JPH01125957A - Superconductor device - Google Patents

Superconductor device

Info

Publication number
JPH01125957A
JPH01125957A JP62284630A JP28463087A JPH01125957A JP H01125957 A JPH01125957 A JP H01125957A JP 62284630 A JP62284630 A JP 62284630A JP 28463087 A JP28463087 A JP 28463087A JP H01125957 A JPH01125957 A JP H01125957A
Authority
JP
Japan
Prior art keywords
insulating film
blocking
oxide
film
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62284630A
Other languages
Japanese (ja)
Other versions
JPH0680741B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62284630A priority Critical patent/JPH0680741B2/en
Publication of JPH01125957A publication Critical patent/JPH01125957A/en
Publication of JPH0680741B2 publication Critical patent/JPH0680741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent an oxide superconducting material from reacting with a base material and to improve electron mobility by providing a blocking insulating film on an insulating film in an impurity region on a semiconductor substrate, providing a blocking conductive film in the impurity region in an opening formed in the insulating film, and providing oxide superconductor on the conductive film and the blocking insulating film. CONSTITUTION:Silicon oxide is formed on a semiconductor as an insulating film, and an electrode opening is formed at a predetermined position. Thus, the openings of insulating films 2-1, 2-2 are formed in the same size at the same position. Zirconium oxide of the film 2-2 for acid-base resistant reacting is formed by a sputtering method thereon, and an electrode contact is formed as an electrode port 8 on the film 2 of multilayer structure of them. Further, a blocking conductive film 21 is so formed over the blocking insulating film as for oxide superconducting ceramic not to acid-base react with semiconductor in the opening 8. A material 3 which exhibits superconduction is formed in a thin film state thereon, patterned as predetermined, and thermally annealed to selectively crystallize only the mutually reacted part.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は、セラミック系超電導材料を用いた超電導体装
置に関する0本発明は超電導体装置において特に、半導
体装置の相互配線の一部または全部を超電導材料で形成
するため、この超電導の電極・リードに密接してブロッ
キング用絶縁膜を設け、これと半導体との間に酸化珪素
、窒化珪素またはこれらを主成分とする被膜を形成する
とともに、半導体の電極部はブロッキング用導電膜を同
時に設け、安定な半導体装置を70〜100に好ましく
は77に以上の温度で動作せしめんとするものである。
Detailed Description of the Invention "Field of Application of the Invention" The present invention relates to a superconductor device using a ceramic superconducting material. Since the superconducting electrode/lead is formed using a blocking insulating film, a blocking insulating film is provided in close contact with the superconducting electrode/lead, and a film of silicon oxide, silicon nitride, or a film mainly composed of these is formed between this and the semiconductor. The electrode portion is provided with a blocking conductive film at the same time, so that a stable semiconductor device can be operated at a temperature of 70° to 100° C., preferably 77° C. or higher.

「従来の技術」 従来、超電導材料はNb−Ge系(例えばNbzGe)
等の金属材料を線材として用い、超電導マグネットとし
て用いられるに限られていた。
"Conventional technology" Conventionally, superconducting materials are Nb-Ge (for example, NbzGe)
The use of metal materials such as wire rods was limited to use as superconducting magnets.

また最近はセラミック材料で超電導を呈し得ることが知
られていた。しかしこれもインゴット構造であり、薄膜
の超電導材料の形成はまった(提案されていない。
Furthermore, it has recently been known that ceramic materials can exhibit superconductivity. However, this is also an ingot structure, and the formation of thin films of superconducting materials has not been proposed.

いわんや、この薄膜をフォトリソグラフィ技術によりパ
ターニングする方法も、またこれをさらに半導体装置の
相互配線の一部に用いることもまったく知られていない
Furthermore, there is no known method for patterning this thin film using photolithography, nor is there any known method for patterning this thin film using photolithography, nor is there any known method for using this thin film as part of the interconnections of a semiconductor device.

「従来の問題点」 半導体集積回路は近年益々微細化するとともに高速動作
を要求されている。また微細化とともに半導体素子の発
熱による信頼性低下また発熱部の動作速度の低下が問題
となっていた。
"Conventional Problems" In recent years, semiconductor integrated circuits have become increasingly finer and are required to operate at higher speeds. Further, with miniaturization, problems have arisen in that reliability is lowered due to heat generated by semiconductor elements and operating speed of the heat generating portion is lowered.

このため、もし半導体素子を液体窒素温度で動作させん
とすると、その素子での電子およびホールの移動度は室
温のそれに比べて3〜4倍も高めることができ、ひいて
は素子の周波数特性を向上できる。
Therefore, if a semiconductor device is operated at liquid nitrogen temperature, the mobility of electrons and holes in the device can be increased 3 to 4 times compared to that at room temperature, which in turn improves the frequency characteristics of the device. can.

かかる問題を解決するため、超電導体半導体装置におい
て、そのリード線はセラミック材料の超電導材料よりな
る試みがある。しかしかかる酸化物セラミック超電導材
料はきわめてイオン化傾向の大きいBa(バリウム)等
を用いているため、これらと反応し、酸化珪素、窒化珪
素またはこれらを主成分とする絶縁膜と酸化物超電導材
料とが互いに密接してリード等として集積回路を構成さ
せることができない。
In order to solve this problem, there has been an attempt to make the lead wire of a superconductor semiconductor device made of a superconducting ceramic material. However, since such oxide ceramic superconducting materials use Ba (barium), etc., which have a very strong tendency to ionize, they react with these materials, and the oxide superconducting material and silicon oxide, silicon nitride, or an insulating film containing these as main components. It is not possible to configure an integrated circuit as leads or the like in close contact with each other.

「問題を解決すべき手段」 本発明はかかる匝題点を解決するため、半導体装置にお
ける相互配線に極低温(20〜100K好ましくは77
に以上の温度)で超電導を呈する酸化物超電導セラミッ
ク材料を用いるものである。その際に、かかる材料の下
面にかかる材料と基板材料または基板上の酸化珪素、窒
化珪素との間に互いの酸−塩基反応を防ぐいわゆるブロ
ッキング材料を介在せしめた構造としたものである。
"Means to Solve the Problem" In order to solve this problem, the present invention provides interconnections in semiconductor devices at extremely low temperatures (20 to 100K, preferably 77K).
This method uses an oxide superconducting ceramic material that exhibits superconductivity at temperatures above . In this case, a so-called blocking material is interposed between the material on the lower surface of the material and the substrate material or silicon oxide or silicon nitride on the substrate to prevent mutual acid-base reaction.

このブロッキング材料は、酸化ジルコニウム、YSZ 
(イットリウム・スタビライズド・ジルコン)。
This blocking material is zirconium oxide, YSZ
(Yttrium stabilized zircon).

チタン酸ストロンチウム、酸化物超電導材料と同一主成
分の非超電導材料例えばアルミニウム、マグネシウムが
5〜10体積%混入した非超電導酸化物セラミック材料
またはこれらの多層膜(例えば下地の酸化珪素膜上に酸
化ジルコニウム、さらにその上に酸化物非超電導セラミ
ックス、さらにその上に上地の酸化物超電導セラミック
材料構造を有する膜)よりなる。
Strontium titanate, a non-superconducting material that has the same main components as the oxide superconducting material, such as a non-superconducting oxide ceramic material containing 5 to 10% by volume of aluminum or magnesium, or a multilayer film of these (for example, zirconium oxide on the underlying silicon oxide film) , an oxide non-superconducting ceramic material thereon, and an oxide superconducting ceramic material structure thereon).

本発明はこれらのブロッキング用の膜を0.1〜10μ
mの厚さで形成した半導体、特に好ましくは耐熱性を有
する半導体、例えば単結晶シリコン半導体基板を用いて
、この半導体に複数の素子、例えば絶縁ゲイト型電界効
果トランジスタ、バイポーラ型トランジスタ、5IT(
静電誘導型トランジスタ)、抵抗、キャパシタを設ける
。そしてこの半導体基板上のパッシベーション被膜とし
て一般に用いられている酸化珪素、窒化珪素またはこれ
らを主成分とする絶縁膜をコンタクト用の開口部以外に
設ける。本発明はこれら絶縁膜上にブロッキング作用を
有する絶縁膜を主成分上する被膜を設け、この上に電気
抵抗が零または零に近(なる酸化物超電導材料を形成す
る。これをフォトリソグラフィ技術により選択エッチを
してバターニングし、リード等として作用させる。この
エツチングは混成法を用いる場合は、酸性溶液を用いれ
ばよい。また気相法を用いる場合は臭素または塩素を用
いた異方性プラズマエッチを行う。更にその工程の前ま
たは後に500〜1000°Cで熱アニールを特に酸素
、活性酸素等の酸化性雰囲気で1〜20時間もの長時間
行うことにより、超電導現象を極低温で呈するようにセ
ラミック材料の結晶構造を改質する。これらの工程を1
回または複数回繰り返すことにより、1層または各層の
相互配線を電気抵抗が零の材料により形成する。
The present invention uses these blocking membranes with a thickness of 0.1 to 10μ.
A semiconductor, particularly preferably a heat-resistant semiconductor, such as a single crystal silicon semiconductor substrate, is formed to a thickness of m, and a plurality of elements, such as an insulated gate field effect transistor, a bipolar transistor, and
A static induction transistor), a resistor, and a capacitor are provided. As a passivation film on the semiconductor substrate, silicon oxide, silicon nitride, or an insulating film mainly composed of silicon oxide or silicon nitride, which is commonly used, is provided in areas other than the contact openings. In the present invention, a film mainly composed of an insulating film having a blocking effect is provided on these insulating films, and an oxide superconducting material having an electrical resistance of zero or close to zero is formed on this film using photolithography technology. Selective etching is performed and patterned to act as a lead etc. When using a hybrid method, an acidic solution may be used for this etching. When using a gas phase method, an anisotropic plasma using bromine or chlorine can be used for this etching. Etching is performed.Furthermore, thermal annealing is performed at 500 to 1000°C for a long period of time, especially in an oxidizing atmosphere such as oxygen or active oxygen, for a long time of 1 to 20 hours before or after this process, so that the superconducting phenomenon can be exhibited at extremely low temperatures. Modify the crystal structure of the ceramic material.These steps are performed in 1
By repeating this process one or more times, interconnections in one layer or each layer are formed of a material with zero electrical resistance.

「作用」 かくして半導体装置のリードの一部または全部に酸化物
超電導材料を用いることができた。そして半導体素子、
特にシリコン半導体素子に広く用いられる酸素珪素また
は窒化珪素等の珪素を成分とする絶縁材料と酸化物超電
導材料が直接密接しないように、その間にブロッキング
層を構成せしめることにより、酸化物超電導材料の特性
向上のための500〜1000℃の熱アニールでも下地
材料への反応を防ぎ耐えることができた。
"Operation" In this way, the oxide superconducting material could be used for part or all of the leads of the semiconductor device. and semiconductor elements,
In particular, the properties of the oxide superconducting material can be improved by forming a blocking layer between the oxide superconducting material and the insulating material containing silicon such as oxygen silicon or silicon nitride, which are widely used in silicon semiconductor devices, so that they do not come into direct contact with each other. Even thermal annealing at 500 to 1,000°C for improvement was able to be withstood by preventing reactions to the underlying material.

かかる半導体装置を液体窒素温度で動作させると、その
電子またはホール移動度は3〜4倍に向上させることが
できる。加えて、そのリード、電極の電気抵抗を零また
は零に等しくすることが可能となる。周波数特性の遅れ
を示すCR時定数におけるR(抵抗)を零とすることが
でき、そのためきわめて高速動作をさせることが可能と
なる。
When such a semiconductor device is operated at liquid nitrogen temperature, its electron or hole mobility can be improved three to four times. In addition, it becomes possible to make the electrical resistance of the leads and electrodes zero or equal to zero. R (resistance) in the CR time constant, which indicates a delay in frequency characteristics, can be made zero, and therefore extremely high-speed operation is possible.

以下に本発明の実施例を図面に従って説明する。Embodiments of the present invention will be described below with reference to the drawings.

「実施例1」 第1図は本発明の超電導半導体装置の製造工程の実施例
を示す。
"Example 1" FIG. 1 shows an example of the manufacturing process of a superconducting semiconductor device of the present invention.

第1図(A)において、シリコン半導体基板(1)上に
酸化珪素絶縁膜(2−1)を形成する。
In FIG. 1(A), a silicon oxide insulating film (2-1) is formed on a silicon semiconductor substrate (1).

第1図(A)における半導体基板(1)内にはIGFE
T(絶縁ゲイト型半導体装置)、バイポーラトランジス
タの如きアクティブ型素子または抵抗、キャパシタの如
きパッシブ型素子が予め設けられている。そしてこれら
のアクティブ型またはパッシブ型の素子が設けられ、か
かる素子のコンタクトと連結させるための不純物領域が
半導体上部に設けられている。そしてこの不純物領域上
の絶縁膜の一部に開口(8)が形成されている。本発明
の実施例では絶縁膜として半導体上に酸化珪素を0.3
μmの厚さに形成した。そしてこの酸化珪素膜に所定の
位置にフォトエツチング法により電極用コンタクト・ホ
ール(開口)を作製した。このため、絶縁膜(2−1)
 、 (2−2)の開口は同じ位置に同じ大きさで形成
した。さらにこれらの上面に耐酸−塩基反応用ブロッキ
ング絶縁膜(2−2)である酸化ジルコニウムをスパッ
タ法で0.1〜2μ例えば0.4 μmの厚さに形成し
た。そしてこれら多層構造の絶縁膜(2)には電極用コ
ンタクト部が前記した電極用口(8)としている。
There is an IGFE in the semiconductor substrate (1) in FIG. 1(A).
T (insulated gate type semiconductor device), active type elements such as bipolar transistors, or passive type elements such as resistors and capacitors are provided in advance. These active or passive elements are provided, and impurity regions for connection with contacts of these elements are provided on the semiconductor. An opening (8) is formed in a part of the insulating film over this impurity region. In the embodiment of the present invention, 0.3% of silicon oxide is deposited on the semiconductor as an insulating film.
It was formed to a thickness of μm. Contact holes (openings) for electrodes were then formed at predetermined positions in this silicon oxide film by photoetching. Therefore, the insulating film (2-1)
, (2-2) were formed at the same position and with the same size. Furthermore, zirconium oxide as a blocking insulating film (2-2) for acid-base reactions was formed on the upper surfaces of these by sputtering to a thickness of 0.1 to 2 μm, for example, 0.4 μm. The insulating film (2) having a multilayer structure has an electrode contact portion as the electrode opening (8) described above.

さらに第1図(A)において、開口(8)には酸化物超
電導セラミックスと半導体とが酸−塩基反応を生じない
ようにブロッキング用導電膜(21)がブロッキング用
絶縁膜上にまでわたって設けられている。
Furthermore, in FIG. 1(A), a blocking conductive film (21) is provided in the opening (8) over the blocking insulating film to prevent an acid-base reaction between the oxide superconducting ceramic and the semiconductor. It is being

第1図(B)においてはこれらの上面に超電導を呈すべ
き材料(3)を薄膜状に形成する。この薄膜はスパッタ
法で形成した。スクリーン印刷法、真空蒸着法または気
相法(CVD法)特に有磁湯気相法で行ってもよい。
In FIG. 1(B), a thin film of material (3) to exhibit superconductivity is formed on the upper surfaces of these. This thin film was formed by sputtering. Screen printing methods, vacuum evaporation methods or vapor phase methods (CVD methods), particularly porcelain vapor phase methods, may also be used.

成膜した酸化物超電導材料は元素周期表IIa、maお
よび銅の酸化物よりなる化合物であり、形成された酸化
物超電導材料の化学式は一般的には(A+−xBx)C
uzOw、x=o、1〜LV = 2〜4好ましくは2
.5〜3.5+z =1.0〜4.0好ましくは1.5
〜3.5゜w−4,0〜1O10好ましくは6〜8であ
る。AとしてBa、Sr、Ca、、BとしてYまたはy
b等のランタノイド元素を用いる。例えばx =0.6
7+y=3.z =3.H=6〜8で示される(YBa
g)Cu+Oi 〜gを用いた。
The formed oxide superconducting material is a compound consisting of oxides of elements IIa and ma in the periodic table and copper, and the chemical formula of the formed oxide superconducting material is generally (A+-xBx)C
uzOw, x=o, 1~LV=2~4 preferably 2
.. 5-3.5+z = 1.0-4.0 preferably 1.5
-3.5°w-4.0-1O10, preferably 6-8. A as Ba, Sr, Ca, B as Y or y
A lanthanide element such as b is used. For example x = 0.6
7+y=3. z=3. Indicated by H=6 to 8 (YBa
g) Cu+Oi ~g was used.

スパッタに際してはその実施例として、基板温度450
°C、アルゴン雰囲気、周波数50Hz、出力100W
で行った。かかる場合のセラミック材料の膜厚を0.2
〜2μ11例えば1μmの厚さとした。この後、酸素中
700°C(10時間)でアニールを行なった。すると
この酸化動磁電導セラミックス(3)とその下側に予め
作られている酸化珪素(2−1)とは酸化ジルコニウム
(2−2)がブロッキング材料となり反応を防止するこ
とができた。ちなみにこの酸化ジルコニウムが無い場合
は、約20分で酸化珪素と超電導セラミックスの薄膜と
は一体化してしまうことがオージェ分光の観察により明
らかになった。その後この薄膜がより結晶を成長させや
すくすべ(Tcオンセット= 93K (抵抗は93に
より下がりはじめ、実験的には83にで抵抗が実質的に
零になった)の超電導薄膜を作ることができた。もちろ
んこのブロッキング用薄膜がない場合に超電導特性をま
ったく有さないことはいうまでもない。
In sputtering, as an example, the substrate temperature is 450°C.
°C, argon atmosphere, frequency 50Hz, output 100W
I went there. In this case, the thickness of the ceramic material is 0.2
~2μ11 For example, the thickness was 1 μm. After this, annealing was performed at 700°C (10 hours) in oxygen. Then, the zirconium oxide (2-2) became a blocking material between the oxidized magneto-conductive ceramic (3) and the silicon oxide (2-1) previously prepared below it, and was able to prevent the reaction. Incidentally, Auger spectroscopy has revealed that in the absence of this zirconium oxide, silicon oxide and the superconducting ceramic thin film become integrated in about 20 minutes. Afterwards, we were able to create a superconducting thin film in which this thin film facilitated crystal growth (Tc onset = 93K (resistance began to decrease at 93, and experimentally the resistance became essentially zero at 83). Of course, it goes without saying that without this blocking thin film, there is no superconducting property at all.

この後、この薄膜をフォトリソグラフィ技術で所定のパ
ターニングを行った。かくして素子の電極および入力、
出力端子との接続を含む相互配線用の電極およびリード
(5)を構成すべくフォトレジストコートし、水で希釈
した酸溶液例えば硫酸または硝酸で選択除去(エッチ)
を行い第1図(C)を得た。
Thereafter, this thin film was patterned in a predetermined manner using photolithography technology. Thus the element's electrodes and input,
Coated with photoresist to form electrodes and leads (5) for interconnection, including connections with output terminals, and selectively removed (etched) with an acid solution diluted with water, e.g. sulfuric acid or nitric acid.
Figure 1 (C) was obtained.

この選択エッチに臭素(Brz)ガスを用いたプラズマ
エツチングを行ってもよい。かかる場合は、ECR(電
子スピン共鳴)の装置の異方性エツチングが特に有効で
あった。
Plasma etching using bromine (Brz) gas may be performed for this selective etching. In such cases, anisotropic etching using an ECR (electron spin resonance) device was particularly effective.

このパターニングは前記した超電導用薄膜を形成した後
に行い、さらにその後に熱アニールを行ってパターニン
グした相互作用部のみ選択的に結晶化を行うことは有効
である。
It is effective to carry out this patterning after forming the above-mentioned superconducting thin film, and then to perform thermal annealing to selectively crystallize only the patterned interaction areas.

この場合は初期状態において結晶粒径が小さいためより
相互配線の微細パターンが可能である。
In this case, since the crystal grain size is small in the initial state, a finer interconnection pattern is possible.

第1図(D)はこの後多層配線を必要に応じて行った。In FIG. 1(D), multilayer wiring was then performed as necessary.

このため層間絶縁物(6)をPIQ(ポリイミド樹脂)
等の有機樹脂で形成し、さらに開口を形成した後、2層
目のリード(7)、(7’)を作製した。そして2層目
として酸化物超電導セラミックスのリード(7)、(7
”)を構成させた。
For this reason, the interlayer insulator (6) is made of PIQ (polyimide resin).
After forming an opening, a second layer of leads (7) and (7') was produced. The second layer is oxide superconducting ceramic leads (7) and (7).
”) was configured.

「実施例2」 第2図は本発明の他の実施例を示す。"Example 2" FIG. 2 shows another embodiment of the invention.

図面はC,/MO3FET(相補型IGFET)の部分
のみ拡大して示したものである。
The drawing shows only the C,/MO3FET (complementary IGFET) portion enlarged.

図面は熱アニールに十分耐え得るシリコン半導体基板(
1)を用いた。さらにP型井戸(15)を埋置してフィ
ールド絶縁膜を例えば酸化珪素(11)で設けた。一方
のIGFET(絶縁ゲイト型電界効果半導体装置) (
20)はゲイト電極(12)、P型の導電型の不純物領
域としてのソースまたはドレイン(13)およびドレイ
ンまたはソース(14)をPチャネルIGFETとして
設けた。そしてこの不純物領域上にはブロッキング用導
電膜(21)を設けている。他方のIGFET(20’
)は、ゲイト電極(12’)、N型の不純物領域として
のソースまたはドレイン(13’)、ドレインまたはソ
ース(14’)として設け、Nチャネル型IGFETと
した。この不純物領域にはブロッキング用導電膜(21
)を設けている。ゲイト電極(12) 、 (12°)
は多結晶シリコンまたは金属シリサイドとし、これらの
電気的連結その他の相互配線(5) 、 (7)を実施
例1と同様の超電導材料で形成した。
The drawing shows a silicon semiconductor substrate (
1) was used. Furthermore, a P-type well (15) was buried, and a field insulating film was provided using, for example, silicon oxide (11). One IGFET (insulated gate field effect semiconductor device) (
In 20), a gate electrode (12), a source or drain (13) as a P-type conductivity type impurity region, and a drain or source (14) were provided as a P-channel IGFET. A blocking conductive film (21) is provided on this impurity region. The other IGFET (20'
) were provided as a gate electrode (12'), a source or drain (13') as an N-type impurity region, and a drain or source (14') to form an N-channel type IGFET. This impurity region has a blocking conductive film (21
) has been established. Gate electrode (12), (12°)
was made of polycrystalline silicon or metal silicide, and their electrical connections and other interconnections (5) and (7) were formed of the same superconducting material as in Example 1.

この実施例において、超電導セラミックス(5)の下面
の絶縁膜(2)において、セラミックスに密接する側は
少なくともブロッキング性を有する絶縁膜(2−2)と
その下に酸化珪素(例えば(11))またはこれとは別
にこれらの上にリンガラス、窒化珪素等の珪素を主成分
とする絶縁膜(2−1)が形成されていてもよい。また
この超電導材料(5)の上面を覆って他の絶縁材料(6
゛)もやはりブロッキング作用を有する絶縁膜、例えば
酸化ジルコニウムをスパッタ法または有機樹脂を塗布法
で設けている。
In this example, in the insulating film (2) on the lower surface of the superconducting ceramic (5), the side that is in close contact with the ceramic has at least an insulating film (2-2) having blocking properties and a silicon oxide film (for example (11)) underneath. Alternatively, an insulating film (2-1) mainly composed of silicon such as phosphorus glass or silicon nitride may be formed on these. In addition, another insulating material (6) is used to cover the upper surface of this superconducting material (5).
In the case of (2), an insulating film having a blocking effect, for example, zirconium oxide, is provided by sputtering or an organic resin is applied by coating.

この超電導材料を気相法等で作り、下側基板に設けられ
たアクティブ素子に対し何らの損傷を与えない場合はゲ
イト電極も超電導材料で形成してもよい。
If this superconducting material is made by a vapor phase method or the like and does not cause any damage to the active elements provided on the lower substrate, the gate electrode may also be made of the superconducting material.

本発明の実施例においてはブロッキング用材料として酸
化ジルコニウムを主として示した。しかし他のチタン酸
ストロンチウム、YSZであってもよい。さらにこれら
の上に超電導材料と同一主成分を有し、非超電導性を有
する材料を積層して形成することもそれぞれの材料へ相
互の混合を防ぐため有効であった。さらに2層目の導電
膜(7)としてこの絶縁膜(6)上に超電導材料をリー
ド等として形成してもよい。本発明は酸化物超電導セラ
ミックスの長時間の焼成の際、この超電導材料が1μÅ
以下の厚さしかないため、互いが化合または混合して超
電導性を劣化させないために耐酸−塩基反応性のブロッ
キング特性を有することが重要である。
In the examples of the present invention, zirconium oxide was mainly used as the blocking material. However, other strontium titanates, YSZ, may also be used. Furthermore, it was also effective to form a layer of a non-superconducting material having the same main component as the superconducting material and having non-superconducting properties on top of these materials in order to prevent the respective materials from being mixed with each other. Furthermore, a superconducting material may be formed as a lead or the like on this insulating film (6) as a second conductive film (7). In the present invention, when oxide superconducting ceramics are fired for a long time, this superconducting material is
Since the thickness is as follows, it is important to have acid-base reactivity blocking properties in order to prevent deterioration of superconductivity due to mutual combination or mixing.

「実施例3」 この実施例は実施例2に示された1つのIGFET(2
0)等のIGFETをさらに拡大して示したものである
“Example 3” This example is based on one IGFET (2
This is a further enlarged view of an IGFET such as 0).

図面において、基板(1)は珪素よりなり、酸化珪素の
フィールド絶縁膜(11)、ソースまたはドレイン(1
3)、ドレインまたはソース(14)を構成する不純物
領域を有する。さらにゲイ) (12)を有する。
In the drawing, the substrate (1) is made of silicon and includes a silicon oxide field insulating film (11), a source or drain (1), and a silicon oxide field insulating film (11).
3) It has an impurity region that constitutes a drain or source (14). Furthermore, gay) has (12).

またこれら半導体(1) 、 (13) 、 (14)
上およびフィールド絶縁物(11)上には酸化珪素、窒
化珪素またはこれらの多層膜(41)を有する。さらに
この上には酸化ジルコニウム等のブロッキング作用を有
する絶8M膜(40)を有する。不純物領域(13) 
、 (14)には開口(42)が絶縁膜(41)の一部
をブロッキング用絶縁膜(40’)が覆っている。そし
てさらに開口(42)を覆って不純物領域(13) 、
 (14)とオーム接触をする金属、例えばタングステ
ン、モリブデン、チタン、白金またはこれらの珪化物(
15)が設けられ、この上にはさらに多層に白金、金、
銀(16)が設けられている。これら開口と同じ大きさ
に作られたブロッキング用導体(21)とブロッキング
用絶縁膜(40)とにより、酸化物超電導材料(17)
 、 (17’ )および酸化物非超電導材料(27)
等の下面はすべて酸化物が直接酸化物セラミックスと接
しないように覆われている。(17)、(17’)は超
電導特性を有する電極・リードである。ブロッキング用
導体(21)に密接する領域を電極とここでは考える。
In addition, these semiconductors (1), (13), (14)
On top and on the field insulator (11) is silicon oxide, silicon nitride, or a multilayer film (41) of these. Furthermore, there is an 8M film (40) made of zirconium oxide or the like having a blocking effect on top of this. Impurity region (13)
, (14), the opening (42) covers a part of the insulating film (41) with the blocking insulating film (40'). Further, an impurity region (13) is formed to cover the opening (42),
Metals that make ohmic contact with (14), such as tungsten, molybdenum, titanium, platinum, or their silicides (
15) is provided, and on top of this, platinum, gold,
Silver (16) is provided. The blocking conductor (21) and the blocking insulating film (40) made to have the same size as these openings form the oxide superconducting material (17).
, (17') and oxide non-superconducting materials (27)
The lower surfaces of all the oxides are covered to prevent the oxide from coming into direct contact with the oxide ceramics. (17) and (17') are electrodes/leads having superconducting properties. Here, a region in close contact with the blocking conductor (21) is considered to be an electrode.

そして(27)は酸化物超電導セラミックスをイオン注
入法によりアルミニウム、マグネシウム等を5〜20体
積%添加して非超電導特性を有せしめたリード間のアイ
ソレイション領域である。かくしてこの充填物により、
酸化物超電導の電極・リード(17)は外部を囲まれ、
かつそれらは互いに概略同一の高さとすることができる
ようになった。
And (27) is an isolation region between leads in which 5 to 20 volume % of aluminum, magnesium, etc. are added to the oxide superconducting ceramic by ion implantation to give it non-superconducting properties. Thus, with this filling,
The oxide superconducting electrode/lead (17) is surrounded on the outside,
Moreover, they can now be made to have approximately the same height as each other.

さらに、眉間絶縁膜(28)と多層用の連結部(18)
 。
Furthermore, the glabella insulating film (28) and the multilayer connection part (18)
.

(18’ ”)とを同様に設けた。ここでは大部分は眉
間絶縁膜(28’)として構成させている。
(18''') were similarly provided. Here, most of the glabella insulating film (28') is formed.

さらに2層目用の酸化物超電導材料の電極・リード(1
9) 、 (19”)と充填用絶縁膜(29)とを同時
に作った。これらのすべてに対し、ファイナルパッシベ
イションとしてブロッキング用絶縁膜(30)を形成し
た。これはここでは酸化ジルコニウム、YSZをスパッ
タ法で0.1〜2μm例えば0.3μmの厚さに形成し
た。
In addition, electrodes and leads of oxide superconducting material for the second layer (1
9), (19") and a filling insulating film (29) were made at the same time. For all of these, a blocking insulating film (30) was formed as a final passivation. Here, this is made of zirconium oxide, YSZ was formed to a thickness of 0.1 to 2 μm, for example 0.3 μm, by sputtering.

外部引出し用電極(33)を白金のコンタクト(31)
、アルミニウム、金等の連結用金属(32)とにより作
製した。ファイナルパッシベイションもこれらの酸化物
超電導材料の電極・リードをブロッキング作用を有する
絶縁膜で覆うことは高信顧性を有せしめるため有効であ
る。とくにこの材料は水をもブロッキングするため、超
電導セラミックスの劣化をも防ぐことができた。
Connect the external extraction electrode (33) to the platinum contact (31)
, a connecting metal (32) such as aluminum, gold, etc. In final passivation, it is effective to cover electrodes and leads made of these oxide superconducting materials with an insulating film having a blocking effect to ensure high reliability. In particular, since this material also blocks water, it was possible to prevent the deterioration of superconducting ceramics.

「効果」 本発明によりこれらの半導体装置を室温ではなく、冷却
して形成する場合において実用化が初めて可能となった
"Effects" The present invention has made it possible for the first time to put these semiconductor devices into practical use when they are formed not at room temperature but at cooling.

特に半導体は液体窒素温度に冷却することにより周波数
特性を向上させることができる。そして他方、低温にす
ることにより抵抗が増してしまう金属を用いることなく
、本発明は超電導材料を用いた。しかもかかる超電導材
料が有効が用いられるべくその下面に接する絶縁材料は
ブロッキング用材料とし、またその材料もブロッキング
用導電材料とした。
In particular, the frequency characteristics of semiconductors can be improved by cooling them to liquid nitrogen temperature. On the other hand, the present invention uses a superconducting material instead of using a metal whose resistance increases when the temperature is lowered. Moreover, in order to effectively use such a superconducting material, the insulating material in contact with the lower surface thereof is made of a blocking material, and that material is also made of a blocking conductive material.

そのため、本発明の技術思想を発展させることにより、
16M〜IGビット等の超々LSIに対する応用も可能
となった。
Therefore, by developing the technical idea of the present invention,
Application to ultra-super LSIs such as 16M to IG bits has become possible.

本発明において、半導体はシリコンではな(GaAs等
の化合物半導体であってもよい、またシリコン半導体上
にGaAs等の■−■化合物半導体をヘテロエピタキシ
ャル成長をせしめ、この半導体薄膜を用いてもよい。か
くすることにより超高速動作を指せることが可能となる
。しかしアニールの温度を下げ、アニール中に半導体基
板を劣化しないように工夫する必要がある。
In the present invention, the semiconductor is not silicon (it may also be a compound semiconductor such as GaAs), or a semiconductor thin film may be used by heteroepitaxially growing a ■-■ compound semiconductor such as GaAs on a silicon semiconductor. This makes it possible to achieve ultra-high-speed operation. However, it is necessary to lower the annealing temperature and take measures to prevent deterioration of the semiconductor substrate during annealing.

本発明は超電導材料を銅の酸化物の超電導材料とした。In the present invention, the superconducting material is a copper oxide superconducting material.

しかし微細パターンができる他の超電導材料を用いるこ
とも有効である。
However, it is also effective to use other superconducting materials that can be formed into fine patterns.

本発明において、基板としてはアクティブ素子が設けら
れた半導体材料と、その上面に非酸化物材料が設けられ
たものを用いた。しかしYSZ (イットリューム・ス
タビライズド・ジルコン)、5rTiO=等の熱膨張係
数の概略同一のセラミック材料をアルミナ板等の上面に
形成したものを基板としてもよい。すると熱膨張係数を
合わせられるため作りやすい。しかし他方、かかる材料
を用いる場合はアクティブ素子は別途段けられなければ
ならず、超高集積回路化も成就しに(いという欠点を有
する。
In the present invention, the substrate used is a semiconductor material provided with active elements and a non-oxide material provided on its upper surface. However, the substrate may be formed by forming a ceramic material having approximately the same coefficient of thermal expansion, such as YSZ (yttrium stabilized zircon) or 5rTiO=, on the upper surface of an alumina plate or the like. This makes it easier to manufacture because the coefficient of thermal expansion can be matched. On the other hand, however, when such a material is used, active elements must be separately arranged, making it difficult to achieve ultra-high integration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造工程を示す。 第2図および第3図は本発明の他の実施例を示す。 FIG. 1 shows the manufacturing process of the present invention. 2 and 3 show other embodiments of the invention.

Claims (1)

【特許請求の範囲】 1、半導体基板上部の不純物領域上の酸化珪素、窒化珪
素またはこれらを主成分とする絶縁膜と、前記絶縁膜の
上面にブロッキング用絶縁膜とを設け、前記絶縁膜に開
口を設け、前記開口の前記不純物領域上にブロッキング
用導電膜が設けられ、該ブロッキング用導電膜および前
記ブロッキング用絶縁膜上に酸化物超電導体が設けられ
たことを特徴とする超電導体装置。 2、特許請求の範囲第1項において、ブロッキング用絶
縁膜は酸化ジルコニウム、YSZ(イットリウム・スタ
ビライズド・ジルコン)、酸化イットリウム、チタン酸
ストロンチウム、酸化物超電導材料と同一主成分を有す
る非超電導材料またはこれらの多層膜よりなることを特
徴とする超電導体装置。 3、特許請求の範囲第1項において、ブロッキング用導
電膜は半導体の不純物領域に密接してモリブデン、チタ
ン、タングステン、白金またはその珪化物または該上に
白金または銀が多層に設けられたことを特徴とする超電
導体装置。
[Claims] 1. An insulating film made of silicon oxide, silicon nitride, or containing these as main components on an impurity region in an upper part of a semiconductor substrate, and a blocking insulating film on the upper surface of the insulating film, A superconductor device comprising an opening, a blocking conductive film provided on the impurity region of the opening, and an oxide superconductor provided on the blocking conductive film and the blocking insulating film. 2. In claim 1, the blocking insulating film is made of zirconium oxide, YSZ (yttrium stabilized zircon), yttrium oxide, strontium titanate, a non-superconducting material having the same main component as the oxide superconducting material, or A superconductor device comprising these multilayer films. 3. Claim 1 states that the blocking conductive film is made of molybdenum, titanium, tungsten, platinum, or a silicide thereof, or a multilayer of platinum or silver is provided on the impurity region of the semiconductor. Characteristic superconductor device.
JP62284630A 1987-11-11 1987-11-11 Superconductor device Expired - Lifetime JPH0680741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62284630A JPH0680741B2 (en) 1987-11-11 1987-11-11 Superconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62284630A JPH0680741B2 (en) 1987-11-11 1987-11-11 Superconductor device

Publications (2)

Publication Number Publication Date
JPH01125957A true JPH01125957A (en) 1989-05-18
JPH0680741B2 JPH0680741B2 (en) 1994-10-12

Family

ID=17680957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62284630A Expired - Lifetime JPH0680741B2 (en) 1987-11-11 1987-11-11 Superconductor device

Country Status (1)

Country Link
JP (1) JPH0680741B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171245A (en) * 1987-12-25 1989-07-06 Mitsubishi Metal Corp Structure of superconductor interconnection
JPH01218045A (en) * 1988-02-26 1989-08-31 Nec Corp Semiconductor device
JPH0282585A (en) * 1988-09-19 1990-03-23 Res Dev Corp Of Japan Superconducting wiring

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154613A (en) * 1984-01-25 1985-08-14 Hitachi Ltd Semiconductor device for ultra-low temperature
JPS63300580A (en) * 1987-05-29 1988-12-07 Nec Corp Substrate for electronic device
JPS6454746A (en) * 1987-08-26 1989-03-02 Matsushita Electric Ind Co Ltd Forming method for superconducting wiring

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154613A (en) * 1984-01-25 1985-08-14 Hitachi Ltd Semiconductor device for ultra-low temperature
JPS63300580A (en) * 1987-05-29 1988-12-07 Nec Corp Substrate for electronic device
JPS6454746A (en) * 1987-08-26 1989-03-02 Matsushita Electric Ind Co Ltd Forming method for superconducting wiring

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171245A (en) * 1987-12-25 1989-07-06 Mitsubishi Metal Corp Structure of superconductor interconnection
JPH01218045A (en) * 1988-02-26 1989-08-31 Nec Corp Semiconductor device
JPH0282585A (en) * 1988-09-19 1990-03-23 Res Dev Corp Of Japan Superconducting wiring

Also Published As

Publication number Publication date
JPH0680741B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
US4837609A (en) Semiconductor devices having superconducting interconnects
US4960751A (en) Electric circuit having superconducting multilayered structure and manufacturing method for same
US5051396A (en) Method of manufacturing superconducting patterns by adding impurities
KR950010206B1 (en) Electronic device and manufacturing method thereof
US5283465A (en) Superconducting lead on integrated circuit
US5212150A (en) Oxide superconducting lead for interconnecting device component with a semiconductor substrate via at least one buffer layer
US5401716A (en) Method for manufacturing superconducting patterns
JPH01125957A (en) Superconductor device
US5274268A (en) Electric circuit having superconducting layered structure
US5227361A (en) Oxide superconducting lead for interconnecting device component with a semiconductor substrate via at least one buffer layer
JPH01125958A (en) Superconductor device
JP2747557B2 (en) Superconductor device
JP2678232B2 (en) Superconductor device
JPS63245975A (en) Superconductor device
JPH0736404B2 (en) Method for manufacturing superconductor device
JPH0577312B2 (en)
JPH0561783B2 (en)
JPS63220546A (en) Manufacture of superconducting device
JPS63220544A (en) Superconducting semiconductor device
JPS63220545A (en) Manufacture of superconducting semiconductor device
JPS63250882A (en) Insulating method for superconducting material
JPS63299364A (en) Manufacture of semiconductor device
JPH0634419B2 (en) Superconducting device fabrication method
JPH01238145A (en) Semiconductor integrated circuit device
Miyashiro The Possibilities for Applying Superconductive Ceramics to HMT (Hybrid Microelectronics Technology)