JPH01121070A - Irradiation with charged particle beat - Google Patents

Irradiation with charged particle beat

Info

Publication number
JPH01121070A
JPH01121070A JP27821887A JP27821887A JPH01121070A JP H01121070 A JPH01121070 A JP H01121070A JP 27821887 A JP27821887 A JP 27821887A JP 27821887 A JP27821887 A JP 27821887A JP H01121070 A JPH01121070 A JP H01121070A
Authority
JP
Japan
Prior art keywords
energy
dose
irradiation
doses
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27821887A
Other languages
Japanese (ja)
Inventor
Susumu Nishihara
西原 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP27821887A priority Critical patent/JPH01121070A/en
Publication of JPH01121070A publication Critical patent/JPH01121070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation-Therapy Devices (AREA)

Abstract

PURPOSE:To enable irradiation of distributions of depthwise uniform dose, by adjusting the absorbed dose of low energy to equalize superposed doses in the beam axial direction for superpositional irradiation with heavy particle beams of different energies. CONSTITUTION:The width of beam pulse 1 is shortened for reduction in the dose of a pulse 1, and an energy irradiation is performed with pulses integer times. It is sufficient to change the beam energy between pulses 1. Pulses 1 have almost equal doses: a pulse 1 is controlled by detection of the dose with a dosemeter. Respective energy doses are equal: when energy decreases, high- energy bottoms are summed up to increase low-energy doses as a whole with the result that the dose at a patient's shallow depth increases. Therefore, adjustment should be made so that the distributions of depthwise dose may be equal. In other words, the irradiation doses of heavy particle beams of energy on and after the second are reduced one after another by consideration of the bottom of distribution 2 of high-energy particle dose to obtain a distribution 3 of total doses.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、荷電粒子線によるがん治療装置における荷
電粒子線照射方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a charged particle beam irradiation method in a cancer treatment apparatus using charged particle beams.

〔従来の技術〕[Conventional technology]

第4図〜第6図は従来の荷電粒子線照射方法に関する図
であり、治療に用いられるビームパルス(1)、各エネ
ルギーでの線量分布(2)、全線量分布(3)が示され
ており、加速器から取出されたビームは。
Figures 4 to 6 are diagrams related to conventional charged particle beam irradiation methods, showing the beam pulses used for treatment (1), the dose distribution at each energy (2), and the total dose distribution (3). The beam extracted from the accelerator.

第4図に示すように、比較的長い時間幅(〜0.5 g
 )を有している。また、1.パルス(1)の線量も比
較的大きいので、1回のビーム照射に必要な線量以上に
なると、不要なビームも患部にあたってしまうことにな
る。レンジシフタにより照射粒子のエネルギーを変えて
複数回の照射を行うと、第5図に示すように、患部の深
さ方向の線量分布(2) 、 f3)となる。このよう
にして、任意の大きさをもつ患部にビームを照射する。
As shown in Figure 4, a relatively long time span (~0.5 g
)have. Also, 1. Since the dose of pulse (1) is also relatively large, if the dose exceeds the dose required for one beam irradiation, unnecessary beams will also hit the affected area. When irradiation is performed multiple times by changing the energy of the irradiated particles using a range shifter, the dose distribution in the depth direction of the affected area (2), f3) is obtained as shown in FIG. In this way, the beam is irradiated onto an affected area of any size.

しかし、ビーム軸方向に均一な線量分布のビーム照射を
するためには、それぞれのエネルギーの重粒子線の線量
を調節するのに問題がある。第4図のようなパルス(1
)が来た場合には、途中でビームを切らなければ、所望
の線量にならないことも起こる。このために、1II−
#分布が均一にならず、第6図に示すような線量分布(
3a)となる。
However, in order to irradiate the beam with a uniform dose distribution in the beam axis direction, there is a problem in adjusting the dose of the heavy ion beam of each energy. Pulse (1
), the desired dose may not be obtained unless the beam is cut midway through. For this purpose, 1II-
#The distribution is not uniform and the dose distribution as shown in Figure 6 (
3a).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のような従来の荷電粒子線照射方法では、照射ビー
ム軸方向に均一な線量分布を得ることが難しいという問
題点があった。
The conventional charged particle beam irradiation method as described above has a problem in that it is difficult to obtain a uniform dose distribution in the axial direction of the irradiation beam.

この発明は上記のような問題点を解消するためになされ
たもので、ビーム軸方向に均一な線量分布を得ることの
できる荷電粒子線照射方法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and an object thereof is to provide a charged particle beam irradiation method that can obtain a uniform dose distribution in the beam axis direction.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る荷(粒子線照射方法は、エネルギーの異
なる重粒子線を重ね合わせて照射するに際し、低いエネ
ルギー・での吸収線量を調節して、重ね合わせた線量が
ビーム軸方向に等しくなるようにする。
The load (particle beam irradiation method) according to this invention is such that when irradiating heavy particle beams with different energies in a superimposed manner, the absorbed dose at lower energies is adjusted so that the superimposed doses are equal in the beam axis direction. Make it.

〔実施例〕〔Example〕

以下、この発明の一実施例を、第1図〜第3図を参照し
て説明する。第2図に示すように、ビームのパルス(1
)の幅を短く(数μs)して、1回のパルス(1)の線
量を小さくすることにより、fia倍のパルス数で、1
つのエネルギーの照射を行9゜こうすることにより、従
来方法のように長いパルスの残りの部分を余分に患部に
照射することがなくなり、正確な線量のビーム照射を行
うことができる。ビームエネルギーを変えるのは、パル
ス(1)相互間で行えばよい、各パルス(1)相互はほ
ぼ等しい線量であり、線量計で線量を検知してパルス(
1)の制御を行う、また、各エネルギーの線量が等しく
、エネルギーが低くなると高いエネルギーのすその部分
が足し合わされて、全体的に低いエネルギーの線量が多
くなる。すなわち、患部の深さの浅いところの線量が多
くなることKなる。このため、深さ方向の少量分布が等
しくなるように調整する。すなわち、第1図のように、
高エネルギー粒子による線量分布(2)のすそ部分を考
慮して2回目以降のエネルギー(前回よりエネルギーの
低い)の重粒子線の照射線量を順次少なくすることによ
り、全線量分布(3)を得る。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. As shown in Figure 2, the pulse of the beam (1
) by shortening the width (several μs) and reducing the dose of one pulse (1), 1
By irradiating two energies at 9 degrees in a row, it is no longer necessary to irradiate the affected area with the remaining part of a long pulse as in the conventional method, and an accurate dose of beam can be irradiated. The beam energy can be changed between pulses (1). Each pulse (1) has approximately the same dose, and the dose is detected by a dosimeter and the pulse (1) is changed.
1) is carried out, and the dose of each energy is equal, and when the energy becomes low, the base portion of the high energy is added up, and the dose of the low energy increases overall. In other words, the dose at shallower depths of the affected area increases. Therefore, the small amount distribution in the depth direction is adjusted to be equal. In other words, as shown in Figure 1,
The total dose distribution (3) is obtained by sequentially decreasing the irradiation dose of heavy particle beams of second and subsequent energies (lower energy than the previous one) taking into account the base of the dose distribution (2) due to high-energy particles. .

実際には、すその部分を含めて、一定線量になるように
、2回目以降のパルスの照射線量を調節する。
In reality, the irradiation dose of the second and subsequent pulses is adjusted so that the dose including the hem part is constant.

第3図により、上記の荷電粒子線照射方法を、さらに説
明する。回において、荷電粒子線(4)は、陽子より重
い原子核による重粒子線で、この重粒子線(4)K沿っ
て、散乱体(6)、走査電磁石(5a)+(5b)、厚
さ可変の吸収体(7a)を備えたレンジシック(7)、
コリメータ(8)が配置されている。患者(9)は治療
台(10)上に位置している。
The above charged particle beam irradiation method will be further explained with reference to FIG. In this case, the charged particle beam (4) is a heavy particle beam produced by atomic nuclei heavier than protons, and along this heavy particle beam (4) range chic (7) with variable absorber (7a),
A collimator (8) is arranged. A patient (9) is located on a treatment table (10).

以上の装置により、走査電磁石(5aL(5b)により
、重粒子線(4)は円形に走査され、患者(9)の位置
で任意の領域で平担な線量分布になるようにされる。走
査電磁石(5a)、(5b)でそれぞれ90”位相の異
なった交流磁場を発生させて、重粒子線(4)を円形走
査する。散乱体(6)は、重粒子線ビーム(4)の径を
大きくして、より広い領域で線量分布の平担性を良くす
るために使われる。重粒子線(4)のエネルギーは、レ
ンジシフタ(7)により変えることができ、レンジシッ
ク(7)の吸収体(7a)の厚さ分だけ、エネルギーを
低くすることができる。このようにして、治療台(10
)上の患者(9)の位置での平面内で均一な線量分布の
重粒子線(4)を得ることができ、重粒子線(4)のエ
ネルギーを変えることにより、患者(9)の体の特定の
部分に集中した吸収線量分布をもつ重粒子線照射が可能
となる。
With the above device, the heavy ion beam (4) is scanned in a circular manner by the scanning electromagnet (5aL (5b)), so that a uniform dose distribution is achieved in an arbitrary area at the position of the patient (9).Scanning The electromagnets (5a) and (5b) each generate alternating magnetic fields with 90" phases to scan the heavy ion beam (4) in a circular manner. The scatterer (6) has a diameter of the heavy ion beam (4). It is used to increase the uniformity of the dose distribution over a wider area.The energy of the heavy ion beam (4) can be changed by a range shifter (7), and the absorption of range sick (7) The energy can be lowered by the thickness of the body (7a).In this way, the treatment table (10
) can obtain a heavy ion beam (4) with a uniform dose distribution within the plane at the position of the patient (9), and by changing the energy of the heavy ion beam (4), the body of the patient (9) can be obtained. It becomes possible to irradiate heavy ion beams with an absorbed dose distribution concentrated in a specific part of the body.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、複数のエネルギーの
重粒子線を重ね照射して、任意の深さ方向の幅を得る方
法において、各エネルギー毎の重粒子線の照射線量を変
えるようKしたので、患者の深さ方向に均一な線量分布
の重粒子線照射を行うことができる効果がある。
As described above, according to the present invention, in the method of superimposing heavy ion beams of a plurality of energies to obtain an arbitrary width in the depth direction, the irradiation dose of the heavy ion beam for each energy is changed. Therefore, it is possible to perform heavy ion beam irradiation with a uniform dose distribution in the depth direction of the patient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はこの発明の一実施例を説明するための
もので、第1図は吸収線量分布の特性線図、第2図はビ
ームパルスの特性線図、第3図は装置の概略立面図であ
る。 第4図〜第6図は従来の荷電粒子線照射方法を説明する
だめのもので、第4図はビームパルスの特性線図、第5
図および第6図はそれぞれ吸収線量分布の特性線図であ
る。 (1)・・ビームパルス、(2)−・各エネルギー毎の
線量分布、(3)・・全線量分布、(4)・・重粒子線
。 なお、各図中、同一符号は同−又は相当部分を示す。 7F)2図 1 、ヒ“−4昌9几入
Figures 1 to 3 are for explaining one embodiment of the present invention. Figure 1 is a characteristic diagram of absorbed dose distribution, Figure 2 is a characteristic diagram of beam pulses, and Figure 3 is a characteristic diagram of the apparatus. FIG. Figures 4 to 6 are for explaining the conventional charged particle beam irradiation method; Figure 4 is a beam pulse characteristic diagram;
6 and 6 are characteristic diagrams of absorbed dose distribution, respectively. (1) Beam pulse, (2) Dose distribution for each energy, (3) Total dose distribution, (4) Heavy ion beam. In each figure, the same reference numerals indicate the same or corresponding parts. 7F) 2 Figure 1, Hi-4-Chang 9 entry

Claims (1)

【特許請求の範囲】[Claims] がん患部の深さに応じて重粒子線のエネルギーをエネル
ギー吸収体により調整して前記重粒子線の到達する深さ
を変化させて照射方向に任意のパルス幅の照射をする荷
電粒子線照射方法において、複数回のエネルギーの前記
重粒子線照射に対して、前記重粒子線をそれぞれ整数パ
ルスで所定の線量となるようにし、第2回目以降の前記
パルス照射においては、前回までの吸収線量をたし合わ
せて深さ方向に均一な吸収線量分布となるようにするこ
とを特徴とする荷電粒子線照射方法。
Charged particle beam irradiation that adjusts the energy of the heavy ion beam using an energy absorber according to the depth of the cancerous area, changes the depth that the heavy ion beam reaches, and irradiates with an arbitrary pulse width in the irradiation direction. In the method, for the heavy ion beam irradiation with multiple energies, each of the heavy ion beams is integer pulsed to give a predetermined dose, and in the second and subsequent pulse irradiation, the absorbed dose up to the previous time is A charged particle beam irradiation method characterized by adding up the absorbed dose distribution to obtain a uniform absorbed dose distribution in the depth direction.
JP27821887A 1987-11-05 1987-11-05 Irradiation with charged particle beat Pending JPH01121070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27821887A JPH01121070A (en) 1987-11-05 1987-11-05 Irradiation with charged particle beat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27821887A JPH01121070A (en) 1987-11-05 1987-11-05 Irradiation with charged particle beat

Publications (1)

Publication Number Publication Date
JPH01121070A true JPH01121070A (en) 1989-05-12

Family

ID=17594253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27821887A Pending JPH01121070A (en) 1987-11-05 1987-11-05 Irradiation with charged particle beat

Country Status (1)

Country Link
JP (1) JPH01121070A (en)

Similar Documents

Publication Publication Date Title
US8901519B2 (en) Quick regulation of the range of high-energy ion beams for precision irradiation of moving target volumes
JP2022524103A (en) Irradiation by column and generation of treatment plan for it
Phillips et al. Effects of respiratory motion on dose uniformity with a charged particle scanning method
US7977657B2 (en) Ion radiation therapy system with distal gradient tracking
JP6256974B2 (en) Charged particle beam system
KR20190085914A (en) Apparatus and method for self-control of radiation electron beam
EP3517172B1 (en) Neutron capture therapy system
Kubsad et al. Monte Carlo and convolution dosimetry for stereotactic radiosurgery
Litzenberg et al. An apparatus for applying strong longitudinal magnetic fields to clinical photon and electron beams
Slopsema Beam delivery using passive scattering
Brahme et al. Optimization of proton and heavy ion therapy using an adaptive inversion algorithm
Shih High energy electron radiotherapy in a magnetic field
Lagzda et al. Relative insensitivity to inhomogeneities on very high energy electron dose distributions
Schaffner et al. Ridge filter design and optimization for the broad‐beam three‐dimensional irradiation system for heavy‐ion radiotherapy
Kraft et al. Research needed for improving heavy-ion therapy
Kim et al. The physics of stereotactic radiosurgery
Svensson et al. Effective source size, yield and beam profile from multi-layered bremsstrahlung targets
JPH01121070A (en) Irradiation with charged particle beat
JP4177528B2 (en) Particle beam irradiation equipment
Alonso Review of ion beam therapy: present and future
Blomquist et al. Scanned intensity modulations for 50 MV photons
US10751549B2 (en) Passive radiotherapy intensity modulator for electrons
Inada et al. Characteristics of proton beams after field shaping at PMRC
Mazal et al. Proton and Other Heavy Charged-Particle Beams
Sethi et al. Elimination of field size dependence of enhanced dynamic wedge factors