JPH01123855A - Thermosetting conductive resin paste - Google Patents

Thermosetting conductive resin paste

Info

Publication number
JPH01123855A
JPH01123855A JP28173087A JP28173087A JPH01123855A JP H01123855 A JPH01123855 A JP H01123855A JP 28173087 A JP28173087 A JP 28173087A JP 28173087 A JP28173087 A JP 28173087A JP H01123855 A JPH01123855 A JP H01123855A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin
parts
resin paste
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28173087A
Other languages
Japanese (ja)
Inventor
Yasuko Ono
大野 泰子
Masakazu Murayama
村山 雅一
Takeshi Kimura
健 木村
Hiroyuki Nakajima
博行 中島
Hideki Chidai
地大 英毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28173087A priority Critical patent/JPH01123855A/en
Publication of JPH01123855A publication Critical patent/JPH01123855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To obtain the subject paste which has a long pot life, can be cured at low temperature within a short time and is freed from void formation, by kneading a liquid diglycidyl epoxy resin with a specified curing agent, a specified cure accelerator and a specified conductive filler. CONSTITUTION:100pts.wt. epoxy resin comprising at least 70wt.% liquid diglycidyl epoxy resin (e.g., bisphenol F type) of a hydrolyzable halogen atom content <=600ppm and epoxy equivalent of 140-220 as a major component and, optionally, at most 20wt.% alicyclic epoxy resin (e.g., Celloxide 2021) is mixed with 0.5-10pts.wt. dicyandiamide of a mean particle diameter of 0.5-20mu as a curing agent, 0.1-8pts.wt. 2-phenyl-4-methyl-5-hydroxymethylimidazole and/or 2-phenyl-4,5-dihydroxymethylimidazole as a cure accelerator, 10-450pts. wt. conductive filler (e.g., silver powder) of a mean particle diameter of 0.02-30mu and, optionally, 1-15pts.wt. phenoxy resin for improving adhesive force.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液状エポキシ樹脂、硬化剤、硬化促進剤およ
び充填剤よりなる、ポットライフの非常に長い低温速硬
化型の導電性樹脂ペーストに関する。さらに詳しくは、
無溶剤−波型のダイボンド用樹脂ペーストに関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a low-temperature, fast-curing conductive resin paste with an extremely long pot life, comprising a liquid epoxy resin, a curing agent, a curing accelerator, and a filler. . For more details,
The present invention relates to a solvent-free corrugated resin paste for die bonding.

し従来の技術] エレクトロニクス業界の最近の著しい発展に伴い、IC
やLSIなどの半導体素子においては回路の集積度が急
激に増大するとともに大量生産が可能になり、これらを
用いた半導体製品の値下りに相ともなってその量産にお
ける作業性の向上ならびにコストダウンが重要な問題と
なっている。
[Conventional technology] With the recent remarkable development of the electronics industry, IC
With the rapid increase in the degree of circuit integration and the ability to mass-produce semiconductor devices such as PCBs and LSIs, it has become important to improve workability and reduce costs in mass-production as the prices of semiconductor products using these devices fall. This has become a problem.

従来、半導体素子がリードフレーム上にダイボンドされ
、ついでこれがハーメチックシールにより封止されて半
導体部品が製造されていた。その復熱硬化性樹脂によっ
て封止する方法が開発され、これにともないダイボンド
材もAu−8i共品からハンダに変更され、さらに現在
では銀粉を含む導電性樹脂によりダイボンドする方法が
主流になっており、生産性の向上、コスト低減に大きく
貢献している。
Conventionally, semiconductor components have been manufactured by die-bonding a semiconductor element onto a lead frame and then sealing this with a hermetic seal. A sealing method using recuperative heat-curing resin was developed, and along with this, the die-bonding material was changed from Au-8i to solder, and now die-bonding methods using conductive resin containing silver powder have become mainstream. This greatly contributes to improving productivity and reducing costs.

とくに最近では、なお−層のコスト低減ならびにチップ
の消費電力増大に伴う熱放散性向上の必要性から、リー
ドフレーム材も従来の4.2−アロイから銅系材料に移
行しつつある。このばあい、銅の酸化を防ぐために20
0℃以下、好ましくは180℃以下の低温でかつ短時間
に接合が完了するダイボンド材が必要になってきている
Particularly recently, lead frame materials have been shifting from the conventional 4.2-alloy to copper-based materials due to the need to reduce the cost of layers and to improve heat dissipation due to increased power consumption of chips. In this case, to prevent copper oxidation, 20
There is a growing need for a die-bonding material that can complete bonding at a low temperature of 0° C. or lower, preferably 180° C. or lower, and in a short time.

[発明が解決しようとする問題点] しかしながら、従来からダイボンド用樹脂ペーストとし
て用いられているエポキシ樹脂およびポリイミド樹脂の
大部分は、その硬化方法はオーブンによる加熱硬化が主
体であり、硬化時間も30分〜2時間程度の長時間が必
要であるため、樹脂ペーストが使用される工程のインラ
イン化が不可能である。また、そのような樹脂ペースト
を7s瀉・短時間(300〜350℃で20〜30秒)
で硬化させると、樹脂ペースト中の溶剤や反応性希釈剤
などの比較的低沸点の成分の気化によるボイド発生、さ
らにはエポキシ樹脂の分解が起こり、接着力の低下、チ
ップの移動によりワイヤーボンド不良、被接着物が汚染
されるなどの問題があり、たとえ硬化温度を上げて短時
間で硬化させても、それによって新たな問題が発生し、
実用的ではない。もちろん前述のごとくリードフレーム
材として銅系材料を用いるばあいには、このような高4
 (300〜350℃)で硬化させることは好ましくな
い。
[Problems to be Solved by the Invention] However, most of the epoxy resins and polyimide resins conventionally used as resin pastes for die bonding are mainly cured by heating in an oven, and the curing time is 30 minutes. Since the process requires a long time of about 1 minute to 2 hours, it is impossible to inline the process in which resin paste is used. In addition, such a resin paste can be boiled for 7 seconds for a short time (20 to 30 seconds at 300 to 350°C).
If the resin paste is cured, the evaporation of components with relatively low boiling points such as solvents and reactive diluents in the resin paste will cause voids to occur, and the epoxy resin will also decompose, resulting in a decrease in adhesive strength and wire bond failure due to chip movement. , there are problems such as contamination of the adhered object, and even if the curing temperature is raised to cure in a short time, new problems will occur.
Not practical. Of course, as mentioned above, when copper-based materials are used as the lead frame material, such high
(300 to 350°C) is not preferable.

一方、特開昭59−149956号公報などに開示され
ているようなインライン化をめざした最近の速硬化型樹
脂ペーストにおいても、硬化温度が200℃をこえるも
のも多く、また200℃以下で硬化が可能な樹脂ペース
トであってもポットライフが短いため使用中に粘度変化
が起こり、一定mのダイボンド樹脂を塗付することが困
雌になるなどの問題がある。
On the other hand, even in recent fast-curing resin pastes aimed at in-line production, such as those disclosed in JP-A-59-149956, many of them have curing temperatures exceeding 200°C, and some cure at temperatures below 200°C. Even if a resin paste is available, the pot life is short and the viscosity changes during use, making it difficult to apply a certain amount of die bond resin.

本発明はダイボンド工程のインライン化を可能にし、銅
系のリードフレーム材にも好適に使用できる低温・短時
間で硬化し、かつロングポットライフの高性能な導電性
樹脂ペーストをうることを目的としてなされたものであ
る。
The present invention enables in-line die bonding process, and aims to provide a high-performance conductive resin paste that cures at low temperature and in a short time and has a long pot life, which can be suitably used for copper-based lead frame materials. It has been done.

[問題点を解決するための手段] 本発明者らは、ジグリシジルタイプの液状エポキシ樹脂
を主成分とするエポキシ樹脂100部(重量部、以下同
様)、硬化剤としてジシアンジアミド0.5〜10部、
硬化促進剤として2−フェニル−4−メチル−5−ヒド
ロキシメチルイミダゾール(以下、2P48H2という
)および(または)2−フェニル−4゜5−ジヒドロキ
シメチルイミダゾール(以下、2PH2という)0.1
〜8部および導電性充填剤10〜450部を均質な組成
になるように混線分散させた樹脂ペーストが低温・短時
間で硬化させることができ、ポットライフが長く、硬化
特性(減量開始温度が350℃以上、高接着力、抽出不
純物が少ない)に優れた硬化物を与えることを見出し、
本発明を完成するに至った。
[Means for Solving the Problems] The present inventors used 100 parts (by weight, hereinafter the same) of an epoxy resin whose main component is a diglycidyl type liquid epoxy resin, and 0.5 to 10 parts of dicyandiamide as a curing agent. ,
As a curing accelerator, 2-phenyl-4-methyl-5-hydroxymethylimidazole (hereinafter referred to as 2P48H2) and/or 2-phenyl-4°5-dihydroxymethylimidazole (hereinafter referred to as 2PH2) 0.1
~8 parts and 10 to 450 parts of a conductive filler are cross-dispersed to form a homogeneous composition. The resin paste can be cured at low temperatures and in a short time, has a long pot life, and has excellent curing characteristics (reduction starting temperature). We discovered that it gives an excellent cured product at temperatures above 350°C, high adhesive strength, and few extracted impurities.
The present invention has now been completed.

[作用および実施例] 本発明に用いられるエポキシ樹脂の主成分であるジグリ
シジルタイプの液状エポキシ樹脂としては、えられる半
導体素子の信頼性を低下させないなどのために加水分解
性ハロゲン原子の含有量が600ppm以下のものが好
ましく、さらに4ooppm以下のものが好ましい。ま
た2種以上の樹脂を適宜配合してこの水準になるように
調節してもよい。
[Operations and Examples] The diglycidyl type liquid epoxy resin, which is the main component of the epoxy resin used in the present invention, has a hydrolyzable halogen atom content in order not to reduce the reliability of the resulting semiconductor device. is preferably 600 ppm or less, more preferably 4 ooppm or less. Alternatively, two or more resins may be appropriately blended to achieve this level.

なお、通常用いられているジグリシジルタイプの液状エ
ポキシ樹脂は加水分解性ハロゲン原子の含有量が過大で
あり、本発明に用いるには不都合のものも多く、適宜精
製して用いることが好ましい。
Note that the commonly used diglycidyl type liquid epoxy resin has an excessively high content of hydrolyzable halogen atoms, which is inconvenient for use in the present invention, and therefore it is preferable to use the resin after appropriate purification.

また、エポキシ当量が140〜220のものが好ましく
、25℃における粘度が0.2〜400ボイズのものが
好ましい。
Moreover, those having an epoxy equivalent of 140 to 220 are preferable, and those having a viscosity of 0.2 to 400 voids at 25° C. are preferable.

なお、本発明に用いられるジグリシジルタイプの液状エ
ポキシ樹脂を主成分とするエポキシ樹脂とは、ジグリシ
ジルタイプの液状エポキシ樹脂を好ましくは70重量%
以上、さらに好ましくは80重量%以上含むものである
Note that the epoxy resin whose main component is diglycidyl type liquid epoxy resin used in the present invention is preferably 70% by weight of diglycidyl type liquid epoxy resin.
The content is more preferably 80% by weight or more.

エポキシ樹脂としてジグリシジルタイプの液状エポキシ
樹脂を使用しないで1分子当りのエポキシ基が2個より
も多いエポキシ樹脂などを用いるとその性状は一般に固
形ないし半固型であるため、えられる樹脂ペーストの粘
度が高くなり、作業性がわるくなるなどの問題が生じる
ようになるので好ましくない。
If an epoxy resin with more than two epoxy groups per molecule is used instead of a diglycidyl-type liquid epoxy resin as the epoxy resin, the resulting resin paste is generally solid or semi-solid. This is not preferable because it causes problems such as increased viscosity and poor workability.

前記ジグリシジルタイプの液状エポキシ樹脂の具体例と
しては、たとえばジグリシジルごスフエノールA1ジグ
リシジルビスフェノールF、ジグリシジルビスフェノー
ルS1ジグリシジルアニリンなどがあげられる。
Specific examples of the diglycidyl type liquid epoxy resin include diglycidyl bisphenol A1 diglycidyl bisphenol F, diglycidyl bisphenol S1 diglycidyl aniline, and the like.

本発明においては、低粘度化あるいは加水分解性ハロゲ
ン原子を本質的に含有していないなどの観点から、脂環
式エポキシ樹脂を本発明に用いるエポキシ樹脂中20重
量%以下の範囲で用いることができる。
In the present invention, the alicyclic epoxy resin may be used in an amount of 20% by weight or less in the epoxy resin used in the present invention from the viewpoint of reducing viscosity or essentially not containing hydrolyzable halogen atoms. can.

前記脂環式エポキシ樹脂としては、たとえばビス(エポ
キシシクロヘキシルメチル)のアジピン酸、コハク酸な
ど脂肪族2塩基酸のジエステル類、エポキシシクロヘキ
シルメチル−エポキシシクロヘキサンカルボン酸エステ
ル、ごニルシクロヘキセンジオキサイドなどがあげられ
る。
Examples of the alicyclic epoxy resin include diesters of aliphatic dibasic acids such as adipic acid and succinic acid of bis(epoxycyclohexylmethyl), epoxycyclohexylmethyl-epoxycyclohexane carboxylic acid ester, and nylcyclohexene dioxide. It will be done.

脂環式エポキシ樹脂のエポキシ基は、内部エポキシ基で
あり、硬化剤としてアミン系のものはあまり有効ではな
い。しかしながら前記のごとく、グリシジルタイプのエ
ポキシ樹脂と併用することにより、両者の共重合の形で
硬化反応が円滑に進むようになる。
The epoxy group of the alicyclic epoxy resin is an internal epoxy group, and amine-based curing agents are not very effective. However, as mentioned above, by using it in combination with a glycidyl type epoxy resin, the curing reaction proceeds smoothly in the form of copolymerization of both.

脂環式エポキシ樹脂の配合量が本発明に用いるエポキシ
樹脂中20重量%をこえると、脂環式エポキシ樹脂は比
較的低沸点であるので、短時間に硬化させるばあいに一
般に用いられているホットプレート上などで行なわれる
硬化では、樹脂が瞬時に硬化温度に達し、かつ反応時間
が短いため、脂環式エポキシ樹脂の気化によるボイドが
発生したり、ジグリシジルタイプの液状エポキシ樹脂と
の共重合が円滑に進まず、性能のバラツキを生じるおそ
れがある。
When the blending amount of the alicyclic epoxy resin exceeds 20% by weight in the epoxy resin used in the present invention, the alicyclic epoxy resin has a relatively low boiling point, so it is generally used when curing in a short time. When curing is carried out on a hot plate, the resin instantly reaches the curing temperature and the reaction time is short, so voids may occur due to vaporization of the alicyclic epoxy resin, and coexistence with diglycidyl-type liquid epoxy resin may occur. Polymerization may not proceed smoothly, leading to variations in performance.

また、本発明の樹脂ペーストには、固型のジグリシジル
タイプのエポキシ樹脂などのエポキシ樹脂を配合しても
よい。
Further, the resin paste of the present invention may contain an epoxy resin such as a solid diglycidyl type epoxy resin.

本発明に用いる硬化剤はジシアンジアミドであり、これ
は潜在性を有しているため本発明の目的、とくに低温短
時間硬化かつロングポットライフという目的を達成する
ためには最も適している。
The curing agent used in the present invention is dicyandiamide, which has latent properties and is therefore most suitable for achieving the objectives of the present invention, particularly low-temperature, short-time curing and long pot life.

一般にジシアンジアミドは樹脂に溶解し難く、分散状態
で使用するばあい、微粉砕された平均粒径0.5〜20
加のものを用いるのが好ましい。平均粒径が20−をこ
えると沈降したりして分散状態が不均一になりやすく均
一に硬化しないおそれがあり、また0、5扉より小さい
ばあいはジシアンジアミドが2次凝集を起こしやすく、
やはり均一に硬化しにくくなり性能のバラツキを生じる
おそれがある。
In general, dicyandiamide is difficult to dissolve in resin, and when used in a dispersed state, the average particle size of finely pulverized particles is 0.5 to 20.
It is preferable to use additional ones. If the average particle size exceeds 20 mm, the dispersion state tends to become uneven due to sedimentation, and it may not harden uniformly.If the average particle size is smaller than 0.5 mm, dicyandiamide is likely to cause secondary aggregation.
After all, it may be difficult to cure uniformly, resulting in variations in performance.

ジシアンジアミドの添加量はエポキシ樹脂100部に対
して0.5〜10部の範囲であり、さらに1〜5部の範
囲が好ましい。該添加iが0.5部よりも少ないばあい
は硬化時間が長くなり、また接着力も低下する。一方1
0部よりも多くなると、プレッシャークツカーテストに
おいて熱水抽出で抽出されるアンモニウムイオンが非常
に多くなる、すなわちえられる半導体素子の信頼性が低
下するなどの問題が生じるようになる。
The amount of dicyandiamide added is in the range of 0.5 to 10 parts, more preferably in the range of 1 to 5 parts, based on 100 parts of the epoxy resin. If the amount of addition i is less than 0.5 part, the curing time will be longer and the adhesive strength will also be lowered. On the other hand 1
When the amount exceeds 0 parts, problems such as a very large amount of ammonium ions being extracted by hot water extraction in the pressure extractor test, or a decrease in the reliability of the obtained semiconductor device, will occur.

本発明に用いる硬化促進剤は、イミダゾール系の2P4
HH7および(または) 2PH2であり、これらはい
ずれも固型で潜在性を有し、かpペーストの速硬化を可
能にする成分である。さらにこれらは分子中に水酸基を
有していることから接着性をも向上させる成分であり、
ダイボンド用樹脂ペーストの硬化促進剤として非常に好
ましいものである。
The curing accelerator used in the present invention is an imidazole-based 2P4
HH7 and/or 2PH2, both of which are solid and latent components that enable rapid hardening of the CP paste. Furthermore, since these have hydroxyl groups in their molecules, they are components that also improve adhesive properties.
It is very preferable as a curing accelerator for resin paste for die bonding.

これらの硬化促進剤の添加量は、エポキシ樹脂100部
に対して0.1〜8部の範囲であり、さらに1〜5部の
範囲が好ましい。前記添加量が0.1部よりも少ないば
あいは硬化促進効果が不充分であり、また8部よりも多
く添加しても硬化がさほど促進されず、かえってペース
トの保存性が劣化するおそれがあり、何れも好ましくな
い。
The amount of these curing accelerators added is in the range of 0.1 to 8 parts, more preferably in the range of 1 to 5 parts, based on 100 parts of the epoxy resin. If the amount added is less than 0.1 part, the curing accelerating effect will be insufficient, and if it is added more than 8 parts, curing will not be promoted so much, and there is a risk that the shelf life of the paste will deteriorate. Yes, none of them are desirable.

本発明に用いる導電性充填剤としては、たとえば金、銀
、銅、ニッケルやこれらの合金の微粉末、導電性カーボ
ンブラックの微粉末などが好ましいものとしてあげられ
る。
Preferred examples of the conductive filler used in the present invention include fine powders of gold, silver, copper, nickel, and alloys thereof, and fine powders of conductive carbon black.

前記導電性充填剤はアルカリ金属イオン、ハロゲンなど
のイオン性不純物含有量がいずれも10111)l以下
であることが好ましい。前記導電性充填剤の平均粒径は
、えられた導電性樹脂ペーストの粘度および接着の際の
接着厚みのコントロールなどの点から0.02〜30m
+のちのが好ましく、0.03〜10μmのものがさら
に好ましい。また比較的粗な粒径のものと比較的細い粒
径のものとを適宜混合したものを選んで用いてもよい。
The content of ionic impurities such as alkali metal ions and halogens in the conductive filler is preferably 10111)l or less. The average particle size of the conductive filler is 0.02 to 30 m from the viewpoint of controlling the viscosity of the obtained conductive resin paste and the adhesive thickness during adhesion.
+ is preferable, and 0.03 to 10 μm is more preferable. Alternatively, an appropriate mixture of relatively coarse particles and relatively fine particles may be selected and used.

前記導電性充填剤の配合割合は、エポキシ樹脂100部
に対して10〜450部の範囲であり、さらに15〜3
50部の範囲が好ましい。該配合割合が10部よりも少
ないばあいは、充填剤が沈降分離しゃすくなり、また導
電性が低くなり、また450部よりも多く用いても導電
性がさほど向上しないのにコストの著しい増大、接着力
の大幅な低下などが起こり好ましくない。
The blending ratio of the conductive filler is in the range of 10 to 450 parts with respect to 100 parts of the epoxy resin, and further in the range of 15 to 3 parts.
A range of 50 parts is preferred. If the blending ratio is less than 10 parts, the filler tends to settle and separate, resulting in low conductivity, and even if more than 450 parts is used, the conductivity does not improve much, but the cost increases significantly. This is undesirable as it may cause a significant decrease in adhesive strength.

本発明の樹脂ペーストには、さらに接着力および可撓性
を向上させるという観点から、分子量15000〜60
000の範囲のフェノキシ樹脂を適宜配合することがで
きる。前記フェノキシ樹脂の添加器はエポキシ樹脂10
0部に対して1〜15部であることが好ましい。該添加
器が1部よりも少ないばあいは接着力向上などの効果が
充分えられず、15部よりも多いとペーストの粘度が上
がりすぎたりすることがあり作業性が低下する傾向があ
る。
The resin paste of the present invention has a molecular weight of 15,000 to 60, from the viewpoint of further improving adhesive strength and flexibility.
000 phenoxy resin can be appropriately blended. The phenoxy resin additive is epoxy resin 10
It is preferable that it is 1 to 15 parts with respect to 0 parts. If the amount of the additive is less than 1 part, sufficient effects such as improving adhesive strength cannot be obtained, and if it is more than 15 parts, the viscosity of the paste may become too high, which tends to reduce workability.

さらに、本発明の樹脂ペーストには、必要に応じて脱泡
性などを適宜配合してもよい。
Furthermore, defoaming properties may be added to the resin paste of the present invention as appropriate.

本発明の樹脂ペーストを製造するには、上述したエポキ
シ樹脂、硬化剤、硬化促進剤、導電性充填剤および要す
れば使用されるその他の成分を信潰器などで常温で混練
し、均質な組成になるように混合すればよい。なおフェ
ノキシ樹脂の使用に当っては、あらかじめエポキシ樹脂
に溶解して用いることが必要である。このようにしてえ
られた本発明の樹脂ペーストは、常温で長期間(4週間
以上)保存できるので、使用時の作業性が非常に良好で
ある。
To produce the resin paste of the present invention, the above-mentioned epoxy resin, curing agent, curing accelerator, conductive filler, and other ingredients used if necessary are kneaded at room temperature in a crusher or the like to form a homogeneous material. All you have to do is mix them so that they have the same composition. In addition, when using a phenoxy resin, it is necessary to dissolve it in an epoxy resin beforehand. The resin paste of the present invention thus obtained can be stored for a long period of time (4 weeks or more) at room temperature, and therefore has very good workability during use.

本発明の樹脂ペーストを実際に使用するには、ペースト
を接着すべきたとえば半導体チップとリードフレームの
接着部に、デイスペンサー工法、スクリーン印刷、スタ
ンビング工法など任意の方法で塗布することができる。
In order to actually use the resin paste of the present invention, it can be applied to the bonded area between a semiconductor chip and a lead frame to which it is to be bonded, for example, by any method such as a dispenser method, screen printing, or stamping method.

また塗付後硬化させるには低温・短時間、たとえば15
0〜180℃で2分以内の加熱で硬化させることができ
る。
In addition, to cure after application, it must be done at a low temperature and for a short time, e.g.
It can be cured by heating at 0 to 180°C for less than 2 minutes.

えられる硬化物はボイドがなく、塩素イオンなどの不純
物の放出が非常に少なく、さらに耐熱性にも優れている
The resulting cured product has no voids, releases very little impurities such as chlorine ions, and has excellent heat resistance.

以下、実施例をあげてさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail by way of examples.

なお、第1表に示される各材料は、それぞれ下記のもの
を示す。
In addition, each material shown in Table 1 shows the following, respectively.

A: ビスフェノールF型エポキシ樹脂(エポキシ当量
:195、粘度:40ボイズ(25℃)、加水分解性塩
素原子含有@ :  40011pm )B: ビスフ
ェノールA型エポキシ樹脂(エポキシ当11:190、
粘度=200ボイズ(25℃)、加水分解性塩素原子含
有ffi:4000111 ”) C:3,4−エポキシシクロヘキシルメチル−3゜4−
エポキシシクロヘキサンカルボン酸エステル(ダイセル
@製のセロキサイド2021、エポキシ当l:135、
粘度=3ボイズ(25℃)、加水分解性塩素原子含有f
fi:Oppm)ジシアンジアミド:平均粒径10如 銀粉a:li片状銀粉、平均粒径2ρ 銀粉す二速状銀粉、平均粒径0.5Jsl銅 粉:平均
粒径2.5項 フェノキシ樹脂:平均分子1i 30000実施例1 第1表に示されるようにジグリシジルタイプの液状エポ
キシ樹脂としてA、硬化剤としてジシアンジアミドおよ
び硬化促進剤として2P4HH2を閤潰器で混練し、さ
らに導電性充填剤として鱗片状銀粉を加えて均質な組成
になるように混練し、樹脂ペーストをえた。
A: Bisphenol F type epoxy resin (epoxy equivalent: 195, viscosity: 40 voids (25°C), hydrolyzable chlorine atom content @: 40011 pm) B: Bisphenol A type epoxy resin (epoxy equivalent: 11:190,
Viscosity = 200 voids (25°C), hydrolyzable chlorine atom content ffi: 4000111”) C: 3,4-epoxycyclohexylmethyl-3°4-
Epoxycyclohexane carboxylic acid ester (Celoxide 2021 manufactured by Daicel@, epoxy equivalent: 135,
Viscosity = 3 voids (25°C), hydrolyzable chlorine atom content f
fi: Oppm) Dicyandiamide: average particle size 10 silver powder a: li flaky silver powder, average particle size 2ρ silver powder, two-speed silver powder, average particle size 0.5 Jsl copper powder: average particle size 2.5 items phenoxy resin: average Molecule 1i 30000 Example 1 As shown in Table 1, A as a diglycidyl type liquid epoxy resin, dicyandiamide as a hardening agent, and 2P4HH2 as a hardening accelerator were kneaded in a crusher, and then scaly as a conductive filler. Silver powder was added and kneaded to obtain a homogeneous composition to obtain a resin paste.

えられた樹脂ペーストの特性として粘度(25℃)、比
重およびポットライフ(25℃で粘度が初期の20部増
となる時点)を測定した。結果を第1表に示す。
The viscosity (25°C), specific gravity, and pot life (the point at which the viscosity increases by 20 parts from the initial value at 25°C) of the resulting resin paste were measured. The results are shown in Table 1.

えられた絶縁樹脂ペーストを真空脱泡したのち、リード
フレーム(銀メタライズ(ダイパッド部))上にディス
ペンスまたはスタンピングにより定聞的に塗付し、2M
角のチップ(裏面メタライズなし)を接合した。つぎに
ホットプレート上180℃、1分間加熱して硬化させた
。硬化時にボイドの発生は認められなかった。
After degassing the obtained insulating resin paste in a vacuum, it was applied regularly on the lead frame (silver metallization (die pad part)) by dispensing or stamping, and 2M
The corner chip (without metallization on the back side) was bonded. Next, it was cured by heating on a hot plate at 180° C. for 1 minute. No voids were observed during curing.

えられた試料を用い、ダイシェア接着強度を室温(約2
5℃)ならびに350℃にてプッシュプルゲージを用い
て測定した。
Using the obtained sample, the die shear adhesive strength was measured at room temperature (approximately 2
5°C) and 350°C using a push-pull gauge.

また、つぎのようにしてプレッシャクツカーテストを行
ない、硬化物からの熱水抽出された塩素イオンなどの不
純物を測定した。
In addition, a pressure puller test was conducted as follows to measure impurities such as chlorine ions extracted with hot water from the cured product.

絶縁樹脂ペーストを150℃、15分間オーブン中で硬
化させ、ついで硬化物を粉砕する。えられた粉末試料の
うち100メツシユバスの粉末5gをテフロン容器にと
り、さらに純水Sodを加えたのち、ステンレス製の耐
圧容器に入れ、完全に密封して121℃、20時間処理
する。抽出水をろ過し、これを検液とする。検液中のナ
トリウムイオン(Ha”)濃度、アンモニウムイオン(
N)l+”)11度および塩素イオン(CI−’)11
度をすべてイオン交換クロマトグラフィーにより測定す
る。
The insulating resin paste is cured in an oven at 150° C. for 15 minutes, and then the cured product is crushed. Of the powder samples obtained, 5 g of powder from 100 mesh baths was placed in a Teflon container, and after adding pure water Sod, the container was placed in a stainless steel pressure container, completely sealed, and treated at 121° C. for 20 hours. Filter the extracted water and use this as the test solution. Sodium ion (Ha”) concentration, ammonium ion (
N)l+") 11 degrees and chloride ion (CI-') 11
All degrees are determined by ion exchange chromatography.

ざらに、チッ素中でこの導電性樹脂ペーストの硬化物の
熱分析を行なったところ、減量開始温度は362℃(熱
重量減少曲線の接線法による)であり、高い耐熱性を有
していることがわかった。
Roughly speaking, thermal analysis of the cured product of this conductive resin paste in nitrogen revealed that the weight loss starting temperature was 362°C (according to the tangent method of the thermogravimetric loss curve), indicating that it has high heat resistance. I understand.

また熱伝導度は3.Ox 10−3 cal/c+g 
−sec −’Cであり、体積抵抗率は1.3X10−
4Ω・αであった。
Also, the thermal conductivity is 3. Ox 10-3 cal/c+g
-sec -'C, and the volume resistivity is 1.3X10-
It was 4Ω·α.

実施例2〜5 第1表に示される各材料を用いて実施例1と同様にして
樹脂ペーストをえた。
Examples 2 to 5 Resin pastes were obtained in the same manner as in Example 1 using each material shown in Table 1.

えられた樹脂ペーストの特性および硬化物の特性を実施
例1と同様にして調べた。結果を第1表に示す。
The properties of the obtained resin paste and the properties of the cured product were investigated in the same manner as in Example 1. The results are shown in Table 1.

実施例6および7 第1表に示される各材料を用いて実施例1と同様にして
樹脂ペーストをえた。なおフェノキシ樹脂はあらかじめ
エポキシ樹脂に溶解させて用いた。
Examples 6 and 7 Resin pastes were obtained in the same manner as in Example 1 using each material shown in Table 1. Note that the phenoxy resin was dissolved in an epoxy resin before use.

えられた樹脂ペーストの特性および硬化物の特性を実施
例1と同様にして調べた。結果を第1表に示す。フェノ
キシ樹脂を添加した実施例6および7では、いずれもさ
らに接着力が向上した。
The properties of the obtained resin paste and the properties of the cured product were investigated in the same manner as in Example 1. The results are shown in Table 1. In both Examples 6 and 7 in which phenoxy resin was added, the adhesive strength was further improved.

比較例1 第1表に示される各材料を用いて実施例1と同様にして
樹脂ペーストをえた。
Comparative Example 1 A resin paste was obtained in the same manner as in Example 1 using each material shown in Table 1.

えられた樹脂ペーストの特性および硬化物の特性を実施
例1と同様にして調べた。結果を第1表に示す。
The properties of the obtained resin paste and the properties of the cured product were investigated in the same manner as in Example 1. The results are shown in Table 1.

このばあい脂環式エポキシ樹脂の聞が多く硬化の際ボイ
ドが多数発生し、室温ならびに350℃での接着力が著
しく低かった。また減量開始温度は354℃となったが
、200℃付近から未反応の脂環式エポキシ樹脂による
減量が開始しており、これらはワイヤーボンド時にチッ
プを汚染する可能性があり、好ましくない。
In this case, since the alicyclic epoxy resin was used, many voids were generated during curing, and the adhesive strength at room temperature and 350° C. was extremely low. Further, although the weight loss starting temperature was 354°C, the weight loss started from around 200°C due to unreacted alicyclic epoxy resin, which is undesirable since it may contaminate the chip during wire bonding.

比較例2 第1表に示される各材料を用いて実施例1と同様にして
樹脂ペーストをえた。なお、硬化剤としては、硬化剤と
しても作用する硬化促進剤の2P4HH2を用いた。
Comparative Example 2 A resin paste was obtained in the same manner as in Example 1 using each material shown in Table 1. As the curing agent, 2P4HH2, which is a curing accelerator that also acts as a curing agent, was used.

えられた樹脂ペーストの特性および硬化物の特性を実施
例1と同様にして調べた。結果を第1表に示す。
The properties of the obtained resin paste and the properties of the cured product were investigated in the same manner as in Example 1. The results are shown in Table 1.

このばあい室温での接着力は2000Q/M”以上を有
しているが、350℃では180g/s+’ L/かな
く、ワイヤーボンド時に剥がれるおそれがあり好ましく
ない。また、ポットライフも14日と短いものであった
In this case, the adhesive strength at room temperature is 2000Q/M" or more, but at 350°C it is only 180g/s+'L/, which is undesirable as there is a risk of peeling during wire bonding. Also, the pot life is 14 days. It was a short one.

以上のように、これらの比較例1および2の樹脂ペース
トはいずれも実施例に示した本発明の樹脂ペーストより
も低い特性しか示さなかった。
As described above, the resin pastes of Comparative Examples 1 and 2 both showed lower characteristics than the resin pastes of the present invention shown in the examples.

[以□下余白] [発明の効果] 本発明の導電性樹脂ペーストはポットライフが長く、ま
た硬化時にボイドを発生することなく低温で短時間に硬
化させることができるので、半導体素子を製造する際の
ダイボンド工程のインライン化が可能になり、該工程に
使用される装置を小型化することができる。
[Blank below] [Effects of the invention] The conductive resin paste of the present invention has a long pot life and can be cured at low temperatures in a short time without generating voids during curing, making it suitable for manufacturing semiconductor devices. The actual die bonding process can be performed in-line, and the equipment used in this process can be downsized.

Claims (3)

【特許請求の範囲】[Claims] (1)ジグリシジルタイプの液状エポキシ樹脂を主成分
とするエポキシ樹脂100重量部、硬化剤としてジシア
ンジアミド0.5〜10重量部、硬化促進剤として2−
フェニル−4−メチル−5−ヒドロキシメチルイミダゾ
ールおよび(または)2−フエニル−4,5−ジヒドロ
キシメチルイミダゾール0.1〜8重量部および導電性
充填剤10〜450重量部よりなる熱硬化性導電性樹脂
ペースト。
(1) 100 parts by weight of an epoxy resin whose main component is diglycidyl type liquid epoxy resin, 0.5 to 10 parts by weight of dicyandiamide as a curing agent, 2-2 as a curing accelerator
A thermosetting conductive material comprising 0.1 to 8 parts by weight of phenyl-4-methyl-5-hydroxymethylimidazole and/or 2-phenyl-4,5-dihydroxymethylimidazole and 10 to 450 parts by weight of a conductive filler. resin paste.
(2)ジシアンジアミドの平均粒径が0.5〜20μm
の範囲内である特許請求の範囲第(1)項記載の熱硬化
性導電性樹脂ペースト。
(2) The average particle size of dicyandiamide is 0.5 to 20 μm
The thermosetting conductive resin paste according to claim (1), which falls within the scope of claim (1).
(3)導電性充填剤の平均粒径が0.02〜30μmの
範囲内である特許請求の範囲第(1)項記載の熱硬化性
導電性樹脂ペースト。
(3) The thermosetting conductive resin paste according to claim (1), wherein the average particle size of the conductive filler is within the range of 0.02 to 30 μm.
JP28173087A 1987-11-07 1987-11-07 Thermosetting conductive resin paste Pending JPH01123855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28173087A JPH01123855A (en) 1987-11-07 1987-11-07 Thermosetting conductive resin paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28173087A JPH01123855A (en) 1987-11-07 1987-11-07 Thermosetting conductive resin paste

Publications (1)

Publication Number Publication Date
JPH01123855A true JPH01123855A (en) 1989-05-16

Family

ID=17643182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28173087A Pending JPH01123855A (en) 1987-11-07 1987-11-07 Thermosetting conductive resin paste

Country Status (1)

Country Link
JP (1) JPH01123855A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106873A (en) * 1999-10-07 2001-04-17 Sumitomo Bakelite Co Ltd Resin paste for semiconductor and semiconductor device using the same
JP2002088225A (en) * 2000-07-13 2002-03-27 Ngk Spark Plug Co Ltd Paste for through-hole filling and printed circuit board using the same
JP2011111570A (en) * 2009-11-27 2011-06-09 Omron Corp One-pack epoxy resin composition and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106873A (en) * 1999-10-07 2001-04-17 Sumitomo Bakelite Co Ltd Resin paste for semiconductor and semiconductor device using the same
JP2002088225A (en) * 2000-07-13 2002-03-27 Ngk Spark Plug Co Ltd Paste for through-hole filling and printed circuit board using the same
JP2011111570A (en) * 2009-11-27 2011-06-09 Omron Corp One-pack epoxy resin composition and application thereof

Similar Documents

Publication Publication Date Title
JPH01113423A (en) Thermostetting insulating resin paste
JPH1166953A (en) Conductive adhesive and usage thereof
JP2983816B2 (en) Conductive resin paste
JP3214685B2 (en) Conductive resin paste
JPH0511365B2 (en)
JPH06184282A (en) Electrically conductive resin paste
JPH01123855A (en) Thermosetting conductive resin paste
JPH0995651A (en) Electroconductive resin paste
JP2834658B2 (en) Conductive resin paste for semiconductors
JP3526183B2 (en) Conductive resin paste and semiconductor device manufactured using the same
JPH07118616A (en) Electrically conductive resin paste
JPH04218524A (en) Production of electrically conductive resin paste and semiconductor device
JPS601223A (en) Electroconductive resin paste
JP2005317491A (en) Conductive paste and electronic component mounting substrate using it
JP3254625B2 (en) Conductive resin paste and semiconductor device using the same
JPH07179833A (en) Conductive resin paste
JP3095106B2 (en) Conductive resin paste
JPS63161014A (en) Electrically conductive resin paste
JP2944726B2 (en) Conductive resin paste for semiconductors
JP4100737B2 (en) Conductive resin paste and semiconductor device manufactured using the same
JPH03145143A (en) Conductive resin paste for semiconductor
JP3608908B2 (en) Resin paste for semiconductor
JP2716635B2 (en) Conductive resin paste
JPH09194813A (en) Conductive resin paste composition and semiconductor device
JPH01153767A (en) Electrically conductive resin paste