JPH01124960A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH01124960A
JPH01124960A JP28270287A JP28270287A JPH01124960A JP H01124960 A JPH01124960 A JP H01124960A JP 28270287 A JP28270287 A JP 28270287A JP 28270287 A JP28270287 A JP 28270287A JP H01124960 A JPH01124960 A JP H01124960A
Authority
JP
Japan
Prior art keywords
battery
lithium
negative electrode
nonaqueous electrolyte
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28270287A
Other languages
Japanese (ja)
Other versions
JPH0793140B2 (en
Inventor
Satoshi Ubukawa
生川 訓
Satoru Fukuoka
悟 福岡
Tomoji Mizoguchi
溝口 智司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP28270287A priority Critical patent/JPH0793140B2/en
Publication of JPH01124960A publication Critical patent/JPH01124960A/en
Publication of JPH0793140B2 publication Critical patent/JPH0793140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To improve the storage performance of a battery by adding an aluminium salt having no adverse effect on the battery and having high solubility to a nonaqueous electrolyte. CONSTITUTION:When aluminium trifluoromethanesulfonate, Al(CF3SO3)3, is added to a nonaqueous electrolyte, Al<3+> and CF3SO3<-> are dissociated, and Al<3+> is converted into metallic aluminium on a lithium negative electrode and the metallic aluminium forms a Li-Al alloy. Although LiCF3SO3 is formed in this process, it has no adverse effect on a battery and has high solubility in an organic solvent and is not deposited. Even if moisture is penetrated into the battery, passivation on the surface of the lithium is prevented. Deterioration in battery performance is prevented and storage performance, espetially that under high temperature-high humidity is improved.

Description

【発明の詳細な説明】 イ 産業上の利用分野 本発明はリチウムを活物質とする負極と、金属の酸化物
、硫化物、ハロゲン化物などを活物質とする正極と、非
水系の電解液とを備える非水電解液電池に関するもので
ある。
[Detailed Description of the Invention] A. Field of Industrial Application The present invention provides a negative electrode using lithium as an active material, a positive electrode using a metal oxide, sulfide, halide, etc. as an active material, and a non-aqueous electrolyte. The present invention relates to a non-aqueous electrolyte battery.

口 従来の技術 この種電池は高エネルギー着炭を有し、且自己放電が少
ないという利点を有するため注目されており、事笑、正
極活物質として二酸化マンガン、酸化第二銅、フッ化炭
素或いはクロム酸銀を用いた電池が実用化に至っている
Conventional technology This type of battery has attracted attention because it has the advantages of high energy carburization and low self-discharge. Batteries using silver chromate have come into practical use.

ところで、近年この種電池は適用範囲の拡大に伴いさら
に高い信頼性が望まれている。例えば、高温高湿の雰囲
気下で長期間保存し念場合、雰囲気中の水分が電池内に
侵入し、活性なリチウムと水分との反応によシ負極表面
に不働態膜が生成して電池内部抵抗が増大する。
Incidentally, in recent years, as the range of application of this type of battery has expanded, even higher reliability has been desired. For example, if the battery is stored for a long period of time in a high-temperature, high-humidity atmosphere, moisture in the atmosphere will enter the battery, and the active lithium will react with the moisture to form a passive film on the surface of the negative electrode, causing the inside of the battery. Resistance increases.

このような電池内部抵抗の増大を抑制するために、リチ
ウム負極の表面にリチウム−アルミニウム合金層を設け
ることが有効であると云われている0 その手段の一例として特開昭61−74264号公報に
開示されているように、金属アルミニウムをリチウム負
極表面に圧着する方法がある。圧着された金属アルミニ
ウムは電解液の存在下でリチウムと反応しリチウム負極
の表面にリチウム−アルミニウム合金層が形成され葛。
In order to suppress such an increase in battery internal resistance, it is said that it is effective to provide a lithium-aluminum alloy layer on the surface of the lithium negative electrode. An example of this method is disclosed in Japanese Patent Laid-Open No. 61-74264. There is a method of press-bonding metallic aluminum to the surface of a lithium negative electrode, as disclosed in . The pressed metal aluminum reacts with lithium in the presence of an electrolyte, and a lithium-aluminum alloy layer is formed on the surface of the lithium negative electrode.

しかし、この方法ではアルミホイルを金型で打抜いて使
用するためアルミホイルの材料歩留り−は7096程度
であ夛、又打抜き設備等も必要となるものである。
However, in this method, the aluminum foil is punched out using a die, so the material yield of the aluminum foil is approximately 7096, and additional punching equipment is required.

他の例として特開昭59−96667号公報に開示され
ているようにAtal!s@添加した電解液を使用して
リチウム−アルミニウム合金を生成することもできる。
As another example, as disclosed in Japanese Patent Application Laid-Open No. 59-96667, Atal! Lithium-aluminum alloys can also be produced using s@-doped electrolytes.

電解液に添加したAjOl!5ハA /” トOI!−
K解11f、B。解fiL7’?、AI!”はリチウム
表面で反応し金属A/を生成する。そしてこの生成した
金!EAtはLl を含む電解液の存在下でリチウム−
アルミニウム合金が生成するO この方法はアルミホイルを打抜く必要がなく、且打抜き
設備も不要であるなど前述の例に比して利点があるもの
の、反面Arats生成時の脱水に問題がある。即ち非
水電解液に水分が含まれていると、リチウム表面に不働
態膜が生成するため非水電解液は充分に脱水された材料
で作成しなければならない。
AjOl added to the electrolyte! 5haA/”ToOI!-
K solution 11f, B. Solution fiL7'? , AI! ” reacts on the lithium surface to produce metal A/.Then, this produced gold!EAt reacts with lithium in the presence of an electrolyte containing Ll.
Aluminum alloy is produced O Although this method has advantages over the above-mentioned example, such as not needing to punch out aluminum foil and no punching equipment, there is a problem with dehydration when producing Arats. That is, if the non-aqueous electrolyte contains water, a passive film will form on the lithium surface, so the non-aqueous electrolyte must be made of a material that has been sufficiently dehydrated.

そこで、A10I!!Si真空中で加熱・乾燥すること
が考えられるがAl015は昇華性が強いため乾燥の際
、はとんどが蒸発し取扱いが困難であるO 又、hloljsを添加するとLie/が生成する。こ
のLid/は電解液に対して溶解性が悪く、例、tばプ
ロピレンカーボネートとジメトキシエタンとの混合溶媒
においては約0.1モル/1以上は溶解せずこれ以上の
濃度では析出する。更に、Llolの塩素イオンOf 
 の影響で電池ケースであるステンレスが腐蝕するとい
う問題がある。
So, A10I! ! It is possible to heat and dry Si in a vacuum, but since Al015 has a strong sublimation property, most of it evaporates during drying, making it difficult to handle.Also, when hloljs is added, Lie/ is generated. This Lid/ has poor solubility in the electrolytic solution; for example, in a mixed solvent of propylene carbonate and dimethoxyethane, it does not dissolve at a concentration of about 0.1 mol/1 or more, but precipitates at a concentration higher than this. Furthermore, Llol's chlorine ion Of
There is a problem in that the stainless steel that is the battery case corrodes due to the effects of this.

このような間@を防ぐために、電解液中でatを発生し
ないアルミニウム塩、例えば過塩素酸アルミニウムhl
 (OJFOA)st−用いることが考えられるが、h
l (Oloa)sは危険性が高く、取扱いが困難であ
る。
In order to prevent such a period, an aluminum salt that does not generate at in the electrolyte, such as aluminum perchlorate, is used.
(OJFOA) st- can be considered, but h
l (Oloa)s is highly dangerous and difficult to handle.

ハ 発明が解決しようとする問題点 本発明は前述せる従来の問題点に鑑み、取扱いが容易、
電池内に含まれても悪影響がない、さらに溶解度が高い
アルミニウム塩を非水電解液に添加して、リチウム負極
表面にリチウム−アルミニウム合金層を形成せしめ電池
の保存特性の改善を計るものである。
C. Problems to be solved by the invention In view of the above-mentioned conventional problems, the present invention is easy to handle,
The purpose is to improve the storage characteristics of batteries by adding highly soluble aluminum salts to the non-aqueous electrolyte, which have no adverse effects even when contained in batteries, to form a lithium-aluminum alloy layer on the surface of the lithium negative electrode. .

二 問題点を解決するための手段 本発明はリチウムを活物質とする負極と、正極と、非水
電解液とを備え、非水電解液にトリフルオロメタンスル
ホン酸アルミニウムを添加したことを特徴とする非水電
解液電池を提案するものである。
2. Means for Solving the Problems The present invention is characterized by comprising a negative electrode using lithium as an active material, a positive electrode, and a non-aqueous electrolyte, and aluminum trifluoromethanesulfonate is added to the non-aqueous electrolyte. This project proposes a non-aqueous electrolyte battery.

ホ作 用 トリフルオロメタンスルホン酸アルミニウムAj (O
F5805)Sを電解液に添加すると、0式に基づきA
I!   とOFi$803  に解離する。
Aluminum trifluoromethanesulfonate Aj (O
F5805) When S is added to the electrolyte, A
I! and OFi$803.

Aj (CFJSOiS) 3→hl+5avssos
−・・・■ここで生じたAj   は0式に基づきリチ
ウム負極上で金属AI!ヲ生成する。
Aj (CFJSOiS) 3→hl+5avssos
-... ■The Aj generated here is based on the 0 formula and is a metal AI on the lithium negative electrode! Generate wo.

At叶+、5Li→Aj−1−3Li”       
 …■そして、生成した金属AI!は次述の反応で0式
に基づきLi−Al!合金となる。
At Kano+, 5Li→Aj-1-3Li”
...■And the metal AI that was generated! is Li-Al! based on equation 0 in the following reaction. Becomes an alloy.

Ll → Li  +  6 hl+LL +e−4L1−At Li−1−Aj→Li−Aj        ・・・■
又、0式と0式から0式に示すようにi、、10F5S
05を生成する。
Ll → Li + 6 hl+LL +e-4L1-At Li-1-Aj→Li-Aj ・・・■
Also, as shown in formula 0 and formula 0 to formula 0, i,, 10F5S
Generate 05.

At (OF5805)5→Aj  +30F580!
S    −・・■11  +3Li→A/+3L i
           ・・・■A/ (OFJ805
)5+5L1→l+3I、icF’5803・・・■ Li0F5130isはリチウムを負極活物質とする非
水電解液電池において一般的に用いられている溶質であ
り、電池内に存在しても何ら悪影響を及ぼすものではな
いと共に有機溶媒に対する溶解度が高(、Li0jのよ
うに析出することはないOA/ (OF580!l)5
は純度が高い状態で得ることは困難であシ、精製の過程
でLicP5S03が生じ、最終的にはAj (OF5
805)5とLi0F3805との混合物の形態で得ら
れるが、これらの混合物を添加しても前述したようにリ
チウム負極表面にリチウム−アルミニウム合金層が形成
されると共に、電池特性に悪影響を及ぼすことはない。
At (OF5805)5→Aj +30F580!
S -...■11 +3Li→A/+3L i
...■A/ (OFJ805
)5+5L1→l+3I, icF'5803...■ Li0F5130is is a solute commonly used in non-aqueous electrolyte batteries that use lithium as the negative electrode active material, and its presence in the battery does not cause any adverse effects. It has high solubility in organic solvents (OA/(OF580!l)5 which does not precipitate like Li0j).
It is difficult to obtain in a highly pure state, LicP5S03 is generated during the purification process, and finally Aj (OF5
805)5 and Li0F3805, but even if these mixtures are added, a lithium-aluminum alloy layer will be formed on the surface of the lithium negative electrode as described above, and there will be no adverse effect on battery characteristics. do not have.

へ実施例 第1図は本発明の一実施例による扁平型非水電解液電池
の半縦断面図を示し、図中(1)はリチウム板を所定寸
法に打抜いてなる負極であって、負極罐(2)の内底面
に固着せる負極集電体(3)に圧着されているo(4)
は正極であって、二酸化マンガン活物質に導電剤として
のグラファイト及び結着剤としてのフッ素樹脂’に90
:9:1の重量比で混合し加圧成形したものであり、正
極1t(5)の内底面に固着せる正極集電体(6)K圧
接されているo(7)はポリプロピレン不織布からなる
セパレータ、(8)は絶縁バッキングである。
Embodiment FIG. 1 shows a half-longitudinal cross-sectional view of a flat non-aqueous electrolyte battery according to an embodiment of the present invention, and in the figure (1) is a negative electrode formed by punching a lithium plate to a predetermined size, o (4) which is crimped to the negative electrode current collector (3) which is fixed to the inner bottom surface of the negative electrode can (2)
is a positive electrode, which contains manganese dioxide active material, graphite as a conductive agent, and fluororesin as a binder.
The positive electrode current collector (6), which is fixed to the inner bottom surface of the positive electrode (5), is pressure-welded to the positive electrode (7), which is made of polypropylene nonwoven fabric. The separator (8) is an insulating backing.

そして、電解液としてはA/ (OPssos)5とL
i0FiS805とをモル比で1:5に混合したものを
真空中で加熱乾燥処理した混合溶質を、プロピレンカー
ボネートとジメトキシエタンとの等体積混合溶媒に溶解
したものを用いた0而して、(9)は前記組成の非水電
解液の使用によりリチウム負極(1)の表面に形成され
たリチウム−アルミニウム合金層である。この本発明電
池を囚とする。
The electrolytes are A/(OPssos)5 and L.
A mixed solute obtained by heating and drying a mixture of i0FiS805 at a molar ratio of 1:5 in a vacuum was dissolved in an equal volume mixed solvent of propylene carbonate and dimethoxyethane. ) is a lithium-aluminum alloy layer formed on the surface of the lithium negative electrode (1) by using a non-aqueous electrolyte having the above composition. This invention battery is taken as a prisoner.

次に、非水電解液を構成する溶質としてLi075SO
3を単独で用いることを除いて他は本発明電池と同様の
比較電池03)を作成した。
Next, Li075SO is used as a solute constituting the non-aqueous electrolyte.
Comparative battery 03), which was the same as the battery of the present invention except that battery No. 3 was used alone, was prepared.

第2図は本発明電池図と比較電池い)とを温度80℃、
湿度90%の雰囲気下で保存した時の内部抵抗の経時変
化を示す。
Figure 2 shows the battery of the present invention and the comparative battery (Fig. 2) at a temperature of 80°C.
It shows the change in internal resistance over time when stored in an atmosphere of 90% humidity.

第2図を参照すると、初期の内部抵抗は本発明電池(6
)で5g、比較電池の)で99とほとんど差異は認めら
れないが、30日保存後においては本発明電池図で11
9、比較電池03)で1359となり本発明電池の有意
性が顕著となる。
Referring to FIG. 2, the initial internal resistance of the battery of the present invention (6
) is 5g, and there is almost no difference between the comparison battery's ) and 99, but after 30 days of storage, the battery of the present invention has a weight of 11.
9 and Comparative Battery 03), it was 1359, and the significance of the battery of the present invention was remarkable.

この理由は本発明電池図ではリチウム負極表面にリチウ
ム−アルミニウム合金層が形成されており、そのため水
分が侵入したとしてもリチウム負極表面が不働態化され
ないのに対し、比較電池@)ではリチウム負極表面にリ
チウム−アルミニウム合金層が形成されていないため水
分と反応してリチウム負極表面に不働態膜が生成するこ
とに起因すると考えられる。
The reason for this is that in the battery of the present invention, a lithium-aluminum alloy layer is formed on the surface of the lithium negative electrode, so even if moisture enters the surface of the lithium negative electrode, the surface of the lithium negative electrode is not passivated. This is thought to be due to the fact that a lithium-aluminum alloy layer was not formed on the lithium negative electrode, which reacted with moisture to form a passive film on the surface of the lithium negative electrode.

ト 発明の効果 上述した如く、リチウムを負極活物質とする非水電解液
電池において、非水電解液にトリフルオ(7/タンスル
ホン酸アルミニウムJj(OF!305)墨を添加する
ことにより、電池性能の劣化を来たすことなく、保存特
性、特に高温高湿下における保存特性の改善が計れるも
のであり、との種電池の利用分野の拡大に資するところ
極めて大である。
G. Effects of the Invention As mentioned above, in a non-aqueous electrolyte battery using lithium as a negative electrode active material, the battery performance can be improved by adding trifluoro(7/aluminum sulfonate Jj (OF!305)) to the non-aqueous electrolyte. It is possible to improve the storage characteristics, especially the storage characteristics under high temperature and high humidity, without causing deterioration of the battery, and it will greatly contribute to expanding the field of use of seed batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による扁平型非水電解液電池
の半断面図、第2図は高温高湿下における本発明電池と
比較電池の内部抵抗の経時変化を示す図である。 (1)・・・リチウム負極、(2)・・・負極罐、(3
)・・・負極集電体、(4)・・・正極、(5)・・・
正極罐、(6)・・・正極集電体、(7)・・・セパレ
ータ、(8)・・・絶縁バッキング、(9)・・・リチ
ウム−アルミニウム合金層0
FIG. 1 is a half-sectional view of a flat non-aqueous electrolyte battery according to an embodiment of the present invention, and FIG. 2 is a diagram showing changes over time in internal resistance of a battery of the present invention and a comparative battery under high temperature and high humidity conditions. (1)...Lithium negative electrode, (2)...Negative electrode can, (3
)... Negative electrode current collector, (4)... Positive electrode, (5)...
Positive electrode can, (6)... Positive electrode current collector, (7)... Separator, (8)... Insulating backing, (9)... Lithium-aluminum alloy layer 0

Claims (1)

【特許請求の範囲】[Claims] (1) リチウムを活物質とする負極と、正極と、非水
電解液とを備え、前記非水電解液にトリフルオロメタン
スルホン酸アルミニウムを添加したことを特徴とする非
水電解液電池。
(1) A nonaqueous electrolyte battery comprising a negative electrode containing lithium as an active material, a positive electrode, and a nonaqueous electrolyte, the nonaqueous electrolyte containing aluminum trifluoromethanesulfonate.
JP28270287A 1987-11-09 1987-11-09 Non-aqueous electrolyte battery Expired - Fee Related JPH0793140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28270287A JPH0793140B2 (en) 1987-11-09 1987-11-09 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28270287A JPH0793140B2 (en) 1987-11-09 1987-11-09 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH01124960A true JPH01124960A (en) 1989-05-17
JPH0793140B2 JPH0793140B2 (en) 1995-10-09

Family

ID=17655939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28270287A Expired - Fee Related JPH0793140B2 (en) 1987-11-09 1987-11-09 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0793140B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797021A (en) * 2014-10-09 2017-05-31 宝马股份公司 Additive based on alkali metal, the accumulator for being based especially on lithium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797021A (en) * 2014-10-09 2017-05-31 宝马股份公司 Additive based on alkali metal, the accumulator for being based especially on lithium

Also Published As

Publication number Publication date
JPH0793140B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
KR101885719B1 (en) Method for producing a lithium or sodium battery
JP4674444B2 (en) Method for producing difluorophosphate, non-aqueous electrolyte for secondary battery, and non-aqueous electrolyte secondary battery
JPS6359507B2 (en)
JPS6345749A (en) Non-water electrolytic liquid battery
JP4679064B2 (en) Non-aqueous electrolyte secondary battery
JPH0982359A (en) Lithium secondary battery
JP4165854B2 (en) Nonaqueous electrolyte, method for producing nonaqueous electrolyte, and nonaqueous electrolyte lithium secondary battery
JPH06283207A (en) Nonaqueous electrolyte battery
JP3647758B2 (en) Non-aqueous battery positive electrode material, method for producing the same, and battery using the same
JP3667468B2 (en) Nonaqueous electrolyte lithium secondary battery and method for producing positive electrode material thereof
JP2001052752A (en) Lithium secondary battery
JP2011086630A (en) Method for producing difluorophosphate, nonaqueous electrolytic solution for secondary cell, and nonaqueous electrolytic solution secondary cell
JPH01124960A (en) Nonaqueous electrolyte battery
JP2002260728A (en) Lithium secondary battery using nonaqueous electrolyte solution
JP4903983B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP2003217579A (en) Lithium primary battery
JPS63148550A (en) Nonaqueous secondary battery
JPH0495362A (en) Nonaqueous electrolytic battery
JP2559055B2 (en) Lithium battery
JP2000133261A (en) Nonaqueous electrolyte secondary battery and manufacture of same
JPS63114065A (en) Organic electrolyte secondary battery
JPH0381268B2 (en)
JP2559054B2 (en) Lithium battery
JPS62222577A (en) Electrolyte for lithium battery
Lemordant et al. Physicochemical properties of fluorine-containing electrolytes for lithium batteries

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees