JPH01123181A - Radar target azimuth detector - Google Patents

Radar target azimuth detector

Info

Publication number
JPH01123181A
JPH01123181A JP62281701A JP28170187A JPH01123181A JP H01123181 A JPH01123181 A JP H01123181A JP 62281701 A JP62281701 A JP 62281701A JP 28170187 A JP28170187 A JP 28170187A JP H01123181 A JPH01123181 A JP H01123181A
Authority
JP
Japan
Prior art keywords
target
circuit
level
azimuth
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62281701A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishii
弘 石井
Masanobu Tsudo
津藤 正信
Masaki Yasufuku
安福 正樹
Shigeki Tsunetomi
常富 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62281701A priority Critical patent/JPH01123181A/en
Publication of JPH01123181A publication Critical patent/JPH01123181A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To prevent that inaccurate data is given to a pilot, by providing a circuit for comparing the amplitude level of the DELTA channel of a target with a vicinal level to output an abnormality signal and an azimuth correction circuit for setting the azimuth angle of the target to 0 deg. at the time of abnormality. CONSTITUTION:The sum pattern and difference pattern analogue videos from a monopulse antenna receiver are converted at every distance range gates by A/D converters 1 to be stored in a memory 11 through a first Fourier transform filter 10. Next, while a memory address is successively changed with respect to the memory 11, one exceeding a certain threshold value is detected as a target in a target detection circuit 12. The azimuth angle of the detected target is operated by an azimuth angle operation circuit 13 using a monopulse error sensitivity characteristic. Further, an average value is operated with respect to the filter direction in the vicinity of the DELTAchannel corresponding to the position of the target from the circuit 12 by a DELTAchannel vicinal level operation circuit (+ direction) 14. Next, this vicinal average level is compared with a definite level by a DELTA channel vicinal level comparing circuit 15 and, in the case of abnormality, an abnormality signal is outputted. An azimuth correction circuit 16 outputs an azimuth signal bringing the azimuth angle to 0 deg. on the basis of the abnormality signal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、モノパルス・アンテナを用いたレーダ目標
の反射波が、左右のどちらの方向からのものかを判別す
るための装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a device for determining whether a reflected wave from a radar target comes from a left or right direction using a monopulse antenna. .

〔従来の技術〕[Conventional technology]

第8図は従来の目標方位検出装置であυ、図において(
1)はモノパルス・アンテナ受信機からの和パターンビ
デオ(以後ΣIビデオ、ΣQビデオと呼び、エビデオと
Qビデオは90°の位相差をもつ)と差パターンビデオ
(以後Δエビデオ、ΔQビデオと呼ぶ。)を各距離レン
ジゲートごとにアナログ信号からディジタル信号へ変換
するための4勺変換器、(2)はグランド・クラッタを
除去するためのクラッタ除去フィルタ、(3)は目標検
出および方位演算回路である。以下、詳しく述べる。
Figure 8 shows a conventional target direction detection device υ, and in the figure (
1) is a sum pattern video (hereinafter referred to as ΣI video and ΣQ video, and the E video and Q video have a phase difference of 90°) from a monopulse antenna receiver and a difference pattern video (hereinafter referred to as ΔE video and ΔQ video). ) is a four-channel converter for converting analog signals to digital signals for each distance range gate, (2) is a clutter removal filter to remove ground clutter, and (3) is a target detection and azimuth calculation circuit. be. The details will be explained below.

(4a) (4b)は、クラッタ除去フィルタを通過し
たビデオ信号の振幅を求めるためのJT丁演算回路、C
5)は目標の有無を検出するための目標検出回路〈6)
はモノパルスの誤差感度を求めるための位相を求め、さ
らに位相差を求めた後に、位相差らの位相差信号と使用
するレーダのモノパルス誤差感度特性よシ左右の何度の
方位からの反射波であるかを演算するための目標方位演
算回路である。
(4a) (4b) is a JT calculation circuit for determining the amplitude of the video signal that has passed through the clutter removal filter, C
5) is a target detection circuit for detecting the presence or absence of a target.
After determining the phase to determine the error sensitivity of the monopulse, and then determining the phase difference, the phase difference signal and the monopulse error sensitivity characteristic of the radar used are reflected waves from several directions left and right. This is a target direction calculation circuit for calculating whether there is a target.

ここで−収約なモノパルスアンテナによる方位判定の概
念を第4図(a) (b) (c)によシ説明する。(
電子通信学会編し−ダ技術U章5項よシ)2 N ノ一
部重なりあったモノパルス・アンテナパターンC914
4図(a))を用い2個のアンテナ・パターンを同相に
て合成する和パターンと逆相によって合成する差パター
ンとを用いる。Δビデオの位相とΣビデオの位相との位
相差−Δ−−Σは方位O0を境として一90°から+9
00(又は+90°から−90゜ここでは右側を+90
’ 、左側を一90’として説明する。)に反転するこ
とが知られてお夛第4図(b) (c)の位相差≠Δ−
一Σと誤差感度曲線によシ方位を知ることができる。
The concept of orientation determination using a convergent monopulse antenna will now be explained with reference to FIGS. 4(a), (b), and (c). (
Partially overlapped monopulse antenna pattern C914 compiled by the Institute of Electronics and Communication Engineers, Technical Chapter U, Section 5) 2N
Using FIG. 4(a), a sum pattern in which two antenna patterns are combined in the same phase and a difference pattern in which they are combined in opposite phase are used. The phase difference between the Δ video phase and the Σ video phase is −Δ−−Σ from 190° to +9 with the azimuth O0 as the border.
00 (or +90° to -90° Here, the right side is +90°
', and the left side is 190'. ) It is known that the phase difference in Figure 4 (b) and (c) is reversed≠Δ-
The direction can be determined by the Σ and the error sensitivity curve.

次に動作について説明する〇 モノパルス・アンテナ受信機からのΣ1.XQ、ΔL−
Qの4つのアナログビデオは各距離レンジゲートごとに
〜を変換器(1)によってめ変換され、クラッタ除去フ
ィルタ(2)にて移動目標からの反射波のみが通過する
。この通過信号の振幅を求め、ある一定のヌレショルド
を越える信号値であれば移動目標であることになる。
Next, we will explain the operation of Σ1 from the monopulse antenna receiver. XQ, ΔL-
The four analog videos of Q are converted by the converter (1) for each range gate, and only the reflected wave from the moving target passes through the clutter removal filter (2). The amplitude of this passing signal is determined, and if the signal value exceeds a certain threshold, it is determined that the target is moving.

Δビデオの位相差を求める。方位演算回路(8)では相
差とモノパルス誤差感度特性よシ左右の何度の方位から
の反射波であるかを演算し、出力する。
Find the phase difference of the Δ video. The azimuth calculation circuit (8) calculates the phase difference and the monopulse error sensitivity characteristic, and calculates how many azimuths to the left and right the reflected wave is from, and outputs the result.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のモノパルス・アンテナにおける誤差感度曲線を用
いたレーダ目標方位装置は、以上のように構成されてい
るので、航空機に搭載され、後方から接近する(ドプフ
周波数が正)目標(航空機等)を検出するレーダにおい
ては、アンテナバンクローブ方向からのクラッタは正の
ドグフ周波数を有し、目標と重畳する。第5図に説明図
を示す。
The radar target orientation device that uses the error sensitivity curve of a conventional monopulse antenna is configured as described above, so it is mounted on an aircraft and can detect targets (airplanes, etc.) approaching from behind (Dopf frequency is positive). In the radar, clutter from the direction of the antenna bank lobe has a positive dogf frequency and overlaps with the target. An explanatory diagram is shown in FIG.

一般にjI6図(a)かられかるように、アンテナバッ
クローブレベルはEチャンネルよりΔチャンネルの方が
大であるので、Σチャンネルで目標検出有(目標信号レ
ベルがクラッタレベルよシ大)でも、Δチャンネルのレ
ベルはクラッタによシ定まカ、第6図(C)のように、
目標検出レベルがクラッタレベルよシ、小の場合は、方
位検出を大きく誤ることになる。
In general, as shown in Figure jI6 (a), the antenna backlobe level is higher in the Δ channel than in the E channel, so even if a target is detected in the Σ channel (the target signal level is higher than the clutter level), the Δ The channel level is determined by clutter, as shown in Figure 6 (C).
If the target detection level is smaller than the clutter level, the direction detection will be greatly erroneous.

この発明は、上記のような問題点を解消するためCζな
されたもので、方位検出を大きく誤る可能性がある場合
には、方位を強制的に中央とするレーダ目標方位を検出
する装置を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and provides a device for detecting a radar target direction that forcibly centers the direction when there is a possibility that the direction detection will be greatly erroneously detected. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るレーダ目標方位検出装置は、Σチャンネ
ルで目標を検出したレンジおよびドプフ周波数に対応し
た該当のΔチャンネルの近傍平均レベルを計算し、近傍
レベルがある一定のレベルよシ大の場合に、異常である
として、方位を中央とする回路を付加したものである。
The radar target direction detection device according to the present invention calculates the neighborhood average level of the corresponding Δ channel corresponding to the range and Dopf frequency in which the target was detected in the Σ channel, and calculates the neighborhood average level of the corresponding Δ channel corresponding to the range and Dopf frequency in which the target is detected in the Σ channel, and when the neighborhood level is greater than a certain level. , a circuit that centers the orientation is added as an abnormality.

〔作用〕[Effect]

この発明におけるΔチャンネルの近傍平均レベル回路と
、ある一定しベμとの比較回路とによシ、第5図(C)
のように、目標がクフツタレベμよ〕小になるような方
位検出を大きく誤る可能性のある場合を方位検出時から
除くことができる。
Figure 5 (C) shows the difference between the neighborhood average level circuit of the Δ channel in this invention and the comparison circuit with a constant value μ.
As shown in FIG. 2, cases where the target is smaller than the Kufutsuta level μ] and there is a possibility of a major error in direction detection can be eliminated from the direction detection process.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図において、(1)は従来と同じ謁変換器、αOはレー
ダの受信信号をN個の線スベクトヲム(周波数スペクフ
ム)に分離するためのFFT(FastFovrier
 Transfδrm)フィルタ、(11) iよFF
T後ノ各フィルタを通過した複素のFFT出力信号を記
憶するための記憶するための記憶メモリ、(2)は目標
の有無を検出するための目標検出回路(至)は目標の方
位角を箋従来の誤差感度特性を用いる方法によシ演算す
る方位角演算回路、Q4は四からの目標位置に該当する
Δチャンネ/I/(7;)近傍レベルをf方向に(フィ
ルタ方向)ついて平均値を演算するための演算回路、に
)は、α々の近傍平均レベルと、ある一定のレペ/L/
(たとえば最小受信レベ〃の何dBupの値で、バンク
ローブの影響によると思われるレベル)と比較し、異常
(クラッタの影響有と判定)信号を出力するための回路
、α・は異常時(こは03からの方位角信号を0度と補
正するための回路である。正常時には(至)からの方位
角信号は、そのまま方位信号となる。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (1) is the same converter as the conventional one, and αO is the FFT (Fast Fovlier) for separating the radar reception signal into N line spectrums (frequency specs).
Transfδrm) filter, (11) i FF
(2) is a memory for storing the complex FFT output signal that has passed through each filter; (2) is a target detection circuit for detecting the presence or absence of a target; An azimuth calculation circuit that calculates by a method using conventional error sensitivity characteristics, Q4 is an average value of the Δ channel /I / (7;) neighborhood level corresponding to the target position from 4 in the f direction (filter direction). The arithmetic circuit for calculating α) calculates the neighborhood average level of α and a certain rep/L/
(For example, what dBup value of the minimum reception level is the level that is considered to be due to the influence of the banklobe?) and outputs an abnormal signal (determined to be affected by clutter). This is a circuit for correcting the azimuth signal from 03 to 0 degrees.In normal conditions, the azimuth signal from (to) becomes the azimuth signal as it is.

火に動作について説明する◎ FFTドプツフイ〃りQOからの出力(複素出力)は、
記憶メモリ0υに入力される。火にこの記憶メモリα刀
にj[K&メモリアドレスを変化させながら、目標検出
回路(2)において、ある一定の振幅スレシ′g〜ドを
越えるものについて目標として検出する。
Explain the operation in detail. ◎ The output (complex output) from the FFT doppler QO is
It is input into the storage memory 0υ. While changing the memory address, the target detection circuit (2) detects as a target anything exceeding a certain amplitude threshold.

この検出された目標について、方位角演算回路(至)に
て、方位角をモノバ〃ス誤差感度特性を用いて演算する
。α4 Ql Qlは、アンテナ・バックローブの影響
によシ、目標のΔビデオがクラッタζこ、うもれて方位
角演算回路(至)における方位角が正確でない(異常だ
とする。)場合には方位角信号を06と補正すべきだと
いう信号を出すために設けられた回路である。
Regarding this detected target, the azimuth angle is calculated in the azimuth calculation circuit (to) using the monobas error sensitivity characteristic. α4 Ql Ql is due to the influence of the antenna backlobe, and the Δ video of the target is cluttered. This circuit is provided to output a signal indicating that the angle signal should be corrected to 06.

第6図に、本発明によるf方向における近傍平均L/ 
ヘ)vの求め方の説明図を示す。Δチャンネルの近傍レ
ベル演算回路Q→では、目標として該当しり(R,f)
の位置に対してΔチャンネルにおいてf−2から、M個
の左側の値とf+2からM個の右側の値の計2M個の平
均値を近傍レベルとして演算する。Δチャンネル近傍レ
ベル比較回路QfGではこの近傍平均レベルと、異常だ
と判別すべきある一定のレベルとの比較を行ない異常だ
と判定されてれば、異常信号を出し、方位補正回路OI
ではこの異常信号により、方位角信号を0°とすべきか
判断を行なう。通常は異常とはせず、方位角演算回路(
至)からの方位角信号をそのまま方位信号として出力す
る。
FIG. 6 shows the neighborhood average L/ in the f direction according to the present invention.
f) An explanatory diagram of how to obtain v is shown. In the Δ channel neighborhood level calculation circuit Q→, the target is (R, f).
For the position of , a total of 2M average values of M values on the left side from f-2 and M values on the right side from f+2 in the Δ channel are calculated as the neighborhood level. The Δ channel neighborhood level comparison circuit QfG compares this neighborhood average level with a certain level that should be determined to be abnormal, and if it is determined to be abnormal, outputs an abnormal signal and directs the direction correction circuit OI.
Then, based on this abnormal signal, it is determined whether the azimuth signal should be set to 0°. Normally, it is not considered an abnormality, and the azimuth calculation circuit (
outputs the azimuth signal from (to) as the azimuth signal as it is.

また、第2図、第7図に、他の適用例を示す。Further, other application examples are shown in FIGS. 2 and 7.

Δチャンネル近傍レベル演算回路α→において、f方向
(フィルタ方向)のみの近傍レベルの平均値を使用する
のではなく、第7図に示すように、f方向(フィルタ方
向)およびR方向(レンジ方向)において、すなわち4
方向(4M個の値)の平均値を近傍平均レベルとして使
用してもよく、上記実施例と同様の効果を奏する。
In the Δ channel neighborhood level calculation circuit α→, instead of using the average value of the neighborhood levels only in the f direction (filter direction), as shown in FIG. ), i.e. 4
The average value in the direction (4M values) may be used as the neighborhood average level, and the same effect as in the above embodiment can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、アンテナパックロー
ブが異常に、大きな場合には異常であるとして、目標の
方位を強制的に中央としたので、パイロットに不正確な
情報を与える事を防止でき、パイロットの安定した操縦
を妨害しないという効果がある。
As described above, according to the present invention, if the antenna pack lobe is abnormally large, it is considered abnormal and the target direction is forcibly centered, thereby preventing inaccurate information from being given to the pilot. This has the effect of not interfering with the pilot's stable operation.

【図面の簡単な説明】 第1図はこの発明の一実施例によるレーダ目標方位検出
装置の構成図、第2図はこの発明の他の実施例のレーダ
目標方位検出装置の構成図、第3図は従来のレーダ目標
方位検出装置を示す構成図、第4図はモノパルス・アン
テナにおける方位検出概念説明図、第5図はバックロー
ブによるクラッタと目標が重畳した場合の目標とクラッ
タの関係説明図、第6図はf方向における近傍平均レベ
ルの説明図、第7図はf、R方向における近傍平均レベ
μの説明図である。 図において(1)はA/b変換器、(2)はクラッタ除
去1Δ( 演算回路、(5)は目標検出回路、(6)は7演算回路
、(7)はΣ−Δ位相差演算回路、(8)は方位演算回
路、(9)は欠番、00はFFTドプラフィルタ、(1
1)は記憶メモリ、(2)は目標検出回路、(至)は方
位角演算回路、a<はΔチャンネル近傍レベル演算回路
(f方向)、0!1はΔチャンネル近傍レベル比較回路
、αQは方位補正回路、α力はΔチャンネル近傍レベル
演算回路(f、R方向)である。 なお、図中の同一符号は、同−又は相当部分を示す。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a block diagram of a radar target direction detection device according to an embodiment of the present invention, FIG. 2 is a block diagram of a radar target direction detection device according to another embodiment of the present invention, and FIG. Figure 4 is a configuration diagram showing a conventional radar target orientation detection device, Figure 4 is an illustration of the concept of orientation detection in a monopulse antenna, and Figure 5 is an illustration of the relationship between the target and clutter when clutter due to a backlobe overlaps with the target. , FIG. 6 is an explanatory diagram of the neighborhood average level in the f direction, and FIG. 7 is an explanatory diagram of the neighborhood average level μ in the f and R directions. In the figure, (1) is the A/b converter, (2) is the clutter removal 1Δ (calculation circuit), (5) is the target detection circuit, (6) is the 7 calculation circuit, and (7) is the Σ-Δ phase difference calculation circuit. , (8) is the direction calculation circuit, (9) is the missing number, 00 is the FFT Doppler filter, (1
1) is the storage memory, (2) is the target detection circuit, (to) is the azimuth calculation circuit, a< is the Δ channel neighborhood level calculation circuit (f direction), 0!1 is the Δ channel neighborhood level comparison circuit, and αQ is the Δ channel neighborhood level comparison circuit. The direction correction circuit, α force, is a Δ channel vicinity level calculation circuit (f, R direction). Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] モノパルス方式により測角を実施し、後方から接近する
目標を検出する航空機搭載レーダにおいて、モノパルス
受信機からのΣI、ΣQ、ΔI、ΔQのアナログ・ビデ
オ信号をA/D変換するための回路と、FFT(Fas
tFovrierTransf@o@rm:ドプラフイ
ルタ群)フィルタと、FFTフィルタからの出力を記憶
するための記憶メモリと、目標検出のための回路と、目
標の方位演算を行うための回路と、Δチヤンネルの近傍
レベルを演算するための回路と、目標のΔチャンネルの
振幅レベルとΔチャンネルの近傍レベルを比較し、異常
の時の異常信号を出す回路と、異常時は、目標の方位角
を0°とするための方位補正回路とを備えたレーダ目標
方位検出装置。
In an airborne radar that performs angle measurement using a monopulse method and detects targets approaching from behind, a circuit for A/D converting analog video signals of ΣI, ΣQ, ΔI, and ΔQ from a monopulse receiver; FFT (Fas
tFovrierTransf@o@rm: Doppler filter group) filter, a storage memory for storing the output from the FFT filter, a circuit for target detection, a circuit for calculating the target direction, and the vicinity of the Δ channel A circuit for calculating the level, a circuit that compares the amplitude level of the target Δ channel and the neighboring level of the Δ channel, and outputs an abnormal signal in the event of an abnormality, and a circuit that sets the target azimuth to 0° in the event of an abnormality. A radar target azimuth detection device equipped with an azimuth correction circuit for
JP62281701A 1987-11-07 1987-11-07 Radar target azimuth detector Pending JPH01123181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62281701A JPH01123181A (en) 1987-11-07 1987-11-07 Radar target azimuth detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62281701A JPH01123181A (en) 1987-11-07 1987-11-07 Radar target azimuth detector

Publications (1)

Publication Number Publication Date
JPH01123181A true JPH01123181A (en) 1989-05-16

Family

ID=17642774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62281701A Pending JPH01123181A (en) 1987-11-07 1987-11-07 Radar target azimuth detector

Country Status (1)

Country Link
JP (1) JPH01123181A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156807A (en) * 2007-12-27 2009-07-16 Toshiba Corp Angle measuring device
US20120127023A1 (en) * 2010-11-19 2012-05-24 Kazuya Nakagawa Method and device for processing signal, and radar device
JP2012194153A (en) * 2011-03-18 2012-10-11 Nec Network & Sensor Systems Ltd Distance calculation device and control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156807A (en) * 2007-12-27 2009-07-16 Toshiba Corp Angle measuring device
US20120127023A1 (en) * 2010-11-19 2012-05-24 Kazuya Nakagawa Method and device for processing signal, and radar device
CN102540147A (en) * 2010-11-19 2012-07-04 古野电气株式会社 Signal processing device, radar device, signal processing method and procedure
US8665140B2 (en) * 2010-11-19 2014-03-04 Furuno Electric Company Limited Method and device for processing signal, and radar device
JP2012194153A (en) * 2011-03-18 2012-10-11 Nec Network & Sensor Systems Ltd Distance calculation device and control method

Similar Documents

Publication Publication Date Title
JP6268101B2 (en) Method and sensor for determining the direction of arrival of incident radiation
US7301496B2 (en) Radar apparatus
US6255991B1 (en) Low cost angle of arrival measurement system
US6169519B1 (en) TCAS bearing measurement receiver apparatus with phase error compensation method
US6392598B1 (en) Cable phase calibration in a TCAS
US20200363522A1 (en) Signal processing device, radar device and signal processing method
US10501101B2 (en) Train-position detection device
EP1788407A1 (en) Radar apparatus
US20210149035A1 (en) Radar device and target angle measurement method
JP2018116000A (en) Radar device and object recognition method
CN103728615A (en) Method and system for detecting a plurality of targets of phased array secondary radars
JPH01123181A (en) Radar target azimuth detector
JP3808431B2 (en) Direction finding device
US5731783A (en) Method and apparatus for estimating radar signal polarisation
JP4902985B2 (en) Monopulse radar apparatus calibration method and calibration determination apparatus
US20220012492A1 (en) Object detection device
KR102586566B1 (en) Method and apparatus for detecting direction using antenna structure having directional gain
US5263012A (en) Sub-nanosecond time difference measurement
JP7330131B2 (en) radar equipment
US20220390584A1 (en) Radar signal processing device, radar signal processing method, radar device, and in-vehicle device
JP2591482B2 (en) Target detection circuit
RU2311656C1 (en) Phase method for direction finding
JP2670527B2 (en) Monopulse radar device
JPH0534446A (en) Target detection circuit
JPS5844990B2 (en) radio angle measurement device