JPH01124623A - Zirconia-based ultrafine continuous multifilament - Google Patents

Zirconia-based ultrafine continuous multifilament

Info

Publication number
JPH01124623A
JPH01124623A JP62280106A JP28010687A JPH01124623A JP H01124623 A JPH01124623 A JP H01124623A JP 62280106 A JP62280106 A JP 62280106A JP 28010687 A JP28010687 A JP 28010687A JP H01124623 A JPH01124623 A JP H01124623A
Authority
JP
Japan
Prior art keywords
fibers
zirconia
fiber
component
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62280106A
Other languages
Japanese (ja)
Inventor
Ryoji Yoshii
良二 吉井
Koji Watanabe
渡辺 幸二
Hideko Kamimura
英子 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62280106A priority Critical patent/JPH01124623A/en
Publication of JPH01124623A publication Critical patent/JPH01124623A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the above ultrafine zirconia multifilament, free from welding of the filaments caused by sintering, having high strength and suitable as a heat-insulation material for high-temperature use, an electrical insulation material, a reinforcing material for composite material, a filler, etc. CONSTITUTION:The objective fiber is continuous ultrafine zirconia multifilament, free from welding between the filaments caused by sintering and having a diameter of <=5mum and a strength of >=150kg/mm<2>. The fiber can be produced by spinning a solution of a zirconium compound giving zirconium oxide by baking and/or a dispersion of a dispersible zirconium oxide and baking the obtained precursor fiber.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、極細なジルコニア系連続マルチ繊維に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to ultrafine zirconia continuous multi-fibers.

[従来の技術] 近年、高温用断熱材、絶縁材、複合材料用の補強材や充
填材として種々のジルコニア系短繊維及びジルコニア系
連続マルチ繊維が開発されている。
[Prior Art] In recent years, various zirconia-based short fibers and zirconia-based continuous multi-fibers have been developed as reinforcing materials and fillers for high-temperature heat insulating materials, insulating materials, and composite materials.

このうちジルコニア系連続マルチ繊維が複合材料用の補
強繊維として注目を浴びており、高強度を有するジルコ
ニア系連続マルチ繊維の開発が日進月歩のごとく進めら
れている。
Among these, zirconia-based continuous multi-fibers are attracting attention as reinforcing fibers for composite materials, and the development of zirconia-based continuous multi-fibers with high strength is progressing rapidly.

このような補強繊維として有用なジルコニア系連続マル
チ繊維としては従来、ジルコニウム含有化合物である溶
液を紡糸して、前駆体繊維とし、該前駆体繊維を焼成し
て得られるジルコニア系連続マルチ繊維が、多くの特許
や文献に記載されている。
Conventionally, zirconia-based continuous multi-fibers useful as such reinforcing fibers include zirconia-based continuous multi-fibers obtained by spinning a solution of a zirconium-containing compound to obtain precursor fibers and firing the precursor fibers. It is described in many patents and documents.

しかしながら、この製造方法によって得られるジルコニ
ア系連続マルチ繊維は、前記ジルコニウム含有化合物で
ある溶液の曳糸性が乏しく、紡糸時にドラフトを上げる
ことができないため、極細のジルコニア系前駆体繊維を
得ることができずかつ、その前駆体繊維自体も脆弱で取
扱い性に多大の難点があり、その上前駆体繊維の焼成の
際に繊維間に焼結による接着を引起こしてしまいその結
果、焼成後も本発明のような繊維間に焼結による接着が
なく、極細でかつ高強度のジルコニア系連続マルチ繊維
にはならないという欠点があった。
However, in the zirconia-based continuous multi-fiber obtained by this production method, the spinnability of the zirconium-containing compound solution is poor and draft cannot be raised during spinning, making it difficult to obtain ultrafine zirconia-based precursor fibers. Moreover, the precursor fibers themselves are fragile and have great difficulty in handling.Furthermore, when the precursor fibers are fired, they cause adhesion between the fibers due to sintering, and as a result, the original fibers remain intact even after firing. There was a drawback that there was no adhesion between the fibers by sintering as in the invention, and it was not possible to form ultrafine and high-strength zirconia-based continuous multi-fibers.

一般にこのようなジルコニア系連続繊維の強度支配因子
としては、欠陥因子としてボイド、表面傷、異物等があ
り、構造上の因子としては結晶すイズ、結晶系、組成等
が挙げられる。
In general, the strength-controlling factors of such zirconia-based continuous fibers include voids, surface scratches, foreign matter, etc. as defect factors, and crystal size, crystal system, composition, etc. as structural factors.

この欠陥因子と構造上の因子を比較してみた場合、欠陥
因子、その中で特に表面傷が、繊維の強度に与える影響
が大きいということは、各種文献により知られている。
When comparing these defect factors and structural factors, it is known from various documents that defect factors, especially surface scratches, have a large influence on the strength of fibers.

この表面傷は、紡糸から焼成工程において発生するもの
がそのほとんどを占めているので、この表面傷を減少さ
せるために数々の方法が行われている。
Since most of these surface scratches are generated during the spinning to firing process, a number of methods have been used to reduce these surface scratches.

その中で繊維径を細くすることは、単位体積当りの欠陥
の存在確立を減少させるので、強度を上げるための手段
として有効であることは周知の事実である。
It is a well-known fact that reducing the fiber diameter is an effective means of increasing strength because it reduces the probability of the existence of defects per unit volume.

このような理由から、ジルコニウム含有化合物に有機重
合体を混合して紡糸原液を調製し、これを紡糸して前駆
体繊維とし、該前駆体繊維を焼成して得られるジルコニ
ア系連続マルチ繊維が、特開昭62−191514号公
報に代表される特許により知られている。
For these reasons, a zirconia-based continuous multi-fiber obtained by mixing an organic polymer with a zirconium-containing compound to prepare a spinning stock solution, spinning this into a precursor fiber, and firing the precursor fiber, It is known from patents typified by JP-A-62-191514.

しかしながら、この方法で得られるジルコニア系連続マ
ルチ繊維は、紡糸原液の曳糸性は向上するので、極細の
ジルコニア系連続マルチ繊維とすることは可能であるが
、本発明のような極細繊維を得るには、ジルコニウム含
有化合物に有機重合体を多量に混合しなければならず、
その結果前駆体繊維を焼成しても有機重合体が分解除去
された部分がボイドとして繊維中に残り、得られる極細
ジルコニア系連続マルチ繊維は緻密な構造にならず、そ
のため強度の弱い繊維となってしまう。また、極細繊維
を得るためには前駆体繊維の紡糸においてドラフトを極
限状態まで上げなくてはならないので、糸切れが多発す
るため紡糸安定が悪く、紡糸した繊維は毛羽立ちが多い
。また、この方法では直接ジルコニア系前駆体繊維が、
集束ガイドや巻き取りローラー等と接触することは避け
がたく、そのため特に極細繊維を紡糸する場合、集束ガ
イドや巻き取りローラー等と接触及び、焼成するため前
駆体繊維を取扱う際に、繊維の切断が顕著に増大する。
However, since the zirconia continuous multi-fiber obtained by this method improves the spinnability of the spinning dope, it is possible to make an ultra-fine zirconia-based continuous multi-fiber, but it is difficult to obtain an ultra-fine fiber like the one of the present invention. , a large amount of organic polymer must be mixed with the zirconium-containing compound,
As a result, even when the precursor fiber is fired, the parts where the organic polymer has been decomposed and removed remain in the fiber as voids, and the resulting ultrafine zirconia continuous multi-fiber does not have a dense structure, resulting in a weak fiber. It ends up. In addition, in order to obtain ultrafine fibers, the draft must be raised to the limit during spinning of the precursor fibers, which results in frequent yarn breakage, resulting in poor spinning stability and the spun fibers are often fluffy. In addition, in this method, the zirconia precursor fibers are directly
Contact with the focusing guide, take-up roller, etc. is unavoidable, and therefore, especially when spinning ultrafine fibers, contact with the focusing guide, take-up roller, etc., and cutting of the fiber when handling precursor fibers for firing. increases significantly.

また、この方法においても前駆体繊維を焼成する際、繊
維間の焼結による接着を回避することはできず、焼成後
も接触傷や接着のため繊維間に焼結による接着がなく、
高強度でかつ極細のジルコニア系連続マルチ繊維を得る
ことができないという欠点があった。
In addition, even in this method, when firing the precursor fibers, adhesion due to sintering between the fibers cannot be avoided, and even after firing, there is no adhesion due to sintering between the fibers due to contact scratches and adhesion.
There was a drawback that it was not possible to obtain high-strength and ultra-fine zirconia-based continuous multi-fibers.

事実、特開昭62−191514号公報に代表される多
数の特許(特開昭47−718号公報、特開昭58−9
8428号公報、特開昭60−139819号公報、特
開昭60−246817号公報、特開昭62−1915
13号公報等)において、IIi維径が5μ以下のジル
コニア系連続マルチ繊維ができうるという内容の記載は
あるが、上記理由により本発明のような繊維間に焼結に
よる接着がなく、高強度でかつ極細のジルコニア系連続
マルチ繊維を得ることはできないというのが現状であっ
た。
In fact, there are many patents represented by JP-A-62-191514 (JP-A-47-718, JP-A-58-9).
8428, JP 60-139819, JP 60-246817, JP 62-1915
13, etc.), it is stated that zirconia continuous multi-fibers with IIi fiber diameters of 5μ or less can be produced, but for the above reasons, there is no adhesion between fibers by sintering as in the present invention, and high strength is achieved. At present, it is not possible to obtain large and ultrafine zirconia-based continuous multi-fibers.

[発明が解決しようとする問題点コ 本発明者は、紡糸原液の曳糸性が良く、前駆体繊維の取
扱い性が良く、また焼成後も繊維間に焼結による接着の
ない高強度でかつ極細なジルコニア系連続マルチ繊維を
安定して得るべく鋭意検討した結果、本発明に到達した
[Problems to be Solved by the Invention] The present inventor has developed a spinning solution that has good spinnability, good handleability of the precursor fiber, and high strength with no adhesion between fibers due to sintering even after firing. As a result of intensive studies to stably obtain ultra-fine zirconia continuous multi-fibers, we have arrived at the present invention.

[問題点を解決するための手段] 本発明は、直径が5μ以下の連続した極細ジルコニアマ
ルチ繊維であって、該繊維間に焼結による接着がなく、
かつ、強度が150Kg/mnf以上であることを特徴
とする極細ジルコニア系連続マルチ繊維に関する。
[Means for Solving the Problems] The present invention is a continuous ultrafine zirconia multi-fiber with a diameter of 5μ or less, and there is no adhesion between the fibers due to sintering.
The present invention also relates to an ultrafine zirconia continuous multi-fiber having a strength of 150 kg/mnf or more.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の極細ジルコニア系連続マルチ繊維は、焼成によ
って酸化ジルコニウムを与えるジルコニウム化合物の溶
液及びまたは分散性の酸化ジルコニウムの分散液を、紡
糸して前駆体繊維とし、該前駆体繊維を焼成することに
より得られる。
The ultrafine zirconia-based continuous multi-fiber of the present invention can be produced by spinning a solution of a zirconium compound that gives zirconium oxide by firing and/or a dispersion of dispersible zirconium oxide into precursor fibers, and firing the precursor fibers. can get.

本発明でいう焼成によって酸化ジルコニウムを与えるジ
ルコニウム化合物とは、焼成によって酸化ジルコニウム
となるものであれば特別限定はないが、水溶性のジルコ
ニウム化合物、またはコロイド状金属塩からなるジルコ
ニウム化合物が用いられる。
The zirconium compound that provides zirconium oxide upon firing in the present invention is not particularly limited as long as it becomes zirconium oxide upon firing, but a water-soluble zirconium compound or a zirconium compound consisting of a colloidal metal salt is used.

好ましいものとしては、ジルコニウムの塩基性塩化物、
塩基性酢酸塩、塩基性@酸塩、塩基性硝酸塩やポリジル
コノキサン、ジルコニウムアルコキサイドであり、これ
らの中で特にa[ジルコニウムが好ましい。
Preferred are basic chlorides of zirconium,
These include basic acetate, basic @ acid salt, basic nitrate, polyzirconoxane, and zirconium alkoxide, and among these, a[zirconium is particularly preferred.

本発明でいう分散性の酸化ジルコニウムとは、ジルコニ
アゾルのようなコロイド性の水分散液が好ましい。
The dispersible zirconium oxide referred to in the present invention is preferably a colloidal aqueous dispersion such as zirconia sol.

焼成によって酸化ジルコニウムを与えるジルコニウム化
合物の溶液及びまたは分散性の酸化ジルコニウムの分散
液には、必要に応じてケイ素、マグネシウム、アルミニ
ウム、イツトリウム、クロム、ニッケル、コバルト、ホ
ウ素、鉄の化合物を単独あるいは二種類以上混合するこ
とができる。
A solution of a zirconium compound and/or a dispersion of a dispersible zirconium oxide that yields zirconium oxide by firing may contain a compound of silicon, magnesium, aluminum, yttrium, chromium, nickel, cobalt, boron, or iron, singly or in combination, as necessary. More than one type can be mixed.

具体的には、ケイ素の化合物としてテトラエチルシリケ
ート、あるいはテトラエチルシリケート加水分解物、コ
ロイダルシリカ(シリカゾル)、ポリシロキサンが用い
られる。ホウ素はホウ酸または塩化物として、マグネシ
ウム、アルミニウム、イツトリウム、クロム、ニッケル
、コバルト、鉄は、塩化物、硫酸塩、酢酸塩、蟻酸塩、
硝酸塩として用いられる。
Specifically, tetraethyl silicate, tetraethyl silicate hydrolyzate, colloidal silica (silica sol), and polysiloxane are used as the silicon compound. Boron as boric acid or chloride, magnesium, aluminum, yttrium, chromium, nickel, cobalt, iron as chloride, sulfate, acetate, formate,
Used as a nitrate.

また、焼成によって酸化ジルコニウムを与えるジルコニ
ウム化合物の溶液及びまたは分散性の酸化ジルコニウム
の分散液には、紡糸原液の曳糸性を向上させるために必
要に応じて有機ポリマー、例えばポリエチレンオキサイ
ド、ポリビニルアルコール、ポリビニルピロリドン、ポ
リアクリル酸、セルロース類、デンプンなどを混合する
ことができる。
In addition, in the solution of a zirconium compound that gives zirconium oxide by firing and/or the dispersion of dispersible zirconium oxide, organic polymers such as polyethylene oxide, polyvinyl alcohol, etc. may be added as necessary to improve the spinnability of the spinning dope. Polyvinylpyrrolidone, polyacrylic acid, celluloses, starch, etc. can be mixed.

本発明でいう紡糸とは、前記焼成によって酸化ジルコニ
ウムを与えるジルコニウム化合物の溶液及びまたは分散
性の酸化ジルコニウムの分散液をA成分、他のポリマー
をB成分とし、該B成分が少なくとも外周に接した形態
と成るよう両者を配して複合紡糸することが好ましい。
In the present invention, spinning refers to a solution of a zirconium compound that provides zirconium oxide through the calcination and/or a dispersion of dispersible zirconium oxide as a component, and another polymer as a component B, and the B component is in contact with at least the outer periphery. It is preferable to perform composite spinning by arranging both of them so that they form a certain shape.

上記複合紡糸におけるB成分、すなわちポリマーとは前
記A成分の全面または一部を覆い、ドラフトをかけ易く
してやるとともに前駆体繊維の取扱い性を向上させ、か
つ焼成時の焼結による繊維間の接着を防ぐためのもので
ある。
The B component in the composite spinning, that is, the polymer, covers the entire surface or part of the A component, making it easier to draft, improving the handling of the precursor fiber, and preventing adhesion between fibers due to sintering during firing. This is to prevent it.

B成分は、前記A成分溶液に必要に応じて混合する有機
ポリマーと同一のものであっても良いし、そうでなくて
も良い。この具体例としてポリエチレンオキサイド、ポ
リビニルアルコール、ポリビニルピロリドン、ポリアク
リル酸、セルロース類、デンプン、ポリアクリロニトリ
ル、ポリエステル、ポリアミド、ポリプロピレン、レー
ヨンなどが挙げられ、これらは溶融または溶液状態で用
いられる。
Component B may or may not be the same as the organic polymer that is mixed into the component A solution as needed. Specific examples include polyethylene oxide, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylic acid, celluloses, starch, polyacrylonitrile, polyester, polyamide, polypropylene, rayon, etc., and these are used in a molten or solution state.

前記複合紡糸とは、前記A成分と、前記B成分が、前駆
体繊維の断面において区別されるよう分布することを特
徴とした紡糸である。
The composite spinning is a spinning characterized in that the A component and the B component are distributed so as to be differentiated in the cross section of the precursor fiber.

A成分を単独で紡糸する場合、−段に極めて曳糸性が悪
く紡糸時にドラフトがかけにくく、生産性良く良好な極
細繊維が得難いし、また焼成の際に焼結による繊維間の
接着を引起こし、焼成後もこの接着のため強度の弱い繊
維しか17られないという欠点がある。
When spinning component A alone, the spinnability of the -stage is extremely poor, making it difficult to create a draft during spinning, making it difficult to obtain good ultrafine fibers with good productivity, and also causing adhesion between fibers due to sintering during firing. Even after raising and firing, there is a drawback that only weak fibers can be formed due to this adhesion.

しかしながら、本発明のごと<A、B両成分を複合紡糸
することにより、ドラフトがかけられ前駆体繊維の取扱
い性が良くかつ、焼結による繊維間の接着がなく、容易
に極細ジルコニア系連続マルチ繊維を得ることができる
However, according to the present invention, by composite spinning both components A and B, a draft is applied and the precursor fibers are easy to handle, and there is no adhesion between fibers due to sintering, and ultrafine zirconia continuous multi-spinning is possible. Fiber can be obtained.

A成分とB成分は、日成分が少なくとも外周に接した形
態と成るよう両者を複合紡糸すれば、前駆体繊維の断面
においてどのように分布していてもかまわない。代表的
な例としては、A成分が芯、B成分が鞘からなる同芯円
構造があげられる。
The A component and the B component may be distributed in any way in the cross section of the precursor fiber as long as they are composite-spun so that the component is at least in contact with the outer periphery. A typical example is a concentric structure in which the A component is a core and the B component is a sheath.

しかしこの逆の場合、即ちA成分が鞘、B成分が芯とな
る構造だと、焼成時に芯であるB成分が汰けにくく、A
成分であるジルコニア系繊維が充分には緻密になりがた
く、かつ、焼結による繊維間の接着が起り易く好ましく
ない場合が多い。
However, in the opposite case, that is, if the A component is the sheath and the B component is the core, the B component, which is the core, will be difficult to separate during firing, and the A component will be difficult to separate.
Zirconia fibers, which are the components, are difficult to become sufficiently dense, and adhesion between fibers is likely to occur due to sintering, which is often undesirable.

この様な場合は最終的に繊維の外径が10μ以下、さら
には5μ以下となる様な超極細状にすると良い。したが
って、−役向にはB成分が実質的にA成分によって取囲
まれず、少なくとも外周に接した構造のものが好ましい
In such a case, it is preferable to make the fibers into an ultra-fine shape so that the outer diameter of the fibers is 10 μm or less, more preferably 5 μm or less. Therefore, it is preferable for the - role to have a structure in which the B component is not substantially surrounded by the A component and is at least in contact with the outer periphery.

ここでいう実質的とは、B成分をとり囲むA成分の外皮
が、極めて薄く、かつ焼成時にB成分の失は易さを阻害
しない状態を意味する。
Here, "substantially" means that the outer skin of the A component surrounding the B component is extremely thin, and the B component is easily lost during firing.

また、A成分が完全にB成分により被覆された構造とす
ると、A成分が溶液状で充分固化しない状態でもB成分
で保護されているため、安定して紡糸できるメリットが
ある。
Further, if the structure is such that the A component is completely covered with the B component, there is an advantage that stable spinning is possible because the A component is protected by the B component even in a state where the A component is in a solution state and is not sufficiently solidified.

ざらに曳糸性に乏しいA成分の極細繊維を得るためには
、A成分が複数本、好ましくは5本以上より好ましくは
10本以上に分れ、配列した断面構造のものが好ましい
。かかる具体例としては、例えば断面を1〜10本の線
で分割し、A成分とB成分を交互に配列する構造などが
考えられる。
In order to obtain ultrafine fibers of component A, which has poor spinnability, it is preferable to have a cross-sectional structure in which component A is divided into a plurality of fibers, preferably 5 or more fibers, more preferably 10 or more fibers, and arranged. As a specific example of this, for example, a structure in which the cross section is divided by 1 to 10 lines and A components and B components are arranged alternately can be considered.

特に好ましい構造としては、B成分のポリマーを海成分
とし、その中に複数本のA成分を島成分として分散させ
る方法がある。いずれにしろ、A成分間にB成分が介在
する構造と成すことで、焼成時にA成分の相互融着と一
体化を防止し易くなり、焼成が極めて容易となる。この
方法による繊維A成分は、焼成1110μ以下あるいは
5μ以下の繊維径になりうるし、これにより従来では全
く不可能な超極細ジルコニア系連続マルチ繊維が得られ
る。
A particularly preferred structure is a method in which the polymer of the B component is a sea component, and a plurality of A components are dispersed therein as island components. In any case, by creating a structure in which the B component is interposed between the A components, it becomes easier to prevent the A components from adhering to each other and becoming integrated during firing, and the firing becomes extremely easy. The fiber A component obtained by this method can be fired to a fiber diameter of 1110 μm or less or 5 μm or less, and as a result, ultrafine zirconia continuous multi-fibers, which are completely impossible in the past, can be obtained.

本発明でいう紡糸方法は、通常の溶融紡糸、湿式紡糸、
乾式紡糸、乾湿式紡糸などの種々の方法をとりうるが、
より好ましくは、湿式紡糸、乾式紡糸、乾湿式紡糸であ
る。
The spinning method referred to in the present invention includes ordinary melt spinning, wet spinning,
Various methods can be used, such as dry spinning and wet/dry spinning.
More preferred are wet spinning, dry spinning, and dry-wet spinning.

前記紡糸方法で得られた前駆体繊維を焼成することによ
り極細ジルコニア系連続マルチ繊維が得られる。
Ultrafine zirconia continuous multi-fibers can be obtained by firing the precursor fibers obtained by the above-described spinning method.

[実施例] 以下実施例により本発明を更に詳細に説明する。[Example] The present invention will be explained in more detail with reference to Examples below.

実施例1 fI酸ジルコニウム水溶液に塩化イツトリウムを焼成後
のジルコニアとイツトリウムの重量比が9515となる
ように添加混合し、エバポレータにて粘度が700ポイ
ズになるまで濃縮したものをA成分とした。
Example 1 Yttrium chloride was added and mixed to a zirconium fI acid aqueous solution so that the weight ratio of zirconia to yttrium after firing was 9515, and the mixture was concentrated in an evaporator until the viscosity reached 700 poise, which was used as component A.

また、ケン化度97.0〜98.8モル%、重合度26
00のポリビニルアルコールの3Qwt%水溶液をB成
分とした。
In addition, the degree of saponification is 97.0 to 98.8 mol%, and the degree of polymerization is 26.
A 3Qwt% aqueous solution of polyvinyl alcohol No. 00 was used as the B component.

多芯型口金を用い、特公昭47−26723号公報に記
載の原理に基づく口金を用いて、A成分比25、B成分
比75、A成分の芯数を10フイラメントで口金から吐
出し、乾式紡糸を行い前駆体1維とし、巻取機によって
150m/minで巻き取った。
Using a multicore die based on the principle described in Japanese Patent Publication No. 47-26723, the A component ratio is 25, the B component ratio is 75, and the number of cores of the A component is 10 filaments, which are discharged from the die. The precursor was spun into one fiber, which was wound up at 150 m/min using a winder.

該前駆体繊維を2℃/fninで1300℃まで焼成し
てジルコニア・イツトリア連続マルチ繊維とした。
The precursor fiber was fired to 1300°C at 2°C/fnin to obtain a zirconia-yttoria continuous multi-fiber.

このようにして得られたジルコニア・イツトリア連続マ
ルチ繊維の直径は4μで、強度は154に9 / rn
Jであり、焼結による繊維間の接着もなかった。
The diameter of the zirconia-ittria continuous multi-fiber thus obtained is 4 μ, and the strength is 154 to 9/rn.
J, and there was no adhesion between fibers due to sintering.

実施例2 オキシ塩化ジルコニウム100Qを蒸溜水100m1に
溶かし、その水溶液に酸化カルシウム2qと酢酸ジルコ
ニウム10gとを加え、酸化カルシウムが完全に溶解す
るまで加熱し、この水溶液にケン化度99.4モル%、
重合度2600のポリビニルアルコールの2w1%水溶
液5Qmlを加え、ロータリーエバポレータで粘度が8
00ポイズになるまで濃縮したものをA成分とし、ケン
化度97.0〜98.8モル%、重合度2600のポリ
ビニルアルコールの3Qwt%水溶液をB成分とした。
Example 2 Zirconium oxychloride 100Q was dissolved in 100ml of distilled water, 2q of calcium oxide and 10g of zirconium acetate were added to the aqueous solution, heated until the calcium oxide was completely dissolved, and the aqueous solution had a degree of saponification of 99.4 mol%. ,
Add 5Qml of a 2w1% aqueous solution of polyvinyl alcohol with a degree of polymerization of 2600, and use a rotary evaporator to reduce the viscosity to 8.
The A component was concentrated to 00 poise, and the B component was a 3Qwt% aqueous solution of polyvinyl alcohol having a degree of saponification of 97.0 to 98.8 mol% and a degree of polymerization of 2600.

多芯型口金を用い、特公昭47−26723@公報に記
載の原理に基づく口金を用いて、A成分比25、B成分
比75、A成分の芯数を10フイラメントで口金から吐
出し、乾式紡糸を行い前駆体繊維とし、巻取機によって
400m/minで巻き取った。
Using a multi-core type cap based on the principle described in Japanese Patent Publication No. 47-26723 @ gazette, the A component ratio is 25, the B component ratio is 75, and the number of cores of the A component is discharged from the cap with 10 filaments. The fibers were spun to obtain precursor fibers, which were wound up at 400 m/min using a winder.

該前駆体繊維を2℃/minで1300℃まで焼成して
ジルコニア系連続マルチ繊維とした。
The precursor fiber was fired to 1300°C at 2°C/min to obtain a zirconia continuous multi-fiber.

このようにして得られたジルコニア系連続マルチ繊維の
直径は1μで、強度は197 K!j/mfftであり
、焼結による繊維間の接着もなく、従来では考えられな
いような高強度でかつ極細のジルコニア系連続マルチ繊
維でめった。
The diameter of the zirconia continuous multi-fiber thus obtained is 1μ, and the strength is 197K! j/mfft, and there is no adhesion between fibers due to sintering, and it is made of high strength and ultra-fine zirconia continuous multi-fibers that were unimaginable in the past.

比較例1 実施例2に記載のA成分だけを紡糸原液とし、孔径10
0μ、32ホールの口金から吐出し、口金直下3mの所
に設置した巻取機で糸切れ寸前の巻取速度で巻き取った
Comparative Example 1 Only the component A described in Example 2 was used as the spinning stock solution, and the pore size was 10.
The yarn was discharged from a 0μ, 32-hole nozzle and wound up at a winding speed just before yarn breakage using a winder installed 3 m directly below the nozzle.

該前駆体繊維を24時間かけて1000℃まで焼成した
が、焼成後のジルコニア系連続マルチ繊維は繊維間に焼
結による接着があり、直径は6μで強度は65ffg/
−であった。また、該前駆体繊維を2℃/minで13
00℃まで焼成したが、焼成後のジルコニア系連続マル
チ繊維は繊維間に焼結による接着があり、直径は6μで
強度は93に’j/mnfでおり、残念ながら本発明の
ような繊維間に焼結による接着がなく、高強度でかつ極
細なジルコニア系連続マルチ繊維とはならなかった。
The precursor fibers were fired to 1000°C over 24 hours, and the fired zirconia continuous multi-fibers had adhesion between the fibers due to sintering, had a diameter of 6μ, and a strength of 65ffg/.
-It was. In addition, the precursor fiber was heated at 2° C./min for 13
Although the zirconia continuous multi-fibers were fired to 00°C, there was adhesion between the fibers due to sintering, the diameter was 6μ, and the strength was 93'j/mnf. There was no adhesion due to sintering, and high strength and ultrafine zirconia continuous multi-fibers could not be obtained.

比較例2 オキシ塩化ジルコニウム267qと塩化カルシウム5.
3gを水300m1に溶解し、これにケン化度99.4
モル%、重合度1700のポリビニルアルコールの10
wt%水溶液150CIとケン化度88.0モル%、重
合度1700のポリビニルアルコールの10wt%水溶
液150Qを加え、この混合液にオルトホウ酸水溶液1
00m1(H2SO4,1,50含有)を少しづつ加え
良く混合した。この混合液をロータリーエバポレータで
粘度が125ポイズになるまで濃縮したものを紡糸原液
とし、孔径100μ、32ホールの口金から相対湿度2
9%の空気中に吐出し、口金直下2mの所に設置した巻
取機で糸切れ寸前の巻取速度で延伸しながら乾燥凝固さ
せた。引続き150℃の熱風中にこれを通して完全に乾
燥させながら連続的に巻き取って前駆体繊維を得た。
Comparative Example 2 Zirconium oxychloride 267q and calcium chloride 5.
Dissolve 3g in 300ml of water and add saponification degree of 99.4.
mol% of polyvinyl alcohol with a degree of polymerization of 1700
A wt% aqueous solution 150CI and a 10wt% aqueous solution 150Q of polyvinyl alcohol with a degree of saponification of 88.0 mol% and a degree of polymerization of 1700 were added, and to this mixture was added 150Q of an aqueous orthoboric acid solution.
00ml (containing H2SO4.1.50) was added little by little and mixed well. This mixed solution was concentrated using a rotary evaporator until the viscosity reached 125 poise, which was used as the spinning stock solution.
It was discharged into 9% air and dried and coagulated while being stretched with a winding machine installed 2 m directly below the nozzle at a winding speed just before yarn breakage. Subsequently, the fiber was passed through hot air at 150° C. to completely dry it and continuously wound up to obtain a precursor fiber.

該前駆体繊維を空気中で1000℃まで焼成してジルコ
ニア系連続マルチ繊維とした。
The precursor fibers were fired in air to 1000°C to obtain zirconia continuous multi-fibers.

このジルコニア系連続マルチ繊維は繊維間に焼結による
接着があり、直径は4μで強度は測定できないくらい脆
く、残念ながら本発明のような繊維間に焼結による接着
がなく、高強度でかつ極細なジルコニア系連続マルチ繊
維とはならなかった。
This zirconia-based continuous multi-fiber has adhesion between the fibers due to sintering, has a diameter of 4 μm, and is so brittle that its strength cannot be measured. It did not result in a zirconia-based continuous multi-fiber.

[発明の効果] 本発明の極細ジルコニア系連続マルチ繊維は、繊維間に
焼結による接着がなく、高強度である。
[Effects of the Invention] The ultrafine zirconia continuous multi-fiber of the present invention has high strength because there is no adhesion between the fibers due to sintering.

Claims (1)

【特許請求の範囲】[Claims] (1)直径が5μ以下の連続した極細ジルコニアマルチ
繊維であって、該繊維間に焼結による接着がなく、かつ
、強度が150kg/mm^2以上であることを特徴と
する極細ジルコニア系連続マルチ繊維。
(1) Continuous ultrafine zirconia multi-fibers with a diameter of 5μ or less, characterized by no adhesion between the fibers due to sintering, and a strength of 150kg/mm^2 or more Multi-fiber.
JP62280106A 1987-11-05 1987-11-05 Zirconia-based ultrafine continuous multifilament Pending JPH01124623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62280106A JPH01124623A (en) 1987-11-05 1987-11-05 Zirconia-based ultrafine continuous multifilament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62280106A JPH01124623A (en) 1987-11-05 1987-11-05 Zirconia-based ultrafine continuous multifilament

Publications (1)

Publication Number Publication Date
JPH01124623A true JPH01124623A (en) 1989-05-17

Family

ID=17620401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62280106A Pending JPH01124623A (en) 1987-11-05 1987-11-05 Zirconia-based ultrafine continuous multifilament

Country Status (1)

Country Link
JP (1) JPH01124623A (en)

Similar Documents

Publication Publication Date Title
US4047965A (en) Non-frangible alumina-silica fibers
US4166147A (en) Shaped and fired articles of tio2
US4954462A (en) Microcrystalline alumina-based ceramic articles
US5185299A (en) Microcrystalline alumina-based ceramic articles
US3709706A (en) Refractory fibers and other articles of zirconia and silica mixtures
JP4454048B2 (en) Heat-resistant glass sliver containing Al ▲ lower 2 ▼ O ▲ lower 3 ▼ having high fabric suitability and product thereof
RU2469001C2 (en) High temperature-resistant silicon oxide-based inorganic fibre and method of producing said fibre
JPS62199818A (en) Interior modified ceramic fiber
JP2756258B2 (en) Refractory solid article and method for producing the same
US4125406A (en) Alumina-chromia-metal (IV) oxide refractory fibers having a microcrystalline phase
TWI521108B (en) Method for producing flame-resistant fiber bundle and mfthod for producing carbon fiber bundle
JP6020201B2 (en) Carbon fiber bundle and method for producing the same
TW425439B (en) Precusor fibre tow for producing carbonfiber, their preparation, the carbon fibre tow and methods for preparing same
JP2015067910A (en) Carbon fiber and manufacturing method thereof
US3909278A (en) High density thoria-silica-metal (III) oxide fibers
JPS60139819A (en) Production of inorganic filament and apparatus therefor
JPH01124621A (en) Alumina-based ultrafine continuous multifilament
JPH01124623A (en) Zirconia-based ultrafine continuous multifilament
US3953561A (en) Firing process for alumina yarn
JPH0351819B2 (en)
TW201704574A (en) Method for manufacturing coalesced strand bundle and method for manufacturing carbon fiber using the resulting coalesced strand bundle continuously and stably obtaining high-quality strands of carbon-fiber precursor having an extremely small number of defects in filament breakage
JPH0333222A (en) Opening roller for carbon fiber
JPH01124622A (en) Production of ultrafine ceramic continuous multifilament
JPS60139817A (en) Production of alumina based inorganic fiber precursor
JP2005060871A (en) Method for producing flame-proofed fiber and method for producing carbon fiber