JPH01128446A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH01128446A
JPH01128446A JP62286137A JP28613787A JPH01128446A JP H01128446 A JPH01128446 A JP H01128446A JP 62286137 A JP62286137 A JP 62286137A JP 28613787 A JP28613787 A JP 28613787A JP H01128446 A JPH01128446 A JP H01128446A
Authority
JP
Japan
Prior art keywords
substrate
wiring
thin film
gas
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62286137A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nanbu
芳弘 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62286137A priority Critical patent/JPH01128446A/en
Publication of JPH01128446A publication Critical patent/JPH01128446A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable linear writing at a high speed by radiating charge beam onto a substrate placed in a material gas atmosphere of a thin film to form a species of a thin film, then by radiating laser light onto the species of wiring the form a thin film. CONSTITUTION:After a substrate 3 is placed in a specified position of a CVD chamber 2, W(CO)6 gas is sprayed onto the substrate in the CVD chamber 2 from a gas supply system 8. Ion beam is radiated onto the substrate 3 from a focusing ion beam generating unit 1 while a wiring species is formed by operating a primary X-Y stage 5 in the direction to form the wiring. Then a fate valve 10 is opened to transmit the substrate 3 to a substrate holding position in a CVD cell 15 through a carrier room 9. While W(CO)6 gas diluted with Ar gas is made to flow into the CVD cell 15 from a gas supply system 8, laser light is irradiated onto the substrate 3 from a laser light source 11 and, at the same time, a secondary X-Y stage 17 is scanned along the formed wiring species to form a wiring.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は集束したエネルギービームとレーザ光を利用す
る薄膜形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thin film forming method using a focused energy beam and laser light.

(従来の技術〉 近年、半導体プロセスにおいては、レーザや集束イオン
ビームを利用した薄膜形成方法が、プロセスの低温化、
マスクレスプロセスによる工程短縮などをもたらすもの
として盛んに研究開発が行われている。特に金属や高導
電性の半導体をCVD反応により直接線状に堆積させる
直接描画技術は、LSIの配線形成への応用を指向して
盛んに研究されている。この技術は、LSIの設計から
試作に至る開発期間を大幅に短縮する高速配線修正を始
め、カスタムLSIにとって不可欠な配線のカスタム化
など、将来のLSI配線形成技術の重要なプロセス技術
に応用できるものと期待されている。以下金属の直接描
画技術を例に説明する。
(Conventional technology) In recent years, thin film forming methods using lasers and focused ion beams have been used in semiconductor processes to reduce the process temperature and
A lot of research and development is being carried out as a way to shorten the process through a maskless process. In particular, direct writing technology, in which metals and highly conductive semiconductors are directly deposited in a linear form by CVD reaction, is being actively researched for application to LSI wiring formation. This technology can be applied to important process technologies for future LSI wiring formation technology, including high-speed wiring modification that significantly shortens the development period from LSI design to prototyping, as well as wiring customization that is essential for custom LSIs. It is expected that The following will explain the direct drawing technology for metals as an example.

集束イオンビームを用いる面構画配線技術では、基板表
面に吸着したガス分子をイオンビーム照射により分解し
、不揮発性の解離分子が表面に堆積し導電性物質の薄膜
が形成される。さらにイオンビームを基板に対し相対的
に走査することによって配線を形成する。
In surface pattern wiring technology using a focused ion beam, gas molecules adsorbed on the substrate surface are decomposed by ion beam irradiation, non-volatile dissociated molecules are deposited on the surface, and a thin film of conductive material is formed. Furthermore, wiring is formed by scanning the ion beam relative to the substrate.

また、レーザを用いる面構配線技術では、集光照射され
たレーザ光による、基板もしくは堆積した物質の加熱に
よる原料ガスの熱分解反応を主に利用して金属薄膜を形
成する。さらにレーザ光を基板に対して相対的に走査す
ることによって配線を形成する。
In addition, in surface structured wiring technology using a laser, a metal thin film is formed mainly by utilizing a thermal decomposition reaction of a raw material gas caused by heating a substrate or a deposited substance with focused laser light. Further, wiring is formed by scanning the laser beam relative to the substrate.

これまでに集束イオンビームを用いる直接描画では、A
I、W、Au等の金属の堆積が実現されている。例えば
、[アプライド・フィジックス・レター(Appl 、
Phys、Lett、 )誌の第49巻、1584〜1
586ページ」に、シェド(Shedd)らにより、イ
オンビームにGa+イオン、Ar”4オン、Siイオン
を、原料ガスにジメチル金ヘキサフロロアセチルアセト
ネート(C7H7F602Au )を用い、線幅の極め
て細いAu線を直接描画した例が、報告されている。こ
の論文によれば、Si上の5i02膜上やSi上などに
直接描画を行い、イオンビ−ムの直径にほぼ等しい0.
5μmの幅の細いA u線を描画できることが報告され
ている。
Until now, in direct writing using a focused ion beam, A
Deposition of metals such as I, W, and Au has been achieved. For example, [Applied Physics Letters (Appl,
Phys, Lett, Volume 49, 1584-1
On page 586, Shedd et al. used Ga+ ions, Ar"4 ions, and Si ions in the ion beam, and dimethyl gold hexafluoroacetylacetonate (C7H7F602Au) as the source gas to generate an Au line with an extremely narrow line width. An example of direct writing has been reported.According to this paper, direct writing was performed on a 5i02 film on Si or on Si, and a 0.
It has been reported that it is possible to draw thin Au lines with a width of 5 μm.

また、レーザを用いる直接描画では、これまでにポリS
i等の導電性半導体や、W、Mo、Au等の金属の堆積
が実現されている。例えば、「ジャーナル・オブ・アプ
ライド・フィジックス(Journal of App
lied Physics)誌の第62巻673〜67
5ページ」にツアング(Zhang)らにより、光源に
Krレーザ、原料ガスにWF6を用い、低抵抗なW線を
直接描画した例が報告されている。この論文によれば、
石英もしくはガラス基板上につけた厚さ120OAのα
−3i膜上に直接描画を行い、バルク値の1.3倍程度
の非常に低い比抵抗の膜を堆積できることが報告されて
いる。
In addition, in direct writing using a laser, polyS
Deposition of conductive semiconductors such as i and metals such as W, Mo, and Au has been realized. For example, the Journal of Applied Physics
Lied Physics), Volume 62, 673-67
On page 5, Zhang et al. reported an example in which a low-resistance W line was directly drawn using a Kr laser as a light source and WF6 as a raw material gas. According to this paper,
120OA thick α on quartz or glass substrate
It has been reported that direct writing can be performed on the -3i film to deposit a film with a very low resistivity of about 1.3 times the bulk value.

(発明が解決しようとする問題点) 従来の集束イオンビームを用いる直接描画配線技術では
、イオンビームのビーム径をサブミクロンオーダーの細
さに絞ることが可能であり、その結果サブミクロンの細
い堆積を得ることが容易である反面、不純物などの影響
と考えられるが導電性の良い堆積を得ることが困難であ
り、また描画速度がレーザを用いる方法に比べ著しく劣
る欠点がある。一方、レーザを用いる直接描画配線技術
では、逆に導電性の良い堆積を得ることは容易であり、
描画速度も速いが、幅の細い堆積を得ることが困難であ
るといった欠点があった。例えば、先に示した論文で、
集束イオンビームを用いる直接描画では、得られたAu
線の線幅は0.5μmであるが、比抵抗はバルク値の1
0〜500倍程度と高く、描画速度は0.38μm程度
の膜厚の線に対して0.25μm / s程度と遅いこ
とが記述されている。一方、レーザを用いる直接描画で
は、比抵抗は最低でバルク値の1.3倍程度と非常に優
れ、かつ描画速度は20〜400μm/sと速いが、線
幅はLSIの配線として必要な0゜5μm程度の膜厚の
線に対しては5μm程度と太くなることが記述されてい
る。
(Problems to be Solved by the Invention) In the conventional direct writing wiring technology using a focused ion beam, it is possible to narrow down the beam diameter of the ion beam to a submicron order, and as a result, it is possible to reduce the diameter of the ion beam to a thin submicron deposit. However, it is difficult to obtain a deposit with good conductivity, probably due to the influence of impurities, and the drawing speed is significantly lower than that using a laser. On the other hand, with direct drawing wiring technology using a laser, it is easy to obtain deposits with good conductivity.
Although the drawing speed is fast, it has the disadvantage that it is difficult to obtain narrow deposits. For example, in the paper mentioned above,
In direct writing using a focused ion beam, the obtained Au
The line width is 0.5 μm, but the specific resistance is 1 of the bulk value.
It is described that the drawing speed is high, about 0 to 500 times, and the drawing speed is slow, about 0.25 μm/s for a line with a film thickness of about 0.38 μm. On the other hand, in direct writing using a laser, the resistivity is extremely high at least 1.3 times the bulk value, and the writing speed is fast at 20 to 400 μm/s, but the line width is 0.1 μm/s, which is necessary for LSI wiring. It is described that for a line with a film thickness of about 5 μm, the thickness becomes about 5 μm.

現在、−括成膜とマスクプロセスを用いる通常のLSI
製造工程で用いられているAI配線では、線幅1μmに
対し厚み0.6μm以上の配線が主として用いられてお
り、画描配線技術においても、これに近い厚み線幅比を
得ることが実用上の大きな課題となっている。
Currently, normal LSI using bulk film formation and mask process
In the AI wiring used in the manufacturing process, wiring with a thickness of 0.6 μm or more for a line width of 1 μm is mainly used, and even in drawing wiring technology, it is practical to obtain a thickness-to-line width ratio close to this. has become a major issue.

本発明の目的は、上記の従来の直接描画配線技術の欠点
を解決し、細い線幅で膜厚が厚くかつ導電性のよい配線
を速い描画速度で直接描画する配線形成方法を提供する
ことにあるが、原理的に金属などの導電性材料に限られ
たものではなく、池の材料にも適用できる。
An object of the present invention is to solve the above-mentioned drawbacks of the conventional direct drawing wiring technology, and to provide a wiring forming method that directly draws wiring with a thin line width, a thick film thickness, and good conductivity at a fast drawing speed. However, in principle, it is not limited to conductive materials such as metals, but can also be applied to pond materials.

(問題を解決するための手段) 本発明は薄膜の原料ガス雰囲気中に置かれた基板上に、
集束したエネルギービームを走査しながら照射すること
により、該基板上に上記薄膜をパターン化して形成させ
る薄膜形成方法において、第一に荷電ビームを該基板上
に照射して薄膜の種を形成し、第二に該配線の種の上に
レーザ光を照射することにより薄膜を形成することを特
徴とする薄膜形成方法である。
(Means for Solving the Problems) The present invention provides the following methods:
In the thin film forming method of patterning and forming the thin film on the substrate by scanning and irradiating with a focused energy beam, first irradiating the substrate with a charged beam to form a thin film seed; The second method is a thin film forming method characterized by forming a thin film by irradiating the wiring seed with a laser beam.

(作用) 本発明においては、集束イオンビームの高い集束性と高
い描画の分解能を利用して、第一にこれを用いて薄く細
く薄膜の種を描画する。つぎに、この配線をレーザCV
Dの膜形成の核として利用し、この薄く細い薄膜の棟上
にレーザ光を照射して、導電性を有する材料であれば導
電性のよい膜を厚く堆積する。
(Function) In the present invention, the high convergence and high drawing resolution of a focused ion beam are utilized to first draw a thin thin film seed. Next, connect this wiring to the laser CV
Used as a nucleus for forming the film D, a laser beam is irradiated onto the ridges of this thin thin film, and if the material is conductive, a thick film with good conductivity is deposited.

レーザCVD反応を利用する直接描画配線技術において
は、原料ガス分子を分解し堆積させるのに熱分解反応を
利用する方法と、光分解反応を利用する方法、あるいは
この両方を利用する方法があるが、現在の主流はレーザ
光の集光照射による基板もしくは堆積した物質の局所的
な加熱による原料ガス分子の熱分解反応を利用する方法
である。この方法により原料ガスとして導電性物質を堆
積する化合物気体を用いると、導電性のよい膜を比較的
速い速度で厚く堆積させることが出来る。この方法で基
板上に配線を形成する場合、配線の幅は主に照射するレ
ーザ光のビーム径および基板による熱拡散によって決定
される。光の場合は回折現象によりビーム径は少なくと
も波長の数倍程度までしか集束できず、可視光の場合最
小ビーム径は1μm程度である。しかしながら、ビーム
径がこの程度に細くなってくると、基板による熱拡散の
ため配線幅はビーム径よりもかなり拡がる傾向がある。
Direct writing wiring technology that uses laser CVD reactions includes methods that use thermal decomposition reactions, photodecomposition reactions, or both to decompose and deposit source gas molecules. Currently, the mainstream is a method that utilizes a thermal decomposition reaction of raw gas molecules by local heating of the substrate or deposited material by focused irradiation with laser light. By using a compound gas for depositing a conductive substance as a raw material gas by this method, it is possible to deposit a thick film with good conductivity at a relatively fast rate. When wiring is formed on a substrate using this method, the width of the wiring is determined mainly by the beam diameter of the irradiated laser beam and thermal diffusion by the substrate. In the case of light, the beam diameter can only be focused to at least several times the wavelength due to the diffraction phenomenon, and in the case of visible light, the minimum beam diameter is about 1 μm. However, when the beam diameter becomes this small, the wiring width tends to become much wider than the beam diameter due to heat diffusion by the substrate.

したがって、配線幅を細くするためにはレーザ光をパル
ス状に入射したり、あるいはレーザ光を速く走査して熱
拡散を防止するか、照射するレーザパワーを低くして原
料ガスの分解温度以上に加熱される基板上の領域を小さ
くする必要がある。しかしこれらの方法で導電性のよい
膜を厚く堆積するのは困難であった。
Therefore, in order to reduce the wiring width, it is necessary to inject laser light in a pulsed manner or to scan the laser light rapidly to prevent thermal diffusion, or to lower the irradiation laser power so that the temperature exceeds the decomposition temperature of the raw material gas. The area on the substrate that is heated needs to be small. However, it has been difficult to deposit a thick film with good conductivity using these methods.

イオンビームCVD反応を利用する画描配線技術におい
ては、原料ガス分子を分解するのに熱分解反応を利用せ
ず、直接的な分解反応を用いるため、画描の分解能はイ
オンビーム径程度(最小で0.05μm程度)まで高め
ることが可能である。
Drawing wiring technology that uses ion beam CVD reactions does not use thermal decomposition reactions to decompose source gas molecules, but instead uses direct decomposition reactions, so the drawing resolution is approximately the same as the ion beam diameter (minimum It is possible to increase the thickness to about 0.05 μm).

一方、膜生成における生成種の効果については、「ジャ
ーナル・オブ・クリスタル・グロウス(Journal
 of Crystal Growth)誌の第68巻
176〜187ページ」、にツァオ(Tsao)らによ
り、生成種によって生じた凝集力により吸着分子の脱離
が抑制されるという物理的効果や生成種によって分解反
応の活性化エネルギーが低下するという化学的効果が、
また、[ジャーナル・オブ・バキューム・サイエンス・
テクノロジー(Journal ofVaccume 
5cience Technolo(y)誌にオブリス
コ(0ρrysko)らにより、核生成した物質が光を
吸収して加熱されるため、光を透過する基板上でも金属
薄膜を堆積できるという効果などが報告されている。
On the other hand, regarding the effect of generated species on film formation, see ``Journal of Crystal Growth''.
of Crystal Growth, Vol. 68, pp. 176-187," Tsao et al. reported that the physical effect of suppressing the desorption of adsorbed molecules due to the cohesive force generated by the generated species and the decomposition reaction caused by the generated species. The chemical effect of lowering the activation energy of
Also, [Journal of Vacuum Science]
Technology (Journal of Vacuum
In 5science Technology (y) magazine, Obrysko et al. reported that the nucleated substance absorbs light and is heated, so that a metal thin film can be deposited even on a substrate that transmits light.

本発明においては、導電性物質を堆積する化合物気体を
含む雰囲気中に置かれた基板上に、まず集束イオンビー
ムを用いて細く薄い配線の種を描画する。その上に沿っ
て低パワーのレーザ光を走査しながら照射するか、ある
いは高速にレーザ光を走査しながら照射すると、配線の
種が形成された部分が生成種の役割を果たして、上に述
べた膜生成における生成種の効果のうち第一の物理的効
果や第2の化学的効果により、この部分では厚くて導電
性のよい膜が得られる。しかも集束イオンビームにより
核が生成されている為、レーザ光で描画する条件は、所
要照度が低パワー、あるいは高速描画にすることができ
る。このため、熱拡散による配線の拡がりも少なく、細
い配線を描画できる。
In the present invention, first, a focused ion beam is used to draw thin wiring seeds on a substrate placed in an atmosphere containing a compound gas on which a conductive substance is to be deposited. When a low-power laser beam is scanned and irradiated along the top of the wiring, or a laser beam is scanned and irradiated at high speed, the part where the wiring seeds are formed plays the role of the generated seeds, and the above-mentioned Due to the first physical effect and the second chemical effect of the generated species in film formation, a thick and highly conductive film can be obtained in this portion. Furthermore, since the nuclei are generated by a focused ion beam, the conditions for writing with a laser beam can be such that the required illuminance is low power or high speed writing. Therefore, there is less spread of the wiring due to thermal diffusion, and thin wiring can be drawn.

(実施例) 以下LSI上の配線形成に本発明を適用した実施例につ
いて、図面を用いて詳細に説明する。この実施例は、S
 i LS I上のポリSi配線層の上にあるSiN絶
縁層上にW線を直接描画して配線の修正を行った例であ
る。イオン源にGa+を用いた集束イオンビーム発生ユ
ニッ1へ1から出射されるイオンビームは30ke■の
加速電圧で加速、集束されて、CVDチェンバー2内の
基板3に照射される。基板3は、先に述べた5iLSI
チツプである。集束イオンビーム発生ユニツI−1内は
第一の排気ポンプ6によって、10−’Torr以下の
真空度に保たれている。CVDチェンバー2内の真空度
は第二の排気ポンプ7により、反応ガス導入時で1O−
6Torr程度である。原料ガスのW(CO)6は、ガ
ス供給系8より、cVDチェンバー2に導かれ、基板3
表面に吸着する。基板表面での凝縮を防止するため、基
板3は第一のヒータ4で加熱しである。第一のX−Yス
テージ5は、描画する線の描画位置及び描画の走査方向
・速度を制御する。搬送室9およびゲートバルブ10は
、CVDチェンバー2内にある基板3をCVDセル15
内へ移送する際に用いる。アルゴンレーザで構成される
レーザ光源11からの出射光は、ミラー12で反射され
、レンズ13で集光され、窓14を通してCVDセル1
5内に移送された基板3上に照射される。CVD原料の
W(CO) 6は、ガス供給系8よりArガスで希釈さ
れてCVDセル15に導かれる。W(Co)6の分圧は
ITorr、全圧は1気圧で、反応終了後の残ガスは排
気ユニット18で排気される。基板表面での凝縮を防止
するため、前述と同じ様に基板3は第2のヒータ16で
加熱する。第2のX−Yステージ17は、前述と同じ様
に描画する線の描画位置及び描画の走査方向・速度を制
御する。
(Example) Hereinafter, an example in which the present invention is applied to wiring formation on an LSI will be described in detail with reference to the drawings. In this example, S
This is an example in which the wiring was corrected by directly drawing W lines on the SiN insulating layer on the poly-Si wiring layer on the iLSI. An ion beam emitted from a focused ion beam generation unit 1 using Ga+ as an ion source is accelerated and focused at an acceleration voltage of 30 ke, and is irradiated onto a substrate 3 in a CVD chamber 2. The board 3 is the 5iLSI mentioned earlier.
It's a chip. The interior of the focused ion beam generation unit I-1 is maintained at a vacuum level of 10-' Torr or less by a first exhaust pump 6. The degree of vacuum inside the CVD chamber 2 is maintained at 1O- by the second exhaust pump 7 when the reaction gas is introduced.
It is about 6 Torr. The raw material gas W(CO) 6 is guided from the gas supply system 8 to the cVD chamber 2, and is supplied to the substrate 3.
Adsorbs to the surface. The substrate 3 is heated by a first heater 4 to prevent condensation on the substrate surface. The first XY stage 5 controls the drawing position of the line to be drawn and the scanning direction and speed of the drawing. The transfer chamber 9 and the gate valve 10 transfer the substrate 3 in the CVD chamber 2 to the CVD cell 15.
Used when transferring to the inside. Emitted light from a laser light source 11 composed of an argon laser is reflected by a mirror 12, condensed by a lens 13, and passed through a window 14 to a CVD cell 1.
The substrate 3 transferred into the substrate 5 is irradiated with light. The CVD raw material W(CO) 6 is diluted with Ar gas from the gas supply system 8 and guided to the CVD cell 15 . The partial pressure of W(Co)6 is ITorr, the total pressure is 1 atm, and the residual gas after the reaction is exhausted by the exhaust unit 18. In order to prevent condensation on the substrate surface, the substrate 3 is heated by the second heater 16 in the same manner as described above. The second XY stage 17 controls the drawing position of the line to be drawn and the scanning direction and speed of the drawing in the same manner as described above.

次にこの構成での動作を説明する。基板3をCVDチェ
ンバー2の所定の位置に置いた後、ゲーI・バルブ10
を閉じて排気ポンプ7を動作させ、CVDチエパー2内
を所定の真空度になるまで排気する。次にガス供給系8
よりW (CO) 6ガスをCVDチェンバー2内の基
板3上に吹き付ける。X−Yステージらを動かして基板
3上の配線を形成する箇所の一端にイオンビームの照射
位置を合わした後、集束イオンビーム発生ユニット1よ
りイオンビームを基板3上に照射し、それと同時に第一
のX−Yステージ5を配線を形成する方向に操作させて
配線の種を形成する。種の形成が終了したら、イオンビ
ームの出射、およびガス供給を止める。次に、ゲートバ
ルブ10を開いて搬送室9を通して基板3をCVDセル
15内の基板保持位置まで移送する。ゲーI・バルブ1
0を閉じて排気ユニット18を動作させ、CVDセル1
5内を排気する。次にガス供給系8よりArガスで°希
釈したW(Co)6ガスをCVDセル15内に流しなが
ら、第二のX−Yステージ17を動がして基板3上に形
成された配線の種の一端にレーザ光源の照射位置を合わ
した後、レーザ光源11よりレーザ光を基板3上に照射
し、それと同時に第二のX−Yステージ17を形成され
た配線の種に沿って走査して配線を形成する。配線の形
成が終了したら、レーザ光の出射、およびガス供給を止
め、配線形成の一連の作業を終える。
Next, the operation in this configuration will be explained. After placing the substrate 3 at a predetermined position in the CVD chamber 2, the gate I valve 10 is
is closed and the exhaust pump 7 is operated to evacuate the inside of the CVD chopper 2 to a predetermined degree of vacuum. Next, gas supply system 8
W (CO) 6 gas is blown onto the substrate 3 in the CVD chamber 2. After moving the X-Y stage and the like to align the ion beam irradiation position with one end of the location on the substrate 3 where wiring is to be formed, the ion beam is irradiated onto the substrate 3 from the focused ion beam generation unit 1, and at the same time the ion beam is irradiated onto the substrate 3. One XY stage 5 is operated in the direction of forming wiring to form wiring seeds. When seed formation is completed, ion beam emission and gas supply are stopped. Next, the gate valve 10 is opened and the substrate 3 is transferred through the transfer chamber 9 to a substrate holding position within the CVD cell 15. Game I Valve 1
0 and operate the exhaust unit 18, CVD cell 1
Exhaust the inside of 5. Next, while flowing W(Co)6 gas diluted with Ar gas from the gas supply system 8 into the CVD cell 15, the second XY stage 17 is moved to remove the wiring formed on the substrate 3. After aligning the irradiation position of the laser light source with one end of the seed, the laser light source 11 irradiates the substrate 3 with laser light, and at the same time, the second X-Y stage 17 is scanned along the formed wiring seed. form the wiring. When the wiring formation is completed, the laser beam emission and gas supply are stopped, and the series of wiring formation operations is completed.

このようにして得られた結果を、従来のレーザのみを用
いて面構し、配線を形成した場合と比較しながら説明す
る。イオンビームは、30keVに加速したGa+イオ
ンを用い、ビーム電流は440pA、基板上の集束イオ
ンビーム発生ユニット1からのイオンビームのビーム径
は0.15μmである。レーザ光は、照射パワーは10
〜50mW、基板上でのスポットサイズは2μmである
The results obtained in this manner will be explained in comparison with a conventional case where only a laser is used to structure the surface and form wiring. The ion beam uses Ga + ions accelerated to 30 keV, the beam current is 440 pA, and the beam diameter of the ion beam from the focused ion beam generation unit 1 on the substrate is 0.15 μm. The irradiation power of the laser beam is 10
~50 mW, spot size on the substrate is 2 μm.

この条件で、レーザのみを用いて面構を行ったところ、
配線の配線幅はレーザパワー15mWのとき最小で、幅
は3μm、比抵抗は8μΩ1のものが得られたが、この
とき膜厚は0.08μmと薄く、配線として不適当であ
るという実験結果が得られた。一方、レーザパワーを上
げて膜厚を0゜5μmと厚くすると線幅は8μmと拡が
るという結果が得られた。この線幅と膜厚の関係は原料
ガスの濃度や、照射強度、走査速度を変化させてもほと
んど変化はなく、レーザのみを用いて面構する方法では
配線として求められるμmサイズの細くかつ厚い配線を
得ることは困難であった。
When surface structuring was performed using only a laser under these conditions,
The wiring width was the minimum when the laser power was 15 mW, and the width was 3 μm and the resistivity was 8 μΩ1, but the experimental results showed that the film thickness was as thin as 0.08 μm, making it unsuitable for wiring. Obtained. On the other hand, when the laser power was increased and the film thickness was increased to 0.5 μm, the line width was increased to 8 μm. This relationship between line width and film thickness hardly changes even if the concentration of raw material gas, irradiation intensity, and scanning speed are changed. Obtaining wiring was difficult.

これに対して、集束イオンビームとレーザを併用して面
構を行った場合には、以下のように優れた特性が得られ
た。イオンビームを用いて得られた配線の種の幅はイオ
ンビームのビーム径と同じ0.1μmであった。この棟
上に10mWのレザパワーでレーザ光を照射して配線を
形成すると、配線幅が1.5μm、厚みが0.6μm、
比抵抗が8μΩlという優れた配線が形成できた。 以
上の一実施例では、面構するための原料ガスとしてW(
Co)6ガスを用いた例を述べたが、本発明の原理に基
づけば、本発明の効果が他のCVD反応やさらには他の
材料例えばモリブテンや5i02などの薄膜形成方法全
てに適用できることは言うまでもない。
On the other hand, when surface structuring was performed using both a focused ion beam and a laser, excellent properties were obtained as shown below. The width of the wiring seed obtained using the ion beam was 0.1 μm, which was the same as the beam diameter of the ion beam. When wiring is formed by irradiating a laser beam with a laser power of 10 mW onto this ridge, the wiring width is 1.5 μm, the thickness is 0.6 μm,
An excellent wiring with a specific resistance of 8 μΩl was formed. In the above embodiment, W(
Although an example using Co)6 gas has been described, based on the principles of the present invention, the effects of the present invention can be applied to all methods of forming thin films using other CVD reactions and other materials such as molybdenum and 5i02. Needless to say.

本発明の方法において、基板上に配線や薄膜の種を形成
する方法として、イオンビームを用いずに、電子ビーム
を用いることができる。電子ビームはイオンビームによ
りも集束性がよく、反応性ガスを基板上で解離して膜形
成可能なことが知られているので、この場合には配線や
薄膜の幅をさらに微細化できる。
In the method of the present invention, an electron beam can be used instead of an ion beam to form wiring and thin film seeds on a substrate. It is known that electron beams have better focusing properties than ion beams and can form films by dissociating reactive gases on a substrate, so in this case, the widths of wiring and thin films can be further miniaturized.

(発明の効果) 以上に述べたように、この発明の方法によれば、従来の
イオンビームあるいはレーザのみを用いて基板上に直接
配線を描画する方法では困難な1μm程度の細い線幅で
かつ良好な導電性をもたらすのに充分な厚さと膜質を有
する配線を直接描画できる。また本発明は導電性材料以
外のパターン化した薄膜の形成にも有効である。
(Effects of the Invention) As described above, according to the method of the present invention, it is possible to draw wiring with a narrow line width of about 1 μm, which is difficult with the conventional method of drawing wiring directly on a substrate using only an ion beam or laser. Wiring can be directly written with sufficient thickness and film quality to provide good conductivity. The present invention is also effective in forming patterned thin films of materials other than conductive materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を適用した場合の一実施例の概略図構
成図である。 1・・・・・・集束イオンビーム発生ユニット2・・・
・・・CVDチェンバー 3・・・・・・基板 4・・・・・・第一のヒータ 5・・・・・・第一のX−Yステージ 6・・・・・・第一の排気ポンプ 7・・・・・・第二の排気ポンプ 8・・・・・・ガス供給系 9・・・・・・搬送室 10・・・ゲートバルブ 11・・・レーザ光源 12・・・ミラー 13・・・レンズ 14・・・窓 15・・・CV[)セル 16・・・第二のヒータ 17・・・第二のX−Yステージ 18・・・排気ユニッIへ
FIG. 1 is a schematic configuration diagram of an embodiment to which the present invention is applied. 1... Focused ion beam generation unit 2...
...CVD chamber 3...Substrate 4...First heater 5...First X-Y stage 6...First exhaust pump 7...Second exhaust pump 8...Gas supply system 9...Transfer chamber 10...Gate valve 11...Laser light source 12...Mirror 13... ...Lens 14...Window 15...CV[) cell 16...Second heater 17...Second X-Y stage 18...To exhaust unit I

Claims (1)

【特許請求の範囲】[Claims]  薄膜の原料ガス雰囲気中に設置された基板上に、集束
したエネルギービームを走査しながら照射することによ
り、該基板上に上記薄膜をパターン化して形成させる薄
膜形成方法において、第一に荷電ビームを基板上に照射
して薄膜の種を形成し、第二に該薄膜の種の上にレーザ
光を照射することにより薄膜を形成することを特徴とす
る薄膜形成方法。
In a thin film forming method in which a thin film is patterned and formed on a substrate by scanning and irradiating a focused energy beam onto a substrate placed in a raw material gas atmosphere for the thin film, first a charged beam is applied to the substrate. A method for forming a thin film, comprising: forming a thin film seed by irradiating a substrate with laser light, and then forming a thin film by irradiating a laser beam onto the thin film seed.
JP62286137A 1987-11-11 1987-11-11 Formation of thin film Pending JPH01128446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62286137A JPH01128446A (en) 1987-11-11 1987-11-11 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62286137A JPH01128446A (en) 1987-11-11 1987-11-11 Formation of thin film

Publications (1)

Publication Number Publication Date
JPH01128446A true JPH01128446A (en) 1989-05-22

Family

ID=17700412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62286137A Pending JPH01128446A (en) 1987-11-11 1987-11-11 Formation of thin film

Country Status (1)

Country Link
JP (1) JPH01128446A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329229B1 (en) 1993-11-05 2001-12-11 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device, apparatus for processing a semiconductor and apparatus for processing semiconductor device
US6897100B2 (en) 1993-11-05 2005-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device apparatus for processing a semiconductor and apparatus for processing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329229B1 (en) 1993-11-05 2001-12-11 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device, apparatus for processing a semiconductor and apparatus for processing semiconductor device
US6897100B2 (en) 1993-11-05 2005-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device apparatus for processing a semiconductor and apparatus for processing semiconductor device

Similar Documents

Publication Publication Date Title
US4324854A (en) Deposition of metal films and clusters by reactions of compounds with low energy electrons on surfaces
JP3048749B2 (en) Thin film formation method
US4451503A (en) Photo deposition of metals with far UV radiation
JPH02504444A (en) Selected Area Nuclei and Growth Method for Metal Chemical Deposition Using Focused Ion Beams
JPH0573050B2 (en)
US6261850B1 (en) Direct writing of low carbon conductive material
US3873341A (en) Rapid conversion of an iron oxide film
CN106521449A (en) Nanofabrication using a new class of electron beam induced surface processing techniques
JPS61274314A (en) Boosting of evaporation from laser heating target
KR100306434B1 (en) Mask for selective growth of solid, manufacturing method thereof, and method for selectively growing solid using the same
JPS5982732A (en) Manufacture for semiconductor device
JPH01128446A (en) Formation of thin film
EP0466320B1 (en) Process for preparing a semiconductor device including the selective deposition of a metal
JP2758247B2 (en) Organic metal gas thin film forming equipment
KR102635418B1 (en) High crystalline two-dimensional material manufacturing method and highly crystalline two-dimensional material manufactured thereby
JP2726149B2 (en) Thin film forming equipment
JP2666734B2 (en) Inorganic resist drawing apparatus and drawing method
JPH0256932A (en) Method and apparatus for forming wiring
JPH0628256B2 (en) Semiconductor fine processing method and semiconductor fine embedded structure forming method
JPH0380534A (en) Method and equipment for forming thin film by direct lithography using laser
JPS60167316A (en) Formation of film
JP2951133B2 (en) Method of forming gold thin film or its pattern
JPH03236237A (en) Method and apparatus for forming wiring
Matsui et al. Electron Beam Induced Film Deposition
JP3132963B2 (en) Method of forming silicon oxide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051003

A521 Written amendment

Effective date: 20051130

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20070713

Free format text: JAPANESE INTERMEDIATE CODE: A911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070822

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100914

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100914

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110914

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110914

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120914

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130914

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140914

Year of fee payment: 7