JPH01125879A - Manufacture of oxide superconductor thin film - Google Patents

Manufacture of oxide superconductor thin film

Info

Publication number
JPH01125879A
JPH01125879A JP62283656A JP28365687A JPH01125879A JP H01125879 A JPH01125879 A JP H01125879A JP 62283656 A JP62283656 A JP 62283656A JP 28365687 A JP28365687 A JP 28365687A JP H01125879 A JPH01125879 A JP H01125879A
Authority
JP
Japan
Prior art keywords
thin film
substrate
film
oxide superconducting
superconducting thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62283656A
Other languages
Japanese (ja)
Inventor
Shigeru Matsuno
繁 松野
Iwao Kawamata
巌 河又
Mikio Watanabe
渡辺 幹男
Hisao Watai
渡井 久男
Kazuyoshi Kojima
一良 児島
Fumio Fujiwara
藤原 二三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62283656A priority Critical patent/JPH01125879A/en
Publication of JPH01125879A publication Critical patent/JPH01125879A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain an oxide superconductor thin film with a high critical temperature without performing a post-heat treatment by a method wherein an oxygen gas is blew directly onto a substrate immediately after the formation of the film to make concurrently the promotion of oxidation of the film, the cooling of the substrate, and the return of the pressure to a standard one. CONSTITUTION:A crystallized film is obtained by heating a substrate at the formation of the film. An oxygen gas is blew onto the substrate so as to make concurrently the promotion of oxidation of the film, the cooling of the substrate, and the return of the pressure to a standard one for the formation of the oxide superconductor thin film. By these processes, a post-heat treatment can be dispensed with, an insulating film used for the formation of an element is formed, and then an oxide superconductor thin film of a high critical temperature can be formed thereon without breaking the insulating film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超電導電子効果を用いた磁気センサ、電磁
波検出器、光スィッチ、ジョセフソン集積回路等に適用
するための高い臨界温度を持つ酸化物超電導薄膜を後の
熱処理無しに製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is an oxidation device with a high critical temperature for application to magnetic sensors, electromagnetic wave detectors, optical switches, Josephson integrated circuits, etc. using superconducting electronic effects. The present invention relates to a method for manufacturing superconducting thin films without subsequent heat treatment.

〔従来の技術〕[Conventional technology]

従来、高い臨界温度を持つ酸化物超電導薄膜の製造方法
として、 5rTiO,、MgOなどの単結晶基板にス
パッタリング法により成膜を行い、後に酸素気流中での
熱処理(〜920℃程度)を施す方法がある。このよう
な従来のスパッタリング法は、成膜終了直後の高温、低
圧(〜10−”Torr)の状態が存在することにより
十分な酸化が行われず、後の熱処理を必要とする。(例
えば雑誌:電子情報通信学会技術研究報告CPM117
−4(1987) p19〜23)。
Conventionally, the method for manufacturing oxide superconducting thin films with high critical temperatures is to deposit films on single-crystal substrates such as 5rTiO, MgO, etc. by sputtering, and then perform heat treatment (about 920°C) in an oxygen stream. There is. In such conventional sputtering methods, sufficient oxidation does not occur due to the presence of high temperature and low pressure (~10-'' Torr) conditions immediately after film formation, and subsequent heat treatment is required. (For example, magazines: Institute of Electronics, Information and Communication Engineers Technical Research Report CPM117
-4 (1987) p19-23).

〔発明が解決しようと・する問題点〕[Problem that the invention attempts to solve]

このように従来のスパッタリング法による酸化物超電導
薄膜の製造方法においては、高い臨界温度を持つ酸化物
超電導薄膜は、スパッタリング法によるY−Ba−Cu
−0系の作製を例にとれば、成膜後に酸素気流中での熱
処理(〜920℃程度)を施さなければ良好な特性が得
られず、このような高温での熱処理を行うと、トンネル
接合型のジョセフソン素子などを作る上で絶縁膜が破壊
されるなどの問題点があった。
In this way, in the conventional method for manufacturing oxide superconducting thin films by sputtering, the oxide superconducting thin film with a high critical temperature is produced by Y-Ba-Cu sputtering.
Taking the production of -0 series as an example, good properties cannot be obtained unless heat treatment is performed in an oxygen stream (about 920°C) after film formation. There were problems such as destruction of the insulating film when making junction-type Josephson devices.

この発明はこのような問題点を解決するためになされた
もので、後の熱処理を必要としない酸化物超電導薄膜の
製造方法を得ることを目的としている。
The present invention was made to solve these problems, and aims to provide a method for manufacturing an oxide superconducting thin film that does not require subsequent heat treatment.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る酸化物超電導薄膜の製造方法は、スパッ
タリング法により酸化物超電導薄膜を成膜する過程にお
いて、基板を加熱することにより結晶化多結晶薄膜また
は単結晶薄膜を得る工程と、成膜終了直後に酸素ガスを
基板に直接吹きつけることにより膜の酸化の促進、基板
の冷却および常圧への復帰を同時に行う工程とを施す方
法である。
The method for producing an oxide superconducting thin film according to the present invention includes a step of heating a substrate to obtain a crystallized polycrystalline thin film or a single crystal thin film in the process of forming an oxide superconducting thin film by a sputtering method, and a step of obtaining a crystallized polycrystalline thin film or a single crystal thin film by heating a substrate, and a step of forming an oxide superconducting thin film by a sputtering method. Immediately thereafter, oxygen gas is directly blown onto the substrate to promote oxidation of the film, cool the substrate, and return the pressure to normal pressure at the same time.

酸化物超電導薄膜としては、町1Mよ、Cuおよび0を
含む酸化物で、M1はIIIa族の元素、M2はIIa
族の元素のものがある。
The oxide superconducting thin film is an oxide containing Cu and 0, M1 is a group IIIa element, and M2 is an IIa group element.
There are elements of the group.

上記ma族の元素としては、La、 V、 Yb、 S
e、 Ce、Pr、 Sm、 Ho、 Er、 Nd、
 GdおよびTmのいずれか1種、■a族の元素として
はMg、 Sr、 BaおよびCaのいずれか1種以上
のものがある。
The above ma group elements include La, V, Yb, S
e, Ce, Pr, Sm, Ho, Er, Nd,
One of Gd and Tm, and one or more of Mg, Sr, Ba, and Ca are examples of the a-group elements.

〔作 用〕[For production]

この発明における酸化物超電導薄膜の製造方法では、成
膜時に基板加熱を行うことにより結晶化膜を得るととも
に、成膜終了直後に酸素ガスを基板に直接吹きつけるこ
とにより膜の酸化の促進と基板の冷却、常圧への復帰を
同時に行い、高臨界温度の酸化物超電導薄膜を製造する
。この場合、後の熱処理を必要とせず、素子作製のため
の絶縁膜を形成した後で、その絶縁膜を破壊することな
く、その上に新たに高臨界温度の酸化物超電導薄膜の成
膜が可能である。
In the method for producing an oxide superconducting thin film in this invention, a crystallized film is obtained by heating the substrate during film formation, and oxygen gas is directly blown onto the substrate immediately after film formation to accelerate the oxidation of the film and the substrate. The oxide superconducting thin film with a high critical temperature is produced by simultaneously cooling and returning to normal pressure. In this case, after forming an insulating film for device fabrication without the need for subsequent heat treatment, a new high-critical-temperature oxide superconducting thin film can be formed on top of it without destroying the insulating film. It is possible.

〔実施例〕〔Example〕

以下、この発明の酸化物超電導薄膜の製造方法の一実施
例を具体的に説明する。
Hereinafter, one embodiment of the method for manufacturing an oxide superconducting thin film of the present invention will be described in detail.

第1図はスパッタリング法によるこの発明の実施例に用
いる酸化物超電導薄膜の製造装置の構成図である。図に
おいて、(1)は真空チャンバ、(2)はスパッタ電極
(基板側)、(3)はスパッタ電極(ターゲット側)、
(4)はスパッタ・ターゲット、(5)は基板加熱ヒー
ター、(6)は基板、(7)はスパッタガス導入口、(
8)は酸化促進ガス導入口、(9)は排気口である。
FIG. 1 is a block diagram of an apparatus for producing an oxide superconducting thin film using a sputtering method in an embodiment of the present invention. In the figure, (1) is a vacuum chamber, (2) is a sputter electrode (substrate side), (3) is a sputter electrode (target side),
(4) is a sputtering target, (5) is a substrate heating heater, (6) is a substrate, (7) is a sputtering gas inlet, (
8) is an oxidation promoting gas inlet, and (9) is an exhaust port.

上記装置を使って実施した製造工程を以下に示す。スパ
ッタにより形成される酸化物薄膜の組成がYBa、Cu
30.となるように、スパッタ・ターゲット(4)の組
成はYBa2Cu4.s Oa 、sとした。用いた基
板(6)は5rTiO,の単結晶で、加熱ヒーター(5
)により成膜時は700℃となるようにした。スパッタ
ガス導入口(7)から導入するスパッタガスは20%0
□−Arガスで、流量は5cc/min、真空度は5 
X 10−” Torrであった。高周波電力tsot
tでスパッタを2時間行い、終了直後に酸化促進ガス導
入口(8)より、酸化ガスを200cc/minの流電
で5分間基板に吹きつけ、酸化促進、冷却、常圧への復
帰を行い成膜を終了した。
The manufacturing process carried out using the above device is shown below. The composition of the oxide thin film formed by sputtering is YBa, Cu.
30. The composition of the sputter target (4) is YBa2Cu4. s Oa, s. The substrate (6) used was a single crystal of 5rTiO.
), the temperature was set at 700° C. during film formation. The sputter gas introduced from the sputter gas inlet (7) is 20% 0.
□-Ar gas, flow rate 5cc/min, vacuum degree 5
X 10-” Torr. High frequency power tsot
Sputtering was performed at t for 2 hours, and immediately after completion, oxidizing gas was sprayed onto the substrate from the oxidizing gas inlet (8) with a current of 200 cc/min for 5 minutes to promote oxidation, cool it, and return to normal pressure. Film formation has been completed.

上記の操作により得られた酸化物超電導薄膜は後の熱処
理を施すことなく液体窒素温度で超電導特性を示した6
得られた膜厚は1μm、臨界温度は90k、遷移幅は8
k、臨界電流密度は20万A/cdであった。これらの
値は素子を作製する上において十分な値である。
The oxide superconducting thin film obtained by the above procedure showed superconducting properties at liquid nitrogen temperature without any subsequent heat treatment6.
The obtained film thickness was 1 μm, the critical temperature was 90 K, and the transition width was 8
k, and the critical current density was 200,000 A/cd. These values are sufficient for manufacturing the device.

この発明に係わる酸化物超電導薄膜としては、上記実施
例であげたY−Ba−Cu−0系以外に、Er−Ba−
Cu−0系でも可能であり、ターゲット組成がErBa
、 Cu、 07である以外はY−Ba−Cu−0系と
同じ条件で成膜を行ったところ、同様に液体窒素温度で
超電導特性を示した。
The oxide superconducting thin film according to the present invention includes Er-Ba-
It is also possible to use Cu-0 system, and the target composition is ErBa.
When the film was formed under the same conditions as the Y-Ba-Cu-0 system, except that , Cu, 07 was used, it similarly exhibited superconducting properties at liquid nitrogen temperature.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、スパッタリング法によ
る酸化物超電導薄膜の成膜過程において、基板を加熱す
ることにより結晶化多結晶薄膜あるいは単結晶薄膜を得
る工程と、成膜終了直後に酸素ガスを基板に直接吹きつ
けることにより膜の酸化の促進、基板の冷却および常圧
への復帰を同時に行う工程とを施すことにより、後の熱
処理を施すこと無く、高臨界温度の酸化物超電導薄膜が
得られる効果がある。
As described above, according to the present invention, in the process of forming an oxide superconducting thin film by the sputtering method, there are two steps: heating the substrate to obtain a crystallized polycrystalline thin film or a single crystal thin film, and immediately after the completion of the film forming, an oxygen gas By spraying directly onto the substrate to accelerate the oxidation of the film, cooling the substrate, and returning it to normal pressure at the same time, a high critical temperature oxide superconducting thin film can be formed without any subsequent heat treatment. There are benefits to be gained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に用いる酸化物超電導薄膜
の製造装置を示す構成図である。 図において、(1)は真空チャンバ、 (2)、(3)
はスパッタ電極、(4)はスパッタ・ターゲット、(5
)は基板加熱ヒーター、(6)は基板、(7)はスパッ
タガス導入口、(8)は酸化促進ガス導入口、(9)は
排気口である。
FIG. 1 is a block diagram showing an apparatus for producing an oxide superconducting thin film used in an embodiment of the present invention. In the figure, (1) is a vacuum chamber, (2), (3)
is a sputter electrode, (4) is a sputter target, (5
) is a substrate heating heater, (6) is a substrate, (7) is a sputtering gas inlet, (8) is an oxidation promoting gas inlet, and (9) is an exhaust port.

Claims (4)

【特許請求の範囲】[Claims] (1)スパッタリング法により酸化物超電導薄膜を成膜
する過程において、基板を加熱することにより結晶化多
結晶薄膜または単結晶薄膜を得る工程と、成膜終了直後
に酸素ガスを基板に直接吹きつけることにより膜の酸化
の促進、基板の冷却および常圧への復帰を同時に行う工
程とを施すことを特徴とする酸化物超電導薄膜の製造方
法。
(1) In the process of forming an oxide superconducting thin film by the sputtering method, there is a step of heating the substrate to obtain a crystallized polycrystalline thin film or a single crystal thin film, and immediately after the completion of the film formation, oxygen gas is directly blown onto the substrate. A method for producing an oxide superconducting thin film, comprising the steps of simultaneously promoting oxidation of the film, cooling the substrate, and returning to normal pressure.
(2)酸化物超電導薄膜がM_1、M_2、Cuおよび
Oを含む酸化物で、M_1はIIIa族の元素、M_2は
IIa族の元素であることを特徴とする特許請求の範囲第
1項記載の酸化物超電導薄膜の製造方法。
(2) The oxide superconducting thin film is an oxide containing M_1, M_2, Cu and O, where M_1 is a group IIIa element and M_2 is
The method for producing an oxide superconducting thin film according to claim 1, characterized in that the element is a group IIa element.
(3)IIIa族の元素はLa、Y、Yb、Sc、Ce、
Pr、Sm、Ho、Er、Nd、GdおよびTmのいず
れか1種であることを特徴とする特許請求の範囲第2項
記載の酸化物超電導薄膜の製造方法。
(3) Group IIIa elements are La, Y, Yb, Sc, Ce,
3. The method for producing an oxide superconducting thin film according to claim 2, wherein the material is any one of Pr, Sm, Ho, Er, Nd, Gd, and Tm.
(4)IIa族の元素はMg、Sr、BaおよびCaのい
ずれか1種以上であることを特徴とする特許請求の範囲
第2項記載の酸化物超電導薄膜の製造方法。
(4) The method for producing an oxide superconducting thin film according to claim 2, wherein the Group IIa element is any one or more of Mg, Sr, Ba, and Ca.
JP62283656A 1987-11-10 1987-11-10 Manufacture of oxide superconductor thin film Pending JPH01125879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62283656A JPH01125879A (en) 1987-11-10 1987-11-10 Manufacture of oxide superconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62283656A JPH01125879A (en) 1987-11-10 1987-11-10 Manufacture of oxide superconductor thin film

Publications (1)

Publication Number Publication Date
JPH01125879A true JPH01125879A (en) 1989-05-18

Family

ID=17668354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62283656A Pending JPH01125879A (en) 1987-11-10 1987-11-10 Manufacture of oxide superconductor thin film

Country Status (1)

Country Link
JP (1) JPH01125879A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855278A (en) * 1986-06-11 1989-08-08 Fuji Photo Film Co., Ltd. Heat-sensitive recording material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855278A (en) * 1986-06-11 1989-08-08 Fuji Photo Film Co., Ltd. Heat-sensitive recording material

Similar Documents

Publication Publication Date Title
JPH01125879A (en) Manufacture of oxide superconductor thin film
JPH0472777A (en) Substrate for superconducting device
JPS63283086A (en) Manufacture of superconducting thin film
JPH0238310A (en) Production of oxide high temperature superconductive thin film
JPH01111718A (en) Process for forming superconductive thin film
JP3105014B2 (en) Superconducting thin film manufacturing method
JPH0315119A (en) Manufacture of oxide superconductor wire
JPH04167577A (en) Manufacture of superconductive wiring
JPH0244786A (en) Manufacture of josephson element
JPH01157407A (en) Thin superconductive film, method for its manufacture and its use
JPH06287100A (en) Formation of thin oxide superconducting film containing rare earth element
JPH01282122A (en) Production of thin film superconductor
JPH01212215A (en) Production of thin film of high temperature oxide superconductor
JPH03234071A (en) Josephson element
JPH02255507A (en) Production of high-temperature superconducting thin film
JPH01259582A (en) Manufacture of oxide superconductive thin film
JPH01249607A (en) Production of oxide superconducting film
JPH0214816A (en) Production of oxide superconducting thin film
JPS63248019A (en) Manufacture of oxide superconductive thin film
JPH01111717A (en) Production of oxide superconductive thin film
JPH0412018A (en) Tl superconductive material
JPH01226183A (en) Manufacture of ceramic superconductor
JPH01246354A (en) Production of passivation film on thin film of high temperature oxide superconductor
JPH04317408A (en) Oxide superconducting material
JPH01201009A (en) Production of oxide superconductor