JPH01126170A - Control system of polyphase and multiple voltage type inverter - Google Patents

Control system of polyphase and multiple voltage type inverter

Info

Publication number
JPH01126170A
JPH01126170A JP62284039A JP28403987A JPH01126170A JP H01126170 A JPH01126170 A JP H01126170A JP 62284039 A JP62284039 A JP 62284039A JP 28403987 A JP28403987 A JP 28403987A JP H01126170 A JPH01126170 A JP H01126170A
Authority
JP
Japan
Prior art keywords
output
voltage
control
inverter
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62284039A
Other languages
Japanese (ja)
Inventor
Shoji Mizoguchi
溝口 昭次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62284039A priority Critical patent/JPH01126170A/en
Publication of JPH01126170A publication Critical patent/JPH01126170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

PURPOSE:To improve an operating performance and to miniaturize by converting the control of a polyphase and multiple voltage type inverter into PWM in a low output frequency region and converting it into rectangular PAM in a high output frequency region. CONSTITUTION:A polyphase and multiple voltage type inverter is constituted of a variable DC voltage source 1, three phase inverters 2-3 generating the output voltage having the basic wave phase difference of 30 deg. each other and windings 5-7 of polyphase and multiple transformers. The control system of this inverter controls the output voltage by PWM in a low output frequency region, and at the same time, the subharmonic is also reduced. In a high output frequency region, the change-over to the rectangular PAM control is made, and an operation is made without causing the increase of switching frequency. Accordingly, a balanced operating characteristic can be obtained in a full operating region.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、低出力周波数時における多重電圧形インバ
ータの出力電圧リップル或いは該インバータにて駆動さ
れるモータのトルクリップルを低減し、実用上十分な低
出力周波数域の運転特性を得るよう制御する多相多重電
圧形インバータの制御方式に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention reduces the output voltage ripple of a multi-voltage inverter or the torque ripple of a motor driven by the inverter at low output frequencies, and achieves a practically sufficient result. This invention relates to a control method for a multi-phase, multi-voltage inverter that is controlled to obtain operating characteristics in a low output frequency range.

〔従来の技術〕[Conventional technology]

第5図(a)、(b)、(c)は例えば電気学会198
7年3月31日発刊「半導体電力変換回路JP、100
に示された従来の12相多重電圧形インバータを示す回
路図とベクトル図及び出力電圧波形図であり、図におい
て(1)はPAM制御によって調節される可変直流電圧
源、(21、(3)は3相方形波インバータ、(4)、
(6)は多重変圧器−次巻線、(5)、(7)は該変圧
器二次巻線である。
Figures 5(a), (b), and (c) are, for example, published by the Institute of Electrical Engineers of Japan 1988.
“Semiconductor Power Conversion Circuit JP, 100,” published on March 31, 2007.
2 are a circuit diagram, a vector diagram, and an output voltage waveform diagram showing the conventional 12-phase multiple voltage type inverter shown in FIG. is a three-phase square wave inverter, (4),
(6) is a multiplex transformer-secondary winding, and (5) and (7) are secondary windings of the transformer.

次に動作について説明する。30”の基本波位相差を有
する各インバータ(2)、(3)によって多重変圧器の
各−次巻線(4)、(6)は30゛位相差を有する方形
波電圧が印加され、該変圧器二次巻線(5)、(7)に
は、合成出力電圧としてVlJ−vなる波形を発生する
。このVLI−Vは、多相多重変圧器の原理として周知
の様に、多重相数mに対し、(nm±1)次(n=1.
2,3.・・・)高調波成分が残され、第5図の場合、
12相多重なので、m=12で、5 、7.17,19
,29゜31、・・・次調波は消され、(12n±1)
 (n” 1,2.・・・)次の高調波成分を含有した
波形となる。
Next, the operation will be explained. Each inverter (2), (3) with a fundamental phase difference of 30" applies a square wave voltage with a 30" phase difference to each secondary winding (4), (6) of the multiplex transformer; The secondary windings (5) and (7) of the transformer generate a waveform VlJ-v as a composite output voltage.This VLI-V is a multi-phase multiple transformer, as is well known as the principle of a multi-phase multiple transformer. For several m, (nm±1) order (n=1.
2,3. ...) The harmonic components are left, and in the case of Figure 5,
Since it is a 12-phase multiplex, m = 12, 5, 7.17, 19
,29゜31,... the harmonics are erased, (12n±1)
The waveform contains the following harmonic components (n" 1, 2...).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の多相多重電圧形インバータは以上のように構成さ
れているので、低出力周波数(基本波)時、GTO素子
等を用いる場合、OFF時のテイル時間が延びるため直
流電圧Edをある値以下に下げられず、Ed−一定条件
でPWMによる出力電圧制御が不可欠となるが、PWH
時の高調波に注意しないと負荷によっては多相多重変圧
器で除去し得ない高調波次数nm±1の高調波によって
、モータ負荷の場合該高調波によるトルクリップルが機
械系の共振周波数に一致し、運転に支障を来たしたりす
るため、不必要な多重相数の増加をまねき、装置の大形
化、価格の増加等を発生する可能性があり、また高出力
周波数域においてPWMをi続すると、インバータのス
イッチングが増大し、スイッチングロスの増大及びサイ
リスタ、GTO等の低スイッチング素子には向かない等
の欠点があった。
Conventional multi-phase multi-voltage inverters are configured as described above, so when using GTO elements etc. at low output frequency (fundamental wave), the tail time when OFF is extended, so the DC voltage Ed must be kept below a certain value. Therefore, it is essential to control the output voltage by PWM under Ed- certain conditions, but PWH
Depending on the load, if you do not pay attention to the harmonics of the harmonic order nm±1, which cannot be removed by a multi-phase transformer, the torque ripple due to the harmonics in the case of a motor load may become equal to the resonant frequency of the mechanical system. This may lead to an unnecessary increase in the number of multiplexed phases, resulting in an increase in the size and cost of the equipment, and may cause problems with operation. This increases switching of the inverter, resulting in increased switching loss and disadvantages such as being unsuitable for low switching elements such as thyristors and GTOs.

この発明は上記のような問題点を解消するためになされ
たもので、低出力周波数域の出力電流リップル或いはモ
ータ負荷時のトルクリップルを実用上問題ないレベルに
低減でき、且つ高出力周波数域においてはインバータの
スイッチング数を従来に比べ増大させることなく、全運
転域においてバランスのとれた運転特性を得ることがで
きる多相多重電圧形インバータの制御方式を提供するこ
とを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is possible to reduce the output current ripple in the low output frequency range or the torque ripple at the time of motor load to a level that does not cause any practical problem, and also to reduce the output current ripple in the low output frequency range or the torque ripple at the time of motor load to a level that does not cause any problem in practical use. The object of the present invention is to provide a control method for a multi-phase, multi-voltage inverter that can obtain balanced operating characteristics over the entire operating range without increasing the number of switching operations of the inverter compared to conventional methods.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る多相多重電圧形インバータの制御方式は
、多相多重変圧器に複数の多相インバータの出力を給電
する多相多重電圧形インバータにおいて、出力電圧制御
として低出力周波数或いは一定直流電圧におけるPWM
(パルス幅変調)制御と高出力周波数或いは方形波PA
M (パルス振幅変調)制御を運転周波数によって切り
換え、PWM制御時、各インバータ出力電圧波形は多重
相数をmとして多相多重変圧器で相殺されず出力される
出力電圧高調波の次数(nm±1) (n=1、2,3
,・・・)に対し、少なくとも最低次付近の(m±1)
次高調波を含有しないよう制御するものである。
A control method for a polyphase multiple voltage type inverter according to the present invention is a polyphase multiple voltage type inverter that feeds the outputs of a plurality of polyphase inverters to a polyphase multiple transformer. PWM at
(pulse width modulation) control and high output frequency or square wave PA
M (Pulse Amplitude Modulation) control is switched depending on the operating frequency, and during PWM control, each inverter output voltage waveform is determined by the order of output voltage harmonics (nm± 1) (n=1, 2, 3
,...), at least around the lowest order (m±1)
This is to control so as not to contain harmonics.

(作用〕 この発明における多相多重インバータの制御方式は、低
出力周波数域において、PWHにより出力電圧制御を行
なうと同時に多相多重変圧器で除去し得ないVVVF 
(可変電圧可変周波数変換器)システムにとって有害な
低次高調波をもPWHの波形制御により実用上十分な程
度まで低減し、VVVFシステムの低出力周波数域での
運転特性の向上が計れ、高出力周波数域においては方形
波のPAM制御に切り換えられ、スイッチング周波数の
増大を招くことなく運転される。
(Function) The control method of the polyphase multiplex inverter in this invention performs output voltage control using PWH in the low output frequency range, and at the same time, VVVF which cannot be removed by the polyphase multiplex transformer.
(Variable Voltage Variable Frequency Converter) Low-order harmonics that are harmful to the system can be reduced to a practically sufficient level by controlling the PWH waveform, improving the operating characteristics of the VVVF system in the low output frequency range, and achieving high output. In the frequency range, it is switched to square wave PAM control and operated without increasing the switching frequency.

〔実施例〕〔Example〕

以下、この発明の一実施例を簡単化のため12相多重時
の図について説明する。第1図(a)において、(1)
は可変直流電圧源、(2)、(3)は互いに30°の基
本波位相差を有する出力電圧を発生する3相インバータ
、(4)、(6)は多相多重変圧器−次巻線、(5)、
(7)は該変圧器二次巻線であり、同図(b)は変圧器
合成出力電圧のベクトル図である。
Hereinafter, an embodiment of the present invention will be described with reference to a diagram for 12-phase multiplexing for the sake of simplicity. In Figure 1(a), (1)
is a variable DC voltage source, (2) and (3) are three-phase inverters that generate output voltages with a fundamental wave phase difference of 30 degrees from each other, and (4) and (6) are polyphase multiplex transformers - secondary windings. ,(5),
(7) is the secondary winding of the transformer, and (b) of the same figure is a vector diagram of the transformer combined output voltage.

第2図は各インバータ(2)、(3)の出力線間電圧波
形が120°方形波の時の基本波を基準とした場合の含
有高調波(次数を1とする)を示す。また第3図はV/
f =一定制御時のこの発明の制御における出力基本波
周波数fと直流電圧源電圧Ed及び基本波出力v1の関
係を示す。
FIG. 2 shows the harmonics contained (assuming the order is 1) based on the fundamental wave when the output line voltage waveform of each inverter (2), (3) is a 120° square wave. Also, Figure 3 shows V/
The relationship between the output fundamental wave frequency f, the DC voltage source voltage Ed, and the fundamental wave output v1 in the control of the present invention when f = constant control is shown.

第1図は従来例の第5図と同様12相多重インバータの
構成で、動作自体は同一であり、(12n±1)次高調
波(n=1.2,3.・・・)は変圧器で相殺されず出
力端U、 V、 W線間に高調波電圧として含有される
。第2図に示す様に3相インバータ(2)、(3)の出
力波形が方形波の場合は、単一インバータ出力電圧に含
有される電圧高調波V、工1.V16:l、・・・は相
殺され、V1221、■24!I、・・・が出力に含有
されて残る。第3図にこの発明の特徴的なPWM−PA
M切換え状態を示すが、以上の様に方形波PAM制御時
はV l 2 LI 、V 24 LI 、・・・は出
力電圧に含有されるが、基本波fが比較的高い領域で使
用されているため、以下の様に問題ない。出力電流リッ
プルは各高調波電流成分1t、Qiuが I fA+++ / rln = (V+/f) ・(
fn/V+n) 4/%X・1/(ILま1)2   
       ・・・(1)但し、 V tQ4n = v+/ (fL+1)%X =Xn
(Ln/V+n):負荷過渡インピーダンス(p、u、
) x(!lq目=%X’ (van/ran) ’ (l
Li1) (f/fn)I (Qzn = V (jl
zn / X j、gjl+また添字のnは定格を表わ
す。
Figure 1 shows the configuration of a 12-phase multiplex inverter similar to the conventional example in Figure 5, and the operation itself is the same. It is not canceled out by the output terminal and is contained as a harmonic voltage between the output terminals U, V, and W lines. As shown in FIG. 2, when the output waveforms of the three-phase inverters (2) and (3) are square waves, the voltage harmonics V contained in the single inverter output voltage, V16:l,... are canceled out, V1221, ■24! I, . . . remain contained in the output. Figure 3 shows the characteristic PWM-PA of this invention.
As shown above, during square wave PAM control, V l 2 LI , V 24 LI , . . . are included in the output voltage, but they are used in a region where the fundamental wave f is relatively high. Therefore, there is no problem as shown below. The output current ripple is each harmonic current component 1t, Qiu is I fA+++ / rln = (V+/f) ・(
fn/V+n) 4/%X・1/(ILma1)2
...(1) However, V tQ4n = v+/ (fL+1)%X = Xn
(Ln/V+n): Load transient impedance (p, u,
) x (!lqth = %X' (van/ran) ' (l
Li1) (f/fn)I (Qzn = V (jl
zn/X j, gjl+The subscript n represents the rating.

(1)式において、V/f =一定を考えると、I +
jlq+1 / I In  = 1/%X・1/(f
l、ql)’   ・(2)通常負荷として訪導電動機
(1,M、)を考えると、%X =0.15が普通で、
fL−12+7)12相時、Ill  ?5.5 % 
    113 43.9  %111%I13による
発生高調波トルクは12次高調波トルクTI2で約1.
9%である。
In equation (1), considering V/f = constant, I +
jjlq+1 / I In = 1/%X・1/(f
l, ql)' (2) Considering the visiting motor (1, M,) as a normal load, %X = 0.15 is normal,
fL-12+7) At 12 phase, Ill? 5.5%
113 43.9%111%The harmonic torque generated by I13 is the 12th harmonic torque TI2, which is approximately 1.
It is 9%.

但し、この場合は基本波出力周波数が比較的高いため、
機械系の軸共振の心配はない。ところがこのままPAM
にて低周波域まで運転すると機械系の共振倍率Q = 
100程度あるものに対しては定格トルクの約1.9倍
のトルク脈動を発生し危険であるし、GTO素子使用時
には低周波域でのPWMが不可欠であり、(t2ntl
)次の高調波による電流リップル、トリクリップル等不
具合を排除するためPWMによる出力基本波周波数制御
と出力基本波電圧制御と同時に少なくともこの場合(1
2±1)次高調波vl□、V l 3を除去あるいは実
用上十分なレベルまで低減する様なPWMパターンが使
用される。
However, in this case, since the fundamental wave output frequency is relatively high,
There is no need to worry about mechanical shaft resonance. However, as it is, PAM
When operating down to low frequency range, the mechanical system resonance magnification Q =
100, it is dangerous to generate torque pulsations approximately 1.9 times the rated torque, and PWM in the low frequency range is essential when using the GTO element.
) At least in this case (1
A PWM pattern is used that eliminates or reduces the 2±1) order harmonics vl□ and Vl3 to a practically sufficient level.

次にPWMパターンについて説明する。第4図はインバ
ータ1相のスイッチング素子のスイッチングパターンで
、81〜a、はスイッチング変化点の角度を示す。この
パターン使用時はa、〜a3の自由度3となり、基本波
振幅、(Ill−1)次高調波、(m十1)高直調波振
幅の制御が可能であり、各次調波は下式で求められる。
Next, the PWM pattern will be explained. FIG. 4 shows the switching pattern of the switching elements of one phase of the inverter, and 81 to a indicate the angle of the switching change point. When using this pattern, there are 3 degrees of freedom for a, ~a3, and it is possible to control the fundamental wave amplitude, (Ill-1)th harmonic, and (m11) harmonic amplitude, and each harmonic is It can be obtained using the formula below.

線間基本波電圧 V+ =−rT/π(2(CO5a、−CO5(a、+
a2)+COS (at”a2”a3))−1)   
      ・・・(3)線間l±1次高調高調波 電圧@ + 1 = fT/ rt (m±1) (2
(CO5((m±1) at)−CO5((m±1) 
(at”a2))”C05((m±1) (a+十a2
+a3)))−1)・・・(4) (3)、(4)式により所望のVl、%+1次のa1〜
a、が求められる。またこの場合偶数調波と3の倍数調
波は出力として現われない。この様なPWMによりm±
1次調波を除去或いは低減して低出力周波数域の高調波
不具合が抑えられる。
Line fundamental wave voltage V+ = -rT/π(2(CO5a, -CO5(a, +
a2)+COS (at"a2"a3))-1)
...(3) Line-to-line l±1st harmonic voltage @ + 1 = fT/rt (m±1) (2
(CO5((m±1) at)-CO5((m±1)
(at”a2)”C05((m±1) (a+10a2
+a3)))-1)...(4) By formulas (3) and (4), the desired Vl,%+1 order a1~
a, is required. Also, in this case, even harmonics and harmonics multiples of 3 do not appear as output. With such PWM, m±
By removing or reducing the first harmonic, harmonic problems in the low output frequency range can be suppressed.

なお、上記実施例では12相多重時について説明したが
、18相、24相時についても同様である。またPWM
は自由度3のパターン式PWMで説明したが、同様の効
果が得られるものなら何でも良い。
In addition, although the above embodiment has been described for 12-phase multiplexing, the same applies to 18-phase and 24-phase multiplexing. Also PWM
Although the explanation has been made using pattern-type PWM with three degrees of freedom, any method may be used as long as the same effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、多相多重電圧形イン
バータの制御を、低出力周波域ではPWMによる波形改
善と出力電圧制御、高串力周波域では方形波PAMとし
、全出力周波数域において高調波による不具合の除去と
スムーズな出力電圧出力周波数制御を可能にしたので、
運転性能の向上と装置の小形化に寄与できる効果がある
As described above, according to the present invention, the control of a polyphase multiple voltage type inverter is performed using PWM waveform improvement and output voltage control in the low output frequency range, square wave PAM in the high force frequency range, and In this way, it is possible to eliminate problems caused by harmonics and to smoothly control the output voltage and output frequency.
This has the effect of contributing to improved operating performance and downsizing of equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)はこの発明の一実施例による多相
多重インバータ装置を示す構成図と出力電圧のベクトル
図、第2図は方形波出力電圧時の高調波分布を示す特性
図、第3図はこの発明の制御実施時の各インバータ入力
直流電圧と出力基本波周波数との関係を示す説明図、第
4図はこの発明の一実施例で説明に使用したPWMパタ
ーン図、第5図(a)、(b)、(c)は従来の12相
多重電圧形インバータの構成図と出力電圧の波形図及び
ベクトル図である。 (1)は可変直流電圧源、(2)、(3)は3相インバ
ーク、(4)、 (6)は出力変圧器−次巻線、(5)
、(7)は出力変圧器二次巻線を示す。 なお、図中同一符号は同一、又は相当部分を示す。
FIGS. 1(a) and (b) are block diagrams and output voltage vector diagrams showing a polyphase multiplex inverter device according to an embodiment of the present invention, and FIG. 2 is a characteristic showing harmonic distribution at square wave output voltage. 3 is an explanatory diagram showing the relationship between each inverter input DC voltage and the output fundamental wave frequency when controlling the present invention, and FIG. 4 is a PWM pattern diagram used for explanation in one embodiment of the present invention. FIGS. 5(a), 5(b), and 5(c) are a configuration diagram, an output voltage waveform diagram, and a vector diagram of a conventional 12-phase multiple voltage type inverter. (1) is a variable DC voltage source, (2) and (3) are 3-phase inverters, (4) and (6) are output transformer-secondary winding, (5)
, (7) indicates the output transformer secondary winding. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)多相多重変圧器に複数の多相インバータの出力を
給電する多相多重電圧形インバータにおいて、出力電圧
制御として低出力周波数或いは一定直流電圧におけるP
WM(パルス幅変調)制御と高出力周波数或いは方形波
PAM(パルス振幅変調)制御を運転周波数によって切
り換え、PWM制御時、各インバータ出力電圧波形は多
重相数をmとして多相多重変圧器で相殺されず出力され
る出力電圧高調波の次数(nm±1)(n=1、2、3
、・・・)に対し、少なくとも最低次付近の(m±1)
次高調波を含有しないよう制御することを特徴とする多
相多重電圧形インバータの制御方式。
(1) In a multi-phase multi-voltage inverter that supplies the output of multiple multi-phase inverters to a multi-phase multi-transformer, P at low output frequency or constant DC voltage is used as output voltage control.
WM (Pulse Width Modulation) control and high output frequency or square wave PAM (Pulse Amplitude Modulation) control can be switched depending on the operating frequency, and during PWM control, each inverter output voltage waveform is offset by a multiphase transformer with the number of multiphases being m. The order (nm±1) of the output voltage harmonics that are output without being output (n=1, 2, 3
,...), at least around the lowest order (m±1)
A control method for a multi-phase multi-voltage inverter characterized by controlling it so as not to contain harmonics.
(2)出力電流リップル、或いは負荷としてのモータ発
生トルクのリップルが実用上差し支えないレベルまで、
少なくともm±1次の高調波を除去しないまでも低減さ
せることを特徴とする特許請求の範囲第1項記載の多相
多重電圧形インバータの制御方式。
(2) The output current ripple or the ripple of the motor generated torque as a load is at a level that does not pose a practical problem.
2. A control method for a multi-phase multi-voltage inverter according to claim 1, characterized in that at least m±1-order harmonics are reduced, if not eliminated.
JP62284039A 1987-11-10 1987-11-10 Control system of polyphase and multiple voltage type inverter Pending JPH01126170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62284039A JPH01126170A (en) 1987-11-10 1987-11-10 Control system of polyphase and multiple voltage type inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62284039A JPH01126170A (en) 1987-11-10 1987-11-10 Control system of polyphase and multiple voltage type inverter

Publications (1)

Publication Number Publication Date
JPH01126170A true JPH01126170A (en) 1989-05-18

Family

ID=17673507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62284039A Pending JPH01126170A (en) 1987-11-10 1987-11-10 Control system of polyphase and multiple voltage type inverter

Country Status (1)

Country Link
JP (1) JPH01126170A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135323A (en) * 1989-10-14 1991-06-10 Mitsubishi Electric Corp Multiple voltage type inverter apparatus
JP2003069351A (en) * 2001-08-29 2003-03-07 Yokogawa Analytical Systems Inc High frequency amplifier circuit and drive method of the high frequency amplifier circuit
JP2008301704A (en) * 2008-09-12 2008-12-11 Hitachi Ltd Power conversion apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285679A (en) * 1985-10-07 1987-04-20 Meidensha Electric Mfg Co Ltd Gate signal generator for multiple inverter
JPS62193596A (en) * 1986-02-18 1987-08-25 Toshiba Corp Inverter unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285679A (en) * 1985-10-07 1987-04-20 Meidensha Electric Mfg Co Ltd Gate signal generator for multiple inverter
JPS62193596A (en) * 1986-02-18 1987-08-25 Toshiba Corp Inverter unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135323A (en) * 1989-10-14 1991-06-10 Mitsubishi Electric Corp Multiple voltage type inverter apparatus
JP2003069351A (en) * 2001-08-29 2003-03-07 Yokogawa Analytical Systems Inc High frequency amplifier circuit and drive method of the high frequency amplifier circuit
JP2008301704A (en) * 2008-09-12 2008-12-11 Hitachi Ltd Power conversion apparatus

Similar Documents

Publication Publication Date Title
US5886888A (en) Voltage source type power converting apparatus
US6850424B2 (en) Inverter with a line-side and load-side freewheeling pulse converter using SiC switching elements
KR100982124B1 (en) Rectifying circuit, and three-phase rectifying circuit
EP0488201B1 (en) Large capacity variable speed driving system for AC electric motor
US7446435B2 (en) Power converter system and method
US10218285B2 (en) Medium voltage hybrid multilevel converter and method for controlling a medium voltage hybrid multilevel converter
JP3544838B2 (en) Multiple inverter device and control method thereof
Beig et al. A novel CSI-fed induction motor drive
US6831442B2 (en) Utilizing zero-sequence switchings for reversible converters
US8045354B2 (en) Active generator control sequence
Wu et al. Voltage stress on induction motors in medium-voltage (2300-6900-V) PWM GTO CSI drives
EP2779403A1 (en) Power conversion system and method
Saito et al. A single-to three-phase matrix converter for a vector-controlled induction motor
JP2010220382A (en) Power conversion apparatus
JPH01126170A (en) Control system of polyphase and multiple voltage type inverter
JP2923727B2 (en) Power converter
JPH06351106A (en) Converter controller
JPH11146657A (en) Power converter
JP2000308368A (en) Power conversion circuit
Oguchi et al. Multilevel current-source and voltage-source converter systems coupled with harmonic canceling reactors
Zhan et al. Performance evaluation of adjustable space-vector PWM strategy for open-winding PMSM drives
JP2561918B2 (en) PWM method for transformer multiple inverter
JP4277360B2 (en) 3-level inverter controller
JPH0779569A (en) Inverter device
Korhonen et al. Varying phase-shift carriers pulse-width modulation for cascaded H-bridges with improved line-to-line voltage