 toward the upper side of the furnace body. Further, instead of the funnel-shaped dispersion plate 6, an inclined dispersion plate (not shown) may be used.

なお、予備還元された鉱石の炉内滞留時間については、
粗粒および中粒鉱石は排出管4の下方に接続する排出バ
ルブ(図示せず)によって、また、微粉粒鉱石は前記の
二方向払出しバルブ9によって、それぞれ排出量(速度
)が制御されるので、これらを制御することによって任
意に滞留時間を設定することができる。
Regarding the residence time of pre-reduced ore in the furnace,
The discharge amount (speed) of coarse and medium-grained ores is controlled by a discharge valve (not shown) connected to the lower part of the discharge pipe 4, and that of fine-grained ore is controlled by the two-way discharge valve 9. By controlling these, the residence time can be set arbitrarily.

つぎに、本実施例に関して行った実験結果を示す。Next, the results of experiments conducted regarding this example will be shown.

l)原料鉱石:鉄鉱石 粒度分布・・・10a++a以上 2%10〜5mm1
8% 5〜0.5mm 31% 0 、5a++n以下4g% 装入温度・・・450℃ 2)還元ガス:溶融還元炉排ガス 組成・・・0039%、Cot 21%、fit 14
%、ago 12%、It 14% 導入温度・・・1030℃ 3)予備還元炉プロフィール:第1図参照A =40”
、Da=φ280+n、 Db=φ200ml111・
Ha=4000maS Hb=501+em以上の条件
のもとで実験した結果、定常状態において、還元率が約
30%の予備還元鉄を排出管4および同leaより排出
・回収した。回収された総予備還元鉄量の内訳について
は、排出管4から排出された量が約49%で、その約9
5%が粒度は0.5−一以上の中・粗粒状のものであり
、一方、排出管10cからの量は51%で、その約90
%が0.5+am以下の微粉粒状のものであった。
l) Raw material ore: Iron ore particle size distribution...10a++a or more 2%10-5mm1
8% 5~0.5mm 31% 0, 5a++n or less 4g% Charging temperature...450℃ 2) Reducing gas: Melting reduction furnace exhaust gas composition...0039%, Cot 21%, fit 14
%, ago 12%, It 14% Introducing temperature...1030℃ 3) Pre-reduction furnace profile: See Figure 1 A = 40"
, Da=φ280+n, Db=φ200ml111・
As a result of an experiment conducted under conditions of Ha=4000 maS Hb=501+em or higher, preliminary reduced iron with a reduction rate of about 30% was discharged and recovered from the discharge pipe 4 and the same lea in a steady state. Regarding the breakdown of the total amount of preliminary reduced iron recovered, the amount discharged from the discharge pipe 4 is about 49%, of which about 9%
5% of the particles are medium/coarse particles with a particle size of 0.5-1 or more, while the amount from the discharge pipe 10c is 51%, of which about 90%
% was 0.5+am or less and was in the form of fine powder.

さらに、上記した実験について計算上から解析すると、
つぎのことが推測される。
Furthermore, when we analyze the above experiment from a computational perspective, we find that
The following is inferred.

分散板6直上(空塔部1b)のガス流速は7.0m/S
で、この流速では、粒径5mm以下の鉄鉱石のみが流動
化する。空塔部1aのガス流速は5.h/sで、この流
速では、粒径0.5mm以下の鉄鉱石粉体はガス流に伴
われて流動層炉からとび出すことになる。
The gas flow velocity directly above the distribution plate 6 (sky tower section 1b) is 7.0 m/S
At this flow rate, only iron ore with a particle size of 5 mm or less is fluidized. The gas flow rate in the empty tower portion 1a is 5. h/s, and at this flow rate, iron ore powder with a particle size of 0.5 mm or less will be ejected from the fluidized bed furnace along with the gas flow.

したがって、装入された鉄鉱石のうち、粒径が5III
I11を超えるものは分散板6上で移動層を、粒径5I
llI11以下で0.5mmを超えるものは空塔部1b
で流動層(気泡流動層)を、粒径0.5n+m以下のも
のは高速循環流動層を、それぞれ形成することになる。
Therefore, the particle size of the charged iron ore is 5III.
If the particle size exceeds I11, the moving layer is placed on the dispersion plate 6, and the particle size is 5I.
If it is less than llI11 and exceeds 0.5mm, it is empty column part 1b.
If the particle size is 0.5n+m or less, a high-speed circulating fluidized bed will be formed.

なお、前記実験で、還元ガスの導入量により、2つの排
出管4,10cからそれぞれ排出される鉄鉱石の粒度が
設定されること、および、鉄鉱石の炉内滞留時間を変え
れば排出される鉄鉱石の還元率が変更できることもあわ
せて確認した。
In addition, in the above experiment, it was found that the particle size of the iron ore discharged from the two discharge pipes 4 and 10c was set depending on the amount of introduced reducing gas, and that the iron ore could be discharged by changing the residence time in the furnace. It was also confirmed that the return rate of iron ore can be changed.

(発明の効果) 上記のように構成した本発明の予備還元炉によれば、下
記の効果がもたらされる。
(Effects of the Invention) The preliminary reduction furnace of the present invention configured as described above provides the following effects.

(1)粉砕やふるい分けなどの前処理をせずに、幅広い
粒度分布を有する粉粒状鉱石を直接炉内へ装入して、予
備還元することができる。
(1) Powdered ore having a wide particle size distribution can be charged directly into the furnace and pre-reduced without pretreatment such as crushing or sieving.

(2)予備還元された微粉粒鉱石と中・粗粒鉱石とが、
分級されてそれぞれ別の排出管から排出されるので、予
備還元した鉱石を二系統に分けて溶融還元炉へ投入する
ことが可能になる。
(2) Pre-reduced fine grain ore and medium/coarse grain ore,
Since the ore is classified and discharged from separate discharge pipes, it becomes possible to divide the pre-reduced ore into two systems and feed them into the smelting reduction furnace.

(3)炉内に装入される鉱石の炉内滞留時間を、粒度別
に任意に設定することができるので、予備還元率を容易
にかつ正確に制御することができる。
(3) Since the residence time of the ore charged into the furnace can be arbitrarily set for each particle size, the preliminary reduction rate can be easily and accurately controlled.

(4)還元ガスの炉内への導入を中止した際にも、分散
板の直上に堆積する粗粒鉱石によって中・微粉粒鉱石の
落下が阻止されるため、分散板の通孔径を大きくするこ
とができ、これに上り通孔の目詰まり防止が図られる。
(4) Even when the introduction of reducing gas into the furnace is stopped, the coarse ore deposited directly above the dispersion plate will prevent the medium and fine ores from falling, so the diameter of the holes in the dispersion plate should be increased. This also prevents the upstream hole from clogging.

(5)炉体下部と炉体上部の炉内開口断面積を適宜変更
することにより、流動化が可能な最大粒径と循環させる
微粉の最大粒径を自由に設定することができるので、従
来の装置に比べて還元率の向上が図れる。
(5) By appropriately changing the cross-sectional area of the furnace openings in the lower part of the furnace body and the upper part of the furnace body, the maximum particle size that can be fluidized and the maximum particle size of the fine powder to be circulated can be freely set. The reduction rate can be improved compared to other devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す、予備還元炉の縦断面
図、第2図は従来の予備還元炉の一例を示す縦断面図で
ある。 !・・・予備還元炉、5・・・還元ガス排出管、6・・
・分散板、6a・・・通孔、6b・・・排出口、7a・
・・移動層、7b・・・気泡流動層、7c・・・高速循
環流動層、8・・・サイクロンセパレータ、9・・二方
向払出しバルブ、tob・・・微粉粒鉱石循環管、lQ
c・・・微粉粒鉱石排出管。 第1図 鉱石(中・粗粒) 第2図
FIG. 1 is a longitudinal sectional view of a pre-reducing furnace showing an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view showing an example of a conventional pre-reducing furnace. ! ... Preliminary reduction furnace, 5... Reducing gas discharge pipe, 6...
・Dispersion plate, 6a...through hole, 6b...discharge port, 7a・
... Moving bed, 7b... Bubbly fluidized bed, 7c... High-speed circulating fluidized bed, 8... Cyclone separator, 9... Two-way delivery valve, tob... Fine powder ore circulation pipe, lQ
c...Fine ore discharge pipe. Figure 1 Ore (medium/coarse grain) Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)金属酸化物を含有する鉱石を炉体の上部又は中腹
部より装入し、炉体底部より導入した高温の還元ガスと
接触させることにより鉱石を還元する溶融還元用予備還
元炉において、 多数の還元ガス通孔が穿設され、中央部又は傾斜低位置
に排出口を開設した漏斗状又は傾斜板状の分散板を前記
炉体内の底部寄りに配設し、炉体上部に還元ガスの排出
管を接続して該排出管にサイクロンセパレータを介装し
たことを特徴とするる溶融還元用予備還元炉。
(1) In a pre-reduction furnace for smelting and reduction, ore containing metal oxides is charged from the top or midsection of the furnace body, and the ore is reduced by contacting with high-temperature reducing gas introduced from the bottom of the furnace body. A funnel-shaped or inclined plate-shaped dispersion plate with a large number of reducing gas passage holes and an outlet in the center or at a lower inclined position is arranged near the bottom of the furnace body, and the reducing gas is distributed in the upper part of the furnace body. 1. A preliminary reduction furnace for melting and reduction, characterized in that a discharge pipe is connected to the discharge pipe, and a cyclone separator is interposed in the discharge pipe.
(2)前記セパレータ下部に二方向払出しバルブを接続
し、該バルブに微粉粒状鉱石の排出管を接続すると共に
、微粉粒状鉱石の循環管を炉体の中腹部に接続した特許
請求の範囲第1項に記載の溶融還元用予備還元炉。
(2) A two-way payout valve is connected to the lower part of the separator, a discharge pipe for fine granular ore is connected to the valve, and a circulation pipe for fine granular ore is connected to the middle part of the furnace body. A pre-reduction furnace for melting reduction as described in .
(3)前記分散板の傾斜角を装入される鉱石の安息角以
上にした特許請求の範囲第1項に記載の溶融還元用予備
還元炉。
(3) The preliminary reduction furnace for smelting reduction according to claim 1, wherein the angle of inclination of the dispersion plate is greater than the angle of repose of the ore charged.
(4)前記炉体内における、前記分散板直上部付近の開
口断面をその上方の空塔部に比べてやや小さく形成した
特許請求範囲第1項又は第2項に記載の溶融還元用予備
還元炉。
(4) A preliminary reduction furnace for smelting reduction according to claim 1 or 2, wherein the opening cross section in the vicinity of the dispersion plate directly above the furnace body is formed to be slightly smaller than the empty tower section above it. .
JP28815087A 1987-11-13 1987-11-13 Preliminary reduction furnace for smelting reduction Expired - Lifetime JP2620793B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP28815087A JP2620793B2 (en) 1987-11-13 1987-11-13 Preliminary reduction furnace for smelting reduction
ZA888247A ZA888247B (en) 1987-11-13 1988-11-03 Metal-making apparatus involving the smelting reduction of metallic oxides
AU24742/88A AU596758B2 (en) 1987-11-13 1988-11-04 Metal-making apparatus involving the smelting reduction of metallic oxides
KR1019880014715A KR910008113B1 (en) 1987-11-13 1988-11-09 Metal-making apparatus involving the smetting redaction of metallic oxides
MX013743A MX169583B (en) 1987-11-13 1988-11-10 METAL MANUFACTURING APPARATUS INVOLVING THE REDUCTION OF METALLIC OXID FOUNDRY
CA000582690A CA1301453C (en) 1987-11-13 1988-11-10 Metal-making apparatus involving the smelting reduction of metallic oxides
AT88118877T ATE102258T1 (en) 1987-11-13 1988-11-11 METHOD AND APPARATUS FOR MANUFACTURE OF METAL INCLUDING METAL REDUCTION METAL OXIDES.
ES88118877T ES2051285T3 (en) 1987-11-13 1988-11-11 METALLURGICAL PROCESS AND APPARATUS THAT CONDUCTS THE REDUCTION BY METAL OXID FUSION.
BR888805903A BR8805903A (en) 1987-11-13 1988-11-11 METAL PRODUCTION APPLIANCE
EP88118877A EP0316819B1 (en) 1987-11-13 1988-11-11 Metal-making process and apparatus involving the smelting reduction of metallic oxides
DE3888096T DE3888096T2 (en) 1987-11-13 1988-11-11 Method and device for producing metal containing the smelting reduction of metal oxides.
CN88107813A CN1014996B (en) 1987-11-13 1988-11-12 Metal-making apparatus involving smelting reduction of metallic oxides
US07/272,053 US4886246A (en) 1987-11-13 1988-11-14 Metal-making apparatus involving the smelting reduction of metallic oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28815087A JP2620793B2 (en) 1987-11-13 1987-11-13 Preliminary reduction furnace for smelting reduction

Publications (2)

Publication Number Publication Date
JPH01129915A true JPH01129915A (en) 1989-05-23
JP2620793B2 JP2620793B2 (en) 1997-06-18

Family

ID=17726453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28815087A Expired - Lifetime JP2620793B2 (en) 1987-11-13 1987-11-13 Preliminary reduction furnace for smelting reduction

Country Status (2)

Country Link
JP (1) JP2620793B2 (en)
ZA (1) ZA888247B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173711A (en) * 1989-12-04 1991-07-29 Nkk Corp Method and apparatus for regulating gas flow for pre-reduction in smelting reduction equipment providing pre-reduction furnace
JPH03173710A (en) * 1989-12-04 1991-07-29 Nkk Corp Fluidized bed type reduction furnace for ore and smelting reduction method using same
WO1996029435A1 (en) * 1995-03-17 1996-09-26 Voest-Alpine Industrieanlagenbau Gmbh Process for reducing ore fines and arrangement for carrying out the process
WO2001053544A1 (en) * 2000-01-20 2001-07-26 Voest-Alpine Industrieanlagenbau Gmbh & Co Fluidized bed aggregate for reducing oxide-containing material
CN115341065A (en) * 2021-05-14 2022-11-15 宝山钢铁股份有限公司 Production method of hot-pressed iron block with carbon emission lower than zero

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173711A (en) * 1989-12-04 1991-07-29 Nkk Corp Method and apparatus for regulating gas flow for pre-reduction in smelting reduction equipment providing pre-reduction furnace
JPH03173710A (en) * 1989-12-04 1991-07-29 Nkk Corp Fluidized bed type reduction furnace for ore and smelting reduction method using same
WO1996029435A1 (en) * 1995-03-17 1996-09-26 Voest-Alpine Industrieanlagenbau Gmbh Process for reducing ore fines and arrangement for carrying out the process
WO2001053544A1 (en) * 2000-01-20 2001-07-26 Voest-Alpine Industrieanlagenbau Gmbh & Co Fluidized bed aggregate for reducing oxide-containing material
CN115341065A (en) * 2021-05-14 2022-11-15 宝山钢铁股份有限公司 Production method of hot-pressed iron block with carbon emission lower than zero
CN115341065B (en) * 2021-05-14 2023-08-11 宝山钢铁股份有限公司 Production method of hot-pressed iron block with carbon emission lower than zero

Also Published As

Publication number Publication date
JP2620793B2 (en) 1997-06-18
ZA888247B (en) 1989-08-30

Similar Documents

Publication Publication Date Title
KR910008113B1 (en) Metal-making apparatus involving the smetting redaction of metallic oxides
KR100276339B1 (en) Three-stage Fluidized Bed Reduction Apparatus for Ferrous Iron Ore with X-shaped Circulation Tube
RU2128713C1 (en) Device of three-stage furnace type with fluidized bed for reduction of finely-divided iron ore (versions)
US6224649B1 (en) Method and apparatus for reducing iron-oxides-particles having a broad range of sizes
JP2620793B2 (en) Preliminary reduction furnace for smelting reduction
JPH0860215A (en) Fluidized bed furnace and smelting reduction apparatus using it
US6132489A (en) Method and apparatus for reducing iron-oxides-particles having a broad range of sizes
JPH06220513A (en) Circulation layer type preliminary reducing furnace for powdery iron ore
US6235079B1 (en) Two step twin-single fluidized bed pre-reduction apparatus for pre-reducing fine iron ore, and method therefor
EP1055006A1 (en) Fluidized bed type fine iron ore reducing apparatus, and method therefor
JP2579785B2 (en) Pre-reduction device for smelting reduction
JP2562172B2 (en) Iron ore fluidized bed reduction device
KR100276343B1 (en) High-temperature reduced iron cooler and fluidized bed furnace reduction device of iron ore with this cooler
KR940008450B1 (en) Making method and device of iron ore prereduction
JPH01184211A (en) Fluidized bed reduction device for ore
JPH01129917A (en) Device for preheating and charging material in reduction furnace
KR100276297B1 (en) Fluidized Iron Ore Reduction Furnace
JPH11310814A (en) Smelting reduction furnace
KR20070068213A (en) Apparatus for manufacturing molten irons
JPH01129916A (en) Method for charging ore in smelting reduction furnace
JPH0324213A (en) Treatment of drop ore of preliminary reduction furnace
KR100236160B1 (en) 3-stage fluidized-bed apparatus for reducing fine iron ores
JPH01111808A (en) Iron ore fluidized bed reduction apparatus
JPH01111810A (en) Iron ore fluidized bed reduction apparatus
JPH0639607B2 (en) Pre-reduction ore transfer device in smelting reduction steelmaking facility

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 11