JPH01121649A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH01121649A
JPH01121649A JP62276646A JP27664687A JPH01121649A JP H01121649 A JPH01121649 A JP H01121649A JP 62276646 A JP62276646 A JP 62276646A JP 27664687 A JP27664687 A JP 27664687A JP H01121649 A JPH01121649 A JP H01121649A
Authority
JP
Japan
Prior art keywords
temperature
compressor
time
heat exchanger
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62276646A
Other languages
Japanese (ja)
Inventor
Jitsuo Iketani
池谷 實男
Susumu Nagakura
長倉 進
Masatoshi Wakiyama
脇山 正利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62276646A priority Critical patent/JPH01121649A/en
Publication of JPH01121649A publication Critical patent/JPH01121649A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To operate a compressor in response to a load by a method wherein after reaching a predetermined room temperature, the compressor is operated at a rotational speed got by a difference between a temperature of a radiation panel and a predetermined temperature and a subsequent rotational speed is determined according to the temperature difference and a ratio of time in which the radiation panel reaches a predetermined value. CONSTITUTION:A control device 14 starts an air conditioner and after a room temperature detected by a sensor 11 reaches a predetermined value set in an input device 15, a rotational speed of a compressor 1 is determined in response to a temperature differential between a temperature of a radiation panel 3 detected by a sensor 9 and its predetermined value and then it is controlled through an inverter 13. Under this operation, a rotational speed of the compressor 1 subsequent to a time in which the radiation panel 3 reaches the predetermined value is varied. In this way, it is possible to determine a rotational speed of the compressor rapidly in response to a load and simultaneously the radiation panel is increased to a high temperature within a short period of time to perform a stable operation. Accordingly, a stopped operation of an indoor fan can be carried out for a long period of time in respect to a variation of indoor temperature condition.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、輻射パネル熱交換器を備えた空気調和機に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an air conditioner equipped with a radiant panel heat exchanger.

(従来の技術) 従来の冷凍サイクルにより暖房を行なう空気調、和機を
第10図に示す。
(Prior Art) Fig. 10 shows an air conditioner or Japanese appliance that performs heating using a conventional refrigeration cycle.

図面において符号71はコンプレッサーであり、このコ
ンプレッサー71によって冷媒は圧縮高温化され、冷媒
の流れ方向が暖房時に設定された四方弁72を経由して
、室内熱交換器73へ供給される。室内熱交換器73に
おいて冷媒はその付近の室内空気を暖め、回転する室内
ファンによって温風が室内へ供給される。冷媒は絞り機
74で減圧低温化され、室外熱交換器75で外気と熱交
換した後、四方弁72を経由してコンプレッサー71へ
再び戻る。この時のコンプレッサー71の回転速度は、
室内ユニットに組み込まれた温度センサーによる検出信
号によって適正な周波数変換を行うインバーター76に
よって制御されている。
In the drawing, reference numeral 71 denotes a compressor, and the compressor 71 compresses the refrigerant to a high temperature, and supplies the refrigerant to the indoor heat exchanger 73 via a four-way valve 72 whose flow direction is set for heating. In the indoor heat exchanger 73, the refrigerant warms indoor air in the vicinity thereof, and a rotating indoor fan supplies warm air indoors. The refrigerant is reduced in pressure and temperature in the throttle device 74, exchanges heat with outside air in the outdoor heat exchanger 75, and then returns to the compressor 71 via the four-way valve 72. The rotational speed of the compressor 71 at this time is
It is controlled by an inverter 76 that performs appropriate frequency conversion based on a detection signal from a temperature sensor built into the indoor unit.

(発明が解決しようとする問題点) このような従来の空気調和機によると、暖房時には、常
に室内ファンが回転しているために、その回転音が生じ
ている。この回転音は特に就寝中には睡眠の妨げとなる
。さらに室内ファンを長時間停止させる輻射暖房優先時
の運転制御には、熱負荷条件に対応した適切なコンプレ
ッサーの回転速度の選択決定が必要となる。
(Problems to be Solved by the Invention) According to such a conventional air conditioner, since the indoor fan is always rotating during heating, the rotating noise is generated. This rotating sound disturbs your sleep, especially when you are sleeping. Furthermore, for operational control when priority is given to radiant heating, in which indoor fans are stopped for long periods of time, it is necessary to select an appropriate compressor rotation speed that corresponds to the heat load conditions.

本発明は、このような点に鑑みなされたもので室内ファ
ンを停止させて輻射暖房を行い、さらに輻射暖房時のコ
ンプレッサーの回転速度の決定をすばやく行い、輻射パ
ネル熱交換器(以下、単に輻射パネルと略する)の温度
を一定に保つことのできる空気調和機を提供することを
目的とする。
The present invention was developed in view of these points, and it performs radiant heating by stopping the indoor fan, quickly determines the rotation speed of the compressor during radiant heating, and uses a radiant panel heat exchanger (hereinafter simply referred to as radiant heating). The purpose of the present invention is to provide an air conditioner that can maintain a constant temperature of a panel (abbreviated as "panel").

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、上記目的を達成するために次のような手段か
らなる。すなわち、空気調和機をスタートさせて室温が
室温設定温度に達した後、輻射パネルの温度とその設定
値との差温度を演算して、その値よりコンプレッサーの
回転速度を決定する。
(Means for Solving the Problems) The present invention includes the following means to achieve the above object. That is, after the air conditioner is started and the room temperature reaches the set temperature, the difference between the temperature of the radiant panel and the set value is calculated, and the rotation speed of the compressor is determined from that value.

この回転速度によって運転を行い、差温度と輻射パネル
が設定値に至るまでの時間との比により、輻射パネルが
設定値に至った以降のコンプレッサーの回転速度を決定
する。このような制御装置を空気調和機に備えたことを
特徴とする。
The compressor is operated at this rotation speed, and the rotation speed of the compressor after the radiant panel reaches the set value is determined by the ratio between the temperature difference and the time it takes for the radiant panel to reach the set value. The present invention is characterized in that an air conditioner is equipped with such a control device.

(作 用) 本発明によると、室内ファンを止めて負荷に応じてコン
プレッサーの回転速度をすばやく決定できる。したがっ
て輻射パネルの温度を一定に保つことができ、輻射暖房
優先の運転制御を長時間行なえる。
(Function) According to the present invention, the rotation speed of the compressor can be quickly determined according to the load by stopping the indoor fan. Therefore, the temperature of the radiant panel can be kept constant, and operation control that prioritizes radiant heating can be performed for a long time.

(実施例) 以下、図面を参照して本発明の詳細な説明する。第1図
は本実施例の全体構成図である。
(Example) Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is an overall configuration diagram of this embodiment.

図面において、符号は1コンプレツサであり、その下流
側には、四方弁2が設けられている。さらにその下流側
には、輻射パネル3、逆止弁4を介して室内ファン16
を備えた室内熱交換器5、絞り装置6、室外熱交換器7
が冷媒配管8により接続されて、全体で閉ループを形成
している。この輻射パネル3には、パネル温度センサー
9が、室内熱交換器5には室内熱交温度センサー10が
、暖房が行われる室内には室温センサー11が設けられ
ている。また、これらの温度検出信号が入力され、コン
プレッサ1へ制御信号を出力する制御部12が設けられ
ている。この制御部12は、インバータ13と、入力装
置15が接続された制御装置14とからなっている。
In the drawings, the reference numeral 1 indicates a compressor, and a four-way valve 2 is provided downstream of the compressor. Furthermore, on the downstream side, an indoor fan 16 is provided via a radiation panel 3 and a check valve 4.
An indoor heat exchanger 5, a throttle device 6, and an outdoor heat exchanger 7 equipped with
are connected by a refrigerant pipe 8, forming a closed loop as a whole. The radiant panel 3 is provided with a panel temperature sensor 9, the indoor heat exchanger 5 is provided with an indoor heat exchanger temperature sensor 10, and the room where heating is performed is provided with a room temperature sensor 11. Further, a control section 12 is provided which receives these temperature detection signals and outputs a control signal to the compressor 1. The control unit 12 includes an inverter 13 and a control device 14 to which an input device 15 is connected.

このような構成からなる本実施例の制御部12の制御装
置14には人力装置15によって次のような運転制御プ
ログラムが入力されている。
The following operation control program is input to the control device 14 of the control unit 12 of this embodiment having such a configuration by the human power device 15.

まず空気調和機をスタートさせると、室内ファン16の
運転信号を出力すると同時に、室温センサー11の検出
信号と室温設定値(たとえば25℃)とを比較演算する
。室温が25℃に至ると、室内ファン16の停止信号を
出力する。これと同時にパネル温度センサー9による検
出信号とパネル温度設定値(たとえば60℃)との差温
度Δ、Tpあるいは、室内熱交温度センサー10による
検出信号と、室内熱交設定値(たとえば60℃)との差
温度ΔTcを比較演算する。この差温度ΔTpあるいは
ΔTcの値によって第2図に示すように、コンプレッサ
ー1の適正な回転速度(周波数)を決定する。第2図は
、この差温度ΔTpあるいは△Tc  (縦軸)とコン
プレッサー1の回転速度(周波数)(横軸)との関係を
示す図であり、第2図aは輻射パネルのデータ、第2図
すは室内熱交換器のデータ示す。なお、コンプレッサー
1の回転速度を決定する際、輻射パネルのデータあるい
は室内熱交換器のデータのいずれか一つを任意に選んで
行う。(以降、輻射パネルのデータによって運転制御が
行われる場合を説明する。)このように第2図に示す回
転速度(周波数)でコンプレッサー1を運転し、25℃
に到達した時から輻射パネル3の温度がパネル設定値(
たとえば60℃)に至るまでの時間(dt)を測定する
First, when the air conditioner is started, an operation signal for the indoor fan 16 is output, and at the same time, a detection signal from the room temperature sensor 11 and a room temperature set value (for example, 25° C.) are compared and calculated. When the room temperature reaches 25° C., a stop signal for the indoor fan 16 is output. At the same time, the difference temperature Δ, Tp between the detection signal from the panel temperature sensor 9 and the panel temperature set value (for example, 60°C) or the detection signal from the indoor heat exchanger temperature sensor 10 and the indoor heat exchanger set value (for example, 60°C) Compare and calculate the difference temperature ΔTc. As shown in FIG. 2, the appropriate rotational speed (frequency) of the compressor 1 is determined based on the value of this temperature difference ΔTp or ΔTc. Figure 2 is a diagram showing the relationship between this differential temperature ΔTp or ΔTc (vertical axis) and the rotational speed (frequency) of the compressor 1 (horizontal axis). The figure shows data for an indoor heat exchanger. Note that when determining the rotational speed of the compressor 1, data from the radiation panel or data from the indoor heat exchanger is arbitrarily selected. (Hereinafter, we will explain the case where operation control is performed based on radiation panel data.) In this way, the compressor 1 is operated at the rotational speed (frequency) shown in Fig. 2, and the
The temperature of the radiant panel 3 reaches the panel set value (
For example, the time (dt) until the temperature reaches 60° C. is measured.

輻射パネル温度が60℃に至った時、差温度ΔTp  
(dT)とこの到達時間dtとの比(dT/dt)を演
算して、パネル設定値到達以降のコンプレッサー1の回
転速度を決定する。このdT/dtと回転速度との関係
データを第3図に示す。
When the radiant panel temperature reaches 60℃, the difference temperature ΔTp
(dT) and the arrival time dt (dT/dt) is calculated to determine the rotational speed of the compressor 1 after reaching the panel setting value. FIG. 3 shows the relationship data between this dT/dt and the rotational speed.

第3図aは差温度ΔTp  (dT)とこの到達時間d
tとの変化を示す図、第3図すは、この比(dT/dt
)とコンプレッサの回転速度(周波数)との関係を示す
データ表である。さらに輻射パネル温度が60℃に達し
た後、一定時間(たとえば1分間)室内ファン16を運
転させ、それ以降は前述した回転速度によってコンプレ
ッサー1を運転する。
Figure 3a shows the difference temperature ΔTp (dT) and the arrival time d
This ratio (dT/dt
) and the rotation speed (frequency) of the compressor. Furthermore, after the radiant panel temperature reaches 60° C., the indoor fan 16 is operated for a certain period of time (for example, 1 minute), and thereafter the compressor 1 is operated at the rotational speed described above.

このような構成からなる本実施例の運転例を第4図、第
5図、第6図に示す。第4図はインバータV/F特性を
示す図、第5図は室内熱交温度および輻射パネル温度と
運転周波数との関係を示す図、第6図aは本実施例を運
転した場合の室内温度、輻射パネル温度の変化を示す図
、第6図すは各空気調和機の構成機器の運転制御内容を
示す図である。
Examples of operation of this embodiment having such a configuration are shown in FIGS. 4, 5, and 6. Figure 4 is a diagram showing the inverter V/F characteristics, Figure 5 is a diagram showing the relationship between indoor heat exchanger temperature and radiant panel temperature, and operating frequency, and Figure 6a is the indoor temperature when operating this example. FIG. 6 is a diagram showing changes in the temperature of the radiant panel, and FIG. 6 is a diagram showing the operation control contents of the constituent devices of each air conditioner.

ます、スタートさせる(時間tl)ことにより、室内フ
ァン16、コンプレッサー1は運転され、四方弁2とチ
エツク弁4は、暖房用に冷媒の流れ方向が設定される。
First, by starting (time tl), the indoor fan 16 and compressor 1 are operated, and the four-way valve 2 and check valve 4 are set to the flow direction of the refrigerant for heating.

これによりコンプレッサー1で圧縮高温化された冷媒は
、輻射パネル3と室内熱交換器5に供給され、温風及び
輻射による暖房が行われ、室温は上昇する。この上昇に
従い、室内ファン16とコンプレッサー1の回転速度は
減少し、騒音もしだいに小さくなる。
As a result, the refrigerant compressed to a high temperature by the compressor 1 is supplied to the radiant panel 3 and the indoor heat exchanger 5, heating is performed by hot air and radiation, and the room temperature rises. According to this increase, the rotational speeds of the indoor fan 16 and the compressor 1 decrease, and the noise gradually decreases.

室温が25℃に至ると(時間t2)制御部12ら室内フ
ァン16の停止信号が出力される。また輻射パネル温度
センサー9の検出信号とパネル温度設定値(60℃)の
差温度ΔTpが比較演算され、この差温度ΔTpに応じ
たコンプレッサー1の回転速度たとえば4211zが第
2図aから求められ運転される。この時、輻射および自
然対流による暖房が行われるために騒音は起生となる。
When the room temperature reaches 25° C. (time t2), the control unit 12 outputs a stop signal for the indoor fan 16. Also, the difference temperature ΔTp between the detection signal of the radiant panel temperature sensor 9 and the panel temperature set value (60°C) is compared and calculated, and the rotational speed of the compressor 1, for example 4211z, corresponding to this difference temperature ΔTp is determined from FIG. be done. At this time, noise is generated because heating is performed by radiation and natural convection.

一方、輻射パネル温度は上昇し、設定値60℃に至る(
時間t3)と、差温度ΔTp  (dT)と到達時間(
dt)との比より、第3図すのデータからそれ以降のコ
ンプレッサー1の回転速度(例えば36Hz)が決定さ
れ運転される。その後一定時間(たとえば1分間程)室
内ファン16が運転された後(時間t3からt4)、室
内ファン16は停止1−され、輻射および自然対流によ
って騒音が起生の暖房が行われる。(時間【4以降) このように本実施例によると室温が設定温度に達した後
の運転能力の判断によって、コンプレッサー1の周波数
が決定されるので、負荷に合った周波数の決定がすみや
かに行われる。したがって、輻射パネル3の温度を短時
間に高温安定化でき、室内ファン16の停止運転を長時
間行える。このようなことにより、騒音を起生におさえ
ることができる。
On the other hand, the radiant panel temperature rises and reaches the set value of 60℃ (
time t3), difference temperature ΔTp (dT) and arrival time (
dt), the subsequent rotational speed (for example, 36 Hz) of the compressor 1 is determined from the data shown in FIG. 3, and the compressor 1 is operated. Thereafter, after the indoor fan 16 is operated for a certain period of time (for example, about 1 minute) (from time t3 to t4), the indoor fan 16 is stopped, and noise-generating heating is performed by radiation and natural convection. (Time [after 4]) According to this embodiment, the frequency of the compressor 1 is determined by determining the operating capacity after the room temperature reaches the set temperature, so the frequency suitable for the load can be quickly determined. be exposed. Therefore, the temperature of the radiation panel 3 can be stabilized at a high temperature in a short time, and the indoor fan 16 can be stopped for a long time. By doing this, noise can be suppressed.

他の実施例として、時間t4以降において、パネル温度
が60℃をオーバーしそうになった場合に、コンプレッ
サー1の回転速度をを1ステツプダウンさせるか、輻射
パネル温度を適当な時間間隔でチエツクし、その上限温
度に対してコンプレッサー1の回転速度の調整を行って
も良い。このような運転制御によると、常に輻射パネル
温度を設定値(60℃)に保つことができ、信頼性を向
上させることができる。
As another example, after time t4, when the panel temperature is about to exceed 60°C, the rotation speed of the compressor 1 is decreased by one step, or the radiant panel temperature is checked at appropriate time intervals, The rotational speed of the compressor 1 may be adjusted with respect to the upper limit temperature. According to such operation control, the radiant panel temperature can always be kept at the set value (60° C.), and reliability can be improved.

また、このような実施例において、コンプレッサー1の
回転速度をダウンさせる場合、室内ファン16を10〜
20秒程の短時間、ULで回転させて、輻射パネル温度
を下げた後に行っても良い。
In addition, in such an embodiment, when reducing the rotation speed of the compressor 1, the indoor fan 16 is
This may be done after lowering the temperature of the radiant panel by rotating it under UL for a short period of about 20 seconds.

これにより、インバータの出力電圧がV/Fパターンに
よって変化することにより、コンプレッサー1のブレー
クダウンを防止することができる。
As a result, the output voltage of the inverter changes depending on the V/F pattern, so that breakdown of the compressor 1 can be prevented.

さらに他の実施例として、タイマー制御によって輻射お
よび自然対流による暖房を行う例を第7図に示す。すな
わち、スタートさせた後、所定の時間(時間tl)まで
設定値Tsを維持するようニ室内ファンおよびコンプレ
ッサー回転速度を制御する。さらに時間t1〜時間t2
まで、設定値(Ts−八T)を下げて、室内ファンおよ
びコンプレッサー回転数を制御する。そして時間T2を
経過後、室内ファンの回転を停止させ、輻射および自然
対流による暖房を行う。その後、所定時間が経過して、
時間t3に至った時に室内ファンを起動させ、温風およ
び輻射による暖房を行う。その時の設定値はTs−ΔT
とし、時間t4を経過後、当初の設定値tSに上げて運
転制御を行い、所定時間経過後エアコンを停止させる。
As yet another embodiment, FIG. 7 shows an example in which heating is performed by radiation and natural convection under timer control. That is, after starting, the indoor fan and compressor rotational speeds are controlled to maintain the set value Ts until a predetermined time (time tl). Furthermore, time t1 to time t2
The indoor fan and compressor rotational speeds are controlled by lowering the set value (Ts - 8T) until After time T2 has elapsed, the rotation of the indoor fan is stopped, and heating is performed by radiation and natural convection. Then, after a predetermined period of time has passed,
At time t3, the indoor fan is activated to perform heating using hot air and radiation. The set value at that time is Ts-ΔT
Then, after time t4 has elapsed, operation control is performed by increasing the initial set value tS, and after a predetermined time has elapsed, the air conditioner is stopped.

このような制御を制御部によって行う。Such control is performed by the control section.

このような実施例によると、所要時間案内ファンを停止
させているので、無騒音となり、特に就寝中は快適な暖
房を行える。また室内ファンUL回転による高圧上昇保
護を設けることによりコンプレッサーの信頼性向上およ
び連続運転が可能となる。
According to this embodiment, since the guide fan is stopped for the required period of time, there is no noise, and comfortable heating can be performed, especially during sleeping. Furthermore, by providing protection against high pressure rise due to indoor fan UL rotation, the reliability of the compressor can be improved and continuous operation possible.

また、他の実施例として第8図に示すように輻射暖房時
(時間t2〜時間t3)において、室内熱交換器温度セ
ンサーの検出信号によって、温風暖房と輻射暖房とを繰
返してもよい。
As another example, as shown in FIG. 8, during radiant heating (time t2 to time t3), hot air heating and radiant heating may be repeated based on a detection signal from an indoor heat exchanger temperature sensor.

また、他の実施例として第9図に示すようにタイマOF
Fの時間に達したら、輻射優先の運転制御から通常の温
風暖房の運転制御としてもよい。
In addition, as another embodiment, as shown in FIG.
When the time F is reached, the operation control may be changed from the radiation priority operation control to the normal warm air heating operation control.

〔発明の効果〕〔Effect of the invention〕

このように、本発明によると、負荷に応じてすばやくコ
ンプレッサの回転速度を決定できると同時に、輻射パネ
ル温度を短時間で高温に上昇させ安定した運転を行うこ
とができる。したがって室内の温度条件変化に対して、
室内ファン停止運転を長時間行うことができ、騒音を少
くすることができる。
As described above, according to the present invention, it is possible to quickly determine the rotation speed of the compressor according to the load, and at the same time, it is possible to raise the temperature of the radiant panel to a high temperature in a short time to perform stable operation. Therefore, in response to changes in indoor temperature conditions,
The indoor fan can be stopped and operated for a long time, and noise can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願発明の実施例を示す全体構成図、第2図は
差温度とコンプレッサの回転速度のデータ図、第3図は
到達時間と差温度との比およびコンプレッサの回転速度
のデータ図、第4図はインバータのV/F特性を示す図
、第5図は本実施例による暖房装置の温度とコンプレッ
サの回転速度のデータ図、第6図は本実施例による運転
例を示す図、第7図、第8図、第9図は他の実施例を示
す図、第10図は従来の空気調和機の構成図である。 1・・・コンプレッサ、3・・・輻射パネル、5・・・
室内熱交換器、9・・・輻射パネル温度センサー、10
・・・室内熱交温度センサー、11・・・室内温度セン
サー、12・・・制御部。 出願人代理人  佐  蒔  −雄 嶌10図 −り縮機Hz (0) ’Ika’Hii?ル ー IEIaPlk Hz (b)室内井爽文袂器 為2図 IME (b) 為3図 Hz Hz 為5図 為6図 a夏房す
Figure 1 is an overall configuration diagram showing an embodiment of the present invention, Figure 2 is a data diagram of difference temperature and compressor rotation speed, and Figure 3 is a data diagram of the ratio of arrival time to difference temperature and compressor rotation speed. , FIG. 4 is a diagram showing the V/F characteristics of the inverter, FIG. 5 is a data diagram of the temperature of the heating device and the rotation speed of the compressor according to this embodiment, and FIG. 6 is a diagram showing an example of operation according to this embodiment. FIG. 7, FIG. 8, and FIG. 9 are diagrams showing other embodiments, and FIG. 10 is a configuration diagram of a conventional air conditioner. 1...Compressor, 3...Radiation panel, 5...
Indoor heat exchanger, 9...Radiation panel temperature sensor, 10
...Indoor heat exchanger temperature sensor, 11...Indoor temperature sensor, 12...Control unit. Applicant's representative Maki Sa - Yujima 10 diagram - Reducing machine Hz (0) 'Ika' Hii? Lou IEIaPlk Hz (b) Sobun Muroi Sobumi 2 figure IME (b) 3 figure Hz Hz 5 figure 6 figure a Natsubosu

Claims (1)

【特許請求の範囲】[Claims] コンプレッサ、四方弁、室外熱交換器、減圧装置、室内
熱交換器を順次連通し、前記四方弁と室内熱交換器との
間に輻射パネル熱交換器を設接してヒートポンプ式冷凍
サイクルを構成した空気調和機において、スタート後、
室内温度が室温設定値に至った時、輻射パネル熱交換器
の温度と輻射パネル温度設定値との差温度を演算し、こ
の差温度に応じて決定される回転速度で前記コンプレッ
サを運転し、さらにこの運転により輻射パネル熱交換器
の温度が輻射パネル温度設定値に至った時、室内温度が
室温設定値に至った時から前記輻射パネル温度設定値に
至るまでの到達時間を測定し、前記差温度とこの到達時
間との比により、輻射パネル温度設定値到達以降の前記
コンプレッサの回転速度を決定する制御装置を備えたこ
とを特徴とする空気調和機。
A compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger are connected in sequence, and a radiant panel heat exchanger is installed between the four-way valve and the indoor heat exchanger to configure a heat pump type refrigeration cycle. After starting the air conditioner,
When the indoor temperature reaches the room temperature set value, calculate the difference temperature between the temperature of the radiant panel heat exchanger and the radiant panel temperature set value, and operate the compressor at a rotation speed determined according to this difference temperature, Further, when the temperature of the radiant panel heat exchanger reaches the radiant panel temperature set value due to this operation, the arrival time from the time when the indoor temperature reaches the room temperature set value to the radiant panel temperature set value is measured, and An air conditioner comprising: a control device that determines the rotational speed of the compressor after reaching a radiant panel temperature set value based on a ratio between a temperature difference and the time required to reach the temperature difference.
JP62276646A 1987-10-31 1987-10-31 Air conditioner Pending JPH01121649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62276646A JPH01121649A (en) 1987-10-31 1987-10-31 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62276646A JPH01121649A (en) 1987-10-31 1987-10-31 Air conditioner

Publications (1)

Publication Number Publication Date
JPH01121649A true JPH01121649A (en) 1989-05-15

Family

ID=17572349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62276646A Pending JPH01121649A (en) 1987-10-31 1987-10-31 Air conditioner

Country Status (1)

Country Link
JP (1) JPH01121649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011237093A (en) * 2010-05-10 2011-11-24 Fujitsu General Ltd Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011237093A (en) * 2010-05-10 2011-11-24 Fujitsu General Ltd Air conditioner

Similar Documents

Publication Publication Date Title
CN103900208B (en) A kind of air conditioning control method and air-conditioning
CN104566788B (en) Control method, system and the air conditioner with it of room air conditioner
WO2018009218A1 (en) Age-based sleep profiles for split air conditioning system
JPH0375417A (en) Heat pump heater
JPH01121649A (en) Air conditioner
JP3518353B2 (en) Heat pump heating system
JPS61122443A (en) Air conditioner
JPS59221547A (en) Air conditioner
JPS5875637A (en) Control system of heating operation
JPH0733930B2 (en) Air conditioner
JPS623178A (en) Air conditioner
JPS5849842A (en) Controlling method and apparatus for air conditioning equipment
JP3233657B2 (en) Air conditioner
JPH02122139A (en) Airconditioner
JPH0436535A (en) Method of operating indoor fan of air conditioner
JPS6338624B2 (en)
JPS6338625B2 (en)
JPS61276650A (en) Air conditioner
JPH03221744A (en) Air-conditioner
JPS6011047A (en) Operation control of air-conditioner
JPS63197841A (en) Operation control device for air conditioner
JP2002061934A (en) Air cnoditioner
JPH05223332A (en) Controller for air conditioner
JPS5952144A (en) Operation control of air conditioner
JPH04306441A (en) Air conditioner