JPH01121225A - Dehydrogenation of hydrocarbons - Google Patents

Dehydrogenation of hydrocarbons

Info

Publication number
JPH01121225A
JPH01121225A JP27798687A JP27798687A JPH01121225A JP H01121225 A JPH01121225 A JP H01121225A JP 27798687 A JP27798687 A JP 27798687A JP 27798687 A JP27798687 A JP 27798687A JP H01121225 A JPH01121225 A JP H01121225A
Authority
JP
Japan
Prior art keywords
compound
rhodium
hydrocarbons
ethylenically unsaturated
organophosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27798687A
Other languages
Japanese (ja)
Other versions
JPH0251887B2 (en
Inventor
Masato Tanaka
正人 田中
Toshiyasu Sakakura
俊康 坂倉
Yuko Tokunaga
祐子 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP27798687A priority Critical patent/JPH01121225A/en
Publication of JPH01121225A publication Critical patent/JPH01121225A/en
Publication of JPH0251887B2 publication Critical patent/JPH0251887B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain an ethylenically unsaturated compound under mild conditions efficiently by dehydrogenating hydrocarbons in the presence of a rhodium complex with a specific organophosphorus compound or in the coexistence of the organophosphorus compound and a rhodium compound under irradiation of light. CONSTITUTION:In the presence of a rhodium complex with at least one of organophosphorus compounds selected from phosphines, phosphonites, phosphinites, and phosphites, or in the coexistence of the organophosphorus compound and a rhodium compound, a substituted or unsubstituted hydrocarbon is irradiated with light to effect dehydrogenation whereby readily available hydrocarbons are converted into ethylenically unsaturated compound such as ethylene, propylene, hexene, cyclopentene, cyclohexene, cyclododecene and styrene with industrially advantage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エチレン性不飽和結合の生成法に関し、より
詳しくは、炭化水素を脱水素させてエチレン性不飽和結
合を生成させることからなるエチレン性不飽和化合物の
製造技術に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing ethylenically unsaturated bonds, and more specifically, it involves dehydrogenating hydrocarbons to produce ethylenically unsaturated bonds. This invention relates to a technology for producing ethylenically unsaturated compounds.

(従来の技術) 現下の石油化学原料体系に於ては、基礎原料であるエチ
レン性不飽和化合物の製造は大部分炭化水素類の熱分解
反応によっている。
(Prior Art) In the current petrochemical raw material system, the production of ethylenically unsaturated compounds, which are basic raw materials, is mostly carried out by thermal decomposition reactions of hydrocarbons.

(発明が解決しようとする問題点) しかし、この熱分解には700〜900℃もの高温を要
するのが普通であり、しかも炭素数の異なる複雑な混合
物しか得られず、所望の炭素数のエチレン性不飽和化合
物収率は一般的に低い。
(Problems to be solved by the invention) However, this thermal decomposition usually requires a high temperature of 700 to 900°C, and only a complex mixture with different carbon numbers can be obtained. The yield of sexually unsaturated compounds is generally low.

このように従来のオレフィン製造法は必ずしもこのよう
な状況に鑑み、本発明者らは、炭化水素類を原料として
エチレン性不飽和化合物を効率的に製造しうる新規方法
について、鋭意検索・研究を行った。
In view of this situation, the present inventors have been conducting intensive search and research into new methods that can efficiently produce ethylenically unsaturated compounds using hydrocarbons as raw materials. went.

(目的を解決するための手段) 本発明は、ホスフィン、ホスホナイト、ホスフィナイト
およびホスファイトから成る群から選ばれる少なくとも
一種の有機リン化合物のロジウム錯体の存在下、または
少なくとも一種の該有機リン化合物とロジウム化合物と
の共存下に、炭化水素に光照射することを特徴とする炭
化水素類の脱水素法を要旨とするものであり、これによ
り、エチレン性不飽和化合物の効率的な製造法が提供さ
れる。
(Means for Solving the Object) The present invention provides a method for combining rhodium with at least one organic phosphorus compound in the presence of a rhodium complex of at least one organic phosphorus compound selected from the group consisting of phosphine, phosphonite, phosphinite, and phosphite. The gist of this is a method for dehydrogenating hydrocarbons, which is characterized by irradiating the hydrocarbons with light in the coexistence of a chemical compound, thereby providing an efficient method for producing ethylenically unsaturated compounds. Ru.

本発明の炭化水素類の脱水素法は、ホスフィン、ホスホ
ナイト、ホスフィナイトおよびホスファイトからなる群
から選ばれた少なくとも一種の有機リン化合物のロジウ
ム錯体の存在下に行われる。
The method for dehydrogenating hydrocarbons of the present invention is carried out in the presence of a rhodium complex of at least one organic phosphorus compound selected from the group consisting of phosphine, phosphonite, phosphinite, and phosphite.

これらの有機リン化合物におけるリンは、すべて3価で
あり、具体的には、単座配位性の有機リン化合物(PR
’、で示す)として例えばトリメチルホスフィン、トリ
エチルホスフィン、トリブチルホスフィン、トリオクチ
ルホスフィン、トリフェニルホスフィン、トリ(p−ト
リル)ホスフィン。
Phosphorus in these organophosphorus compounds is all trivalent, and specifically, monodentate organophosphorus compounds (PR
', for example, trimethylphosphine, triethylphosphine, tributylphosphine, trioctylphosphine, triphenylphosphine, tri(p-tolyl)phosphine.

トリ(p−アニシル)ホスフィン等の鎖状ホスフィン、
p−メチルホスホール、p−メチルホスホール等の環状
ホスフィン、ジメチル メチルホスホナイト、ジメチル
 フェニルホスホナイト等のホスホナイト、メチル ジ
メチルホスフィナイト、メチル ジフェニルホスフィナ
イト等のホスフィナイト、およびトリエチルホスファイ
ト、トリフェニルホスファイト、トリメチロールプロパ
ンホスファイト等のホスファイトを挙げることができ、
また2座配位性の有機リン化合物(R2□P−PR2□
で示す)として、例えば1,2−ビス(ジメチルホスフ
ィノ)エタン、1,3−ビス(ジメチルホスフィノ)プ
ロパン、1,4−ビス(ジメチルホスフィノ)ブタン、
1,2−ビス(ジフェニルホスフィノ)エタン、1,4
−ビス(ジフェニル(ジメチルホスフィノ)−0−キシ
レン、1,2−ビス(ジメチルホスフィノ)ベンゼン等
のビスホスフィンが挙げられる。
Chain phosphine such as tri(p-anisyl)phosphine,
Cyclic phosphines such as p-methylphosphole and p-methylphosphole; phosphonites such as dimethyl methylphosphonite and dimethyl phenylphosphonite; phosphinites such as methyl dimethylphosphinite and methyl diphenylphosphinite; and triethyl phosphite and triethyl phosphite. Phosphites such as phenyl phosphite and trimethylolpropane phosphite can be mentioned,
In addition, bidentate organophosphorus compounds (R2□P-PR2□
), for example, 1,2-bis(dimethylphosphino)ethane, 1,3-bis(dimethylphosphino)propane, 1,4-bis(dimethylphosphino)butane,
1,2-bis(diphenylphosphino)ethane, 1,4
Bisphosphines such as -bis(diphenyl(dimethylphosphino)-0-xylene and 1,2-bis(dimethylphosphino)benzene) can be mentioned.

これら有機リン化合物のロジウム錯体としては、種々の
構造のものを用いることができるが、−価のロジウム錯
体が好ましい。
As the rhodium complexes of these organic phosphorus compounds, those having various structures can be used, but -valent rhodium complexes are preferred.

具体的には例えばRhX (PR’i)a (PR’a
は前記内容を示す。また又は水素、ハロゲン原子、水酸
基、シアノ基、アルコキシ基、カルボキシラド基および
チオシアナト基からなる群から選ばれる基を示す。以下
同様) 、Rh X (Co) (PR’ 3)2、R
h X (co)、 (pR13)、Rh X (Co
)z (PR’□)2、Rh X (PR’ 、 ”)
い[Rh(PR’3)4)Y(YはPFG、 B(CG
H,、)4、BF4. ClO4および前記Xからなる
群から選ばれる基を示す。以下同様)、  (Rh(p
R23)、(cNR”)2)Y(GNPはイソニトリル
を、R2はアルキルまたはアリール基を示す。以下同様
)、(Rh(PR’、)、(CNR”)3)Y、 Rh
X(Co)(R2□P−PR”□)などを挙げることが
できる。
Specifically, for example, RhX (PR'i)a (PR'a
indicates the above content. It also represents a group selected from the group consisting of hydrogen, a halogen atom, a hydroxyl group, a cyano group, an alkoxy group, a carboxylad group, and a thiocyanato group. The same applies hereafter), Rh X (Co) (PR' 3)2, R
h X (co), (pR13), Rh X (Co
)z (PR'□)2, Rh X (PR', ”)
[Rh(PR'3)4)Y(Y is PFG, B(CG
H,, )4, BF4. It represents a group selected from the group consisting of ClO4 and the above X. (Similarly below), (Rh(p
R23), (cNR'')2)Y (GNP represents isonitrile, R2 represents an alkyl or aryl group. The same applies hereinafter), (Rh(PR',), (CNR'')3)Y, Rh
Examples include X(Co)(R2□P-PR''□).

せ、系中においてロジウム錯体を形成させる方法によっ
ても、好まし〈実施することができる。
It can also be preferably carried out by a method of forming a rhodium complex in the system.

このような目的のために好ましく用いられるロジウム化
合物としては、Rh (acac) (Co)、 (a
caeはアセチルアセトナイド基を示す)、(RhX(
Co)、)2、(Rh X (DH) ) 、 (DE
はノルボルナジェン、1.5−シクロオクタジエン、ま
たは1,5−へキサジエンを示す) −[RhX (U
N)z)z (ENはエチレンまたはシクロオクチンを
示す)、 RhX(Co)(PR’、)、などが挙げら
れる。
Rhodium compounds preferably used for this purpose include Rh (acac) (Co), (a
cae represents an acetylacetonide group), (RhX(
Co), )2, (Rh X (DH) ), (DE
represents norbornadiene, 1,5-cyclooctadiene, or 1,5-hexadiene) -[RhX (U
N)z)z (EN represents ethylene or cyclooctyne), RhX(Co)(PR', ), and the like.

本発明の方法に用いられる炭化水素は少なくとも1つの
水素原子を結合した炭素原子が隣接して単結合で結合し
た部分構造を有するものである。
The hydrocarbon used in the method of the present invention has a partial structure in which carbon atoms bonded to at least one hydrogen atom are bonded adjacently through single bonds.

その具体例としては、エタン、プロパン、ブタン、ペン
タン、ヘキサン、オクタン、イソペンタン、イソオクタ
ン、デカン、エイコサン、エチルベンゼン、n−ヘキシ
ルベンゼン、イソプロピルベンゼン、ドデシルベンゼン
、α−又はβ−エチルナフタレン、シクロペンタン、シ
クロヘキサン、シクロオクタン、シクロドデカン、デカ
リン、テトラリン等を挙げることができるが、前記の部
分構造を有する炭化水素誘導体であれば、これらに限定
されることなく好適に用いることが出来、置換基を有す
る化合物を用いることも可能である。
Specific examples include ethane, propane, butane, pentane, hexane, octane, isopentane, isooctane, decane, eicosane, ethylbenzene, n-hexylbenzene, isopropylbenzene, dodecylbenzene, α- or β-ethylnaphthalene, cyclopentane, Examples include cyclohexane, cyclooctane, cyclododecane, decalin, tetralin, etc., but any hydrocarbon derivative having the above-mentioned partial structure can be suitably used without being limited to these. It is also possible to use compounds.

これら炭化水素類のロジウム錯体またはロジウム化合物
に対する使用量は、任意に選ぶことができ、これら炭化
水素類が液体である場合には、この炭化水素類自体を溶
媒量用いることも有利な方法である。
The amount of these hydrocarbons to be used relative to the rhodium complex or rhodium compound can be selected arbitrarily, and when these hydrocarbons are liquid, it is also advantageous to use the amount of the hydrocarbons themselves as a solvent. .

本発明における反応は、光照射下に進行するが、光の波
長領域はいわゆる紫外・可視光領域であれば良く、水銀
燈、タングステンランプ、ハロゲンランプ、キセノンラ
ンプ、太陽光などの照射が好(発明の効果) 本発明の炭化水素類の脱水素法によれば、入手容易な炭
化水素を温和な条件下にエチレン、プロピレン、ヘキセ
ン、シクロペンテン、シクロヘキセン、シクロドデセン
、スチレン等のエチレン性不飽和結合を有する化合物に
変換することが出来る。
The reaction in the present invention proceeds under light irradiation, but the wavelength range of the light may be in the so-called ultraviolet/visible light range, and irradiation with a mercury lamp, tungsten lamp, halogen lamp, xenon lamp, sunlight, etc. is preferable (invention According to the method for dehydrogenating hydrocarbons of the present invention, easily available hydrocarbons having ethylenically unsaturated bonds such as ethylene, propylene, hexene, cyclopentene, cyclohexene, cyclododecene, styrene, etc. can be extracted under mild conditions. It can be converted into a compound.

(実施例) 次に実施例により、本発明をさらに詳細に説明する。(Example) Next, the present invention will be explained in more detail with reference to Examples.

生成物はGC−MSによっても構造を確認した。The structure of the product was also confirmed by GC-MS.

実施例1゜ 内容積70m1のPyrex製、内部照射型光反応容器
にクロロカルボニルビス(トリメチルホスフィン)ロジ
ウム6.7mg(0,021mmol)のシクロヘキサ
ン溶液(30ml)をしこみ、凍結脱気を2回行った後
、−気圧の窒素を導入し、容器を密閉した。
Example 1 A cyclohexane solution (30 ml) containing 6.7 mg (0,021 mmol) of chlorocarbonylbis(trimethylphosphine)rhodium was poured into a Pyrex internal irradiation type photoreaction vessel with an internal volume of 70 ml, and freeze-degassed twice. After that, -atmospheric nitrogen was introduced and the container was sealed.

100Wの高圧水銀灯を用いて光照射しながら16.5
時間攪拌した後、反応液をガスクロマトグラフィーで分
析したところ、13772%/Rh(Rh錯体に対する
モル百分率)のシクロヘキセン、274%/Rhのベン
ゼン、及び約400%/Rhの二量体生成物(ビシクロ
ヘキセン、ビシクロヘキサン及びシクロへキシルシクロ
ヘキセンの混合物)が検出された。また気相には、シク
ロヘキセンの生成に対応する量の水素が検出された。
16.5 while irradiating light using a 100W high-pressure mercury lamp.
After stirring for an hour, the reaction solution was analyzed by gas chromatography and found to contain 13772%/Rh (mole percentage relative to the Rh complex) of cyclohexene, 274%/Rh of benzene, and about 400%/Rh of the dimer product ( Bicyclohexene, a mixture of bicyclohexane and cyclohexylcyclohexene) were detected. Additionally, an amount of hydrogen corresponding to the production of cyclohexene was detected in the gas phase.

実施例2゜ 溶媒としてネオヘキサンを用いる以外は、実施例1.と
同様にして反応を行い、232%/Rhの=7− ネオヘキセンを得た。
Example 2° Example 1 except that neohexane was used as the solvent. The reaction was carried out in the same manner as above to obtain 7-neohexene of 232%/Rh.

実施例3゜ 内容積70m1のPyrex製、内部照射型光反応容器
にクロロカルボニルビス(トリメチルホスフィン)ロジ
ウム6.7mg(0,021mmol)のシクロオクタ
ン溶液(aoml)をしこみ、凍結脱気を二回行った後
、−気圧の窒素を導入した。気相部に約8ml/min
の流速で窒素を流しながら、液相部を100Wの高圧水
銀灯照射下に16.5時間攪拌した。
Example 3 A cyclooctane solution (aoml) containing 6.7 mg (0,021 mmol) of chlorocarbonylbis(trimethylphosphine)rhodium was poured into a Pyrex internal irradiation type photoreaction vessel with an internal volume of 70 ml, and freeze-degassed twice. After this, -atmospheres of nitrogen were introduced. Approximately 8ml/min in the gas phase
The liquid phase was stirred for 16.5 hours under irradiation with a 100 W high-pressure mercury lamp while flowing nitrogen at a flow rate of .

ロオクテンの混合物)が検出された。A mixture of looctenes) was detected.

注)1.98m1に相当。Note) Equivalent to 1.98m1.

Claims (1)

【特許請求の範囲】[Claims] (1)ホスフィン、ホスホナイト、ホスフィナイトおよ
びホスファイトから成る群から選ばれる少なくとも一種
の有機リン化合物のロジウム錯体の存在下、または少な
くとも一種の該有機リン化合物とロジウム化合物との共
存下に、置換又は未置換の炭化水素に光照射することを
特徴とする炭化水素類の脱水素法。
(1) In the presence of a rhodium complex of at least one organic phosphorus compound selected from the group consisting of phosphine, phosphonite, phosphinite, and phosphite, or in the coexistence of at least one organic phosphorus compound and a rhodium compound, substituted or unsubstituted A method for dehydrogenating hydrocarbons, which is characterized by irradiating substituted hydrocarbons with light.
JP27798687A 1987-11-02 1987-11-02 Dehydrogenation of hydrocarbons Granted JPH01121225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27798687A JPH01121225A (en) 1987-11-02 1987-11-02 Dehydrogenation of hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27798687A JPH01121225A (en) 1987-11-02 1987-11-02 Dehydrogenation of hydrocarbons

Publications (2)

Publication Number Publication Date
JPH01121225A true JPH01121225A (en) 1989-05-12
JPH0251887B2 JPH0251887B2 (en) 1990-11-08

Family

ID=17591034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27798687A Granted JPH01121225A (en) 1987-11-02 1987-11-02 Dehydrogenation of hydrocarbons

Country Status (1)

Country Link
JP (1) JPH01121225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7626042B2 (en) 2002-06-06 2009-12-01 Institute Of Medicinal Molecular Design, Inc. O-substituted hydroxyaryl derivatives

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7626042B2 (en) 2002-06-06 2009-12-01 Institute Of Medicinal Molecular Design, Inc. O-substituted hydroxyaryl derivatives

Also Published As

Publication number Publication date
JPH0251887B2 (en) 1990-11-08

Similar Documents

Publication Publication Date Title
Sakakura et al. Carbonylation of hydrocarbons via carbon-hydrogen activation catalyzed by RhCl (CO)(PMe3) 2 under irradiation
Hayashi et al. Catalytic asymmetric hydroformylation by the use of rhodium-complexes of chiral bidentate phosphorus ligands bearing saturated ring skeletons.
Touzani et al. PAMAM dendrimer-palladium complex catalyzed synthesis of five-, six-or seven membered ring lactones and lactams by cyclocarbonylation methodology
Busetto et al. Bridging vinylalkylidene transition metal complexes
Doherty et al. Selectivity for the methoxycarbonylation of ethylene versus CO ethylene copolymerization with catalysts based on C4-bridged bidentate phosphines and phospholes
Field et al. Protonation and rearrangement of bis (acetylide) complexes of iron: formation of coordinated. eta. 3-butenynes
Ungváry Application of transition metals in hydroformylation. Annual survey covering the year 2000
Kwong et al. A general synthesis of aryl phosphines by palladium catalyzed phosphination of aryl bromides using triarylphosphines
Thiel et al. The broad diversity of CpCo (I) complexes
JPH01121225A (en) Dehydrogenation of hydrocarbons
JPH0541612B2 (en)
Sivaramakrishna et al. Synthesis, structure and reactivity of cis-[PtL2 (1-alkenyl) 2] complexes
JPH0518761B2 (en)
JPH0196162A (en) Production of schiff bases
Moulis Hydroformylation and Aldehyde-Water Shift Catalysis by Dirhodium Tetraphosphine Complexes
Krug Novel insertion reactions of aldehydes, imines and alkenes of aryl and amido complexes of rhodium (I) and nickel (II)
Franks The synthesis, characterization, and reactivity of some iridium (III) dicationic complexes
JP2580507B2 (en) Dehydrogenation of hydrocarbons
Rothstein Nucleophilic Palladium Carbenes Utilizing Metal-Ligand Cooperativity towards Small Molecule Activations
Gunay Carbon-carbon bond activation of acetylene derivatives via photolysis of platinum complexes
JPH0688917B2 (en) Hydrocarbon conversion method using ethylene
Baker 20 Organometallic chemistry of monometallic species
Franks The Synthesis and Characterization of Some Ir (III) Dicationic Complexes
Thiel Synthesis of novel cyclopentadienyl cobalt (I)-complexes and their application in [2+ 2+ 2] cycloaddition reactions
Paige The synthesis, co-ordination chemistry and catalytic applications of phosphine ligands containing long-chain perfluoro-alkyl groups

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term