JPH01120532A - Liquid crystal element and its production - Google Patents

Liquid crystal element and its production

Info

Publication number
JPH01120532A
JPH01120532A JP27877087A JP27877087A JPH01120532A JP H01120532 A JPH01120532 A JP H01120532A JP 27877087 A JP27877087 A JP 27877087A JP 27877087 A JP27877087 A JP 27877087A JP H01120532 A JPH01120532 A JP H01120532A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
crystal element
particles
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27877087A
Other languages
Japanese (ja)
Inventor
Masahiko Yamaguchi
雅彦 山口
Mitsuru Kano
満 鹿野
Kenji Miyagawa
堅次 宮川
Shozo Takamura
高村 章三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP27877087A priority Critical patent/JPH01120532A/en
Publication of JPH01120532A publication Critical patent/JPH01120532A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To decrease the coloration of a display part generated from a relation between refractive index anisotropy and gap and to expand visual sensation by providing many projecting parts consisting of a thermoplastic material on the inside surface of a substrate. CONSTITUTION:A transparent electrode 13 is formed on the substrate 11 and an orienting agent is coated on the electrode 13 to form an oriented film 15. Particles 21 consisting of low melting point glass are then sprayed onto the oriented film 15 and are heat-treated to form the projecting parts 17. A transparent electrode 14 and an oriented film 16 are formed on the substrate 12. Spacers 6 are sprayed onto the substrate 11 and the thermosetting resin as a sealant 5 is screen-printed on the peripheral part of the substrate 12. The substrates 11 and 12 are superposed on each other and are heat-treated to cure the resin. An Np liquid crystal is sealed into the spacing between the substrates 11 and 12 to constitute a liquid crystal cell. This cell is sandwiched between polarizing plates 19, 20, by which the liquid crystal element is obtd.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、屈折率異方性とギャップとの関係から生じる
表示部の着色が少なくかつ視角依存性の少ない液晶素子
とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a liquid crystal element whose display area is less colored due to the relationship between refractive index anisotropy and gap and has less viewing angle dependence, and a method for manufacturing the same.

「従来の技術」 第5図は、従来の液晶素子の要部を示すものである。こ
の液晶素子は、液晶層lか透明電極2と配向膜3を備え
ろ2枚のガラス基板4.4でザンドイッチされ、その外
周部がシール材5で封着されてなるもので、 ガラス基
板4.4間のギャップはスペーサ6によって規制されて
いる。
"Prior Art" FIG. 5 shows the main parts of a conventional liquid crystal element. This liquid crystal element includes a liquid crystal layer 1, a transparent electrode 2, and an alignment film 3, sandwiched between two glass substrates 4, 4, and the outer periphery of which is sealed with a sealant 5. .4 is regulated by a spacer 6.

この褌晶素子にあっては、屈折率異方性とギャップとの
関係から生じる表示部の着色を緩和すると共に視角を拡
大するために、一方のガラス基板4の内面に微細な凹凸
7が形成されている。
In this loincloth crystal element, fine irregularities 7 are formed on the inner surface of one glass substrate 4 in order to alleviate the coloring of the display area caused by the relationship between the refractive index anisotropy and the gap and to expand the viewing angle. has been done.

この液晶素子の凹凸7は、ガラス基板4をフッ酸などに
より化学的にエツチングしたり、機械的に研削すること
によって形成されていた。
The unevenness 7 of this liquid crystal element was formed by chemically etching the glass substrate 4 with hydrofluoric acid or the like or mechanically grinding it.

「発明の解決しようとする問題点」 上記従来の液晶素子にあっては、ガラス基板4に設けら
れた凹凸7が、高低差や周期が不規則で、しかも立ち上
がりが急で角が鋭角なものとなるため、表示部の着色を
十分緩和できず、また視角を十分拡大できない不満があ
った。
"Problems to be Solved by the Invention" In the above-mentioned conventional liquid crystal element, the unevenness 7 provided on the glass substrate 4 has an irregular height difference and irregular period, and also has a steep rise and an acute angle. Therefore, there were complaints that the coloring of the display section could not be sufficiently alleviated and the viewing angle could not be sufficiently expanded.

また、基板表面をフッ酸エツチングあるいは機械研削し
て凹凸を形成する上記従来の製造方法にあっては、基板
の表面処理に多くの工程が必要となり、製造工程の管理
が繁雑である問題があった。
In addition, the conventional manufacturing method described above, in which unevenness is formed by etching the substrate surface with hydrofluoric acid or by mechanical grinding, requires many steps for surface treatment of the substrate, and there is a problem in that the management of the manufacturing process is complicated. Ta.

「問題点を解決するための手段」 第1発明の液晶素子は、熱可塑性を有する物質あるいは
加熱によって一時的に流動性を示しその後硬化する物質
からなる多数の凸部が基板の内面側に設けられたもので
ある。
"Means for Solving the Problems" The liquid crystal element of the first invention has a large number of convex portions on the inner surface of the substrate made of a thermoplastic material or a material that temporarily exhibits fluidity when heated and then hardens. It is something that was given.

凸部は、熱可塑性物質あるいは加熱によって一時的に流
動性を示しその後硬化する物質によって形成されている
。また、この凸部をなす物質は、凸部が接する層との密
着性の良いものを用いることが望ましい。
The convex portion is formed of a thermoplastic material or a material that temporarily exhibits fluidity when heated and then hardens. Furthermore, it is desirable to use a material that forms the convex portions and has good adhesion to the layer with which the convex portions are in contact.

熱可塑性物質としては、メタクリル樹脂、ポリカーボネ
ート等の熱可塑性樹脂やガーラスなどを利用できる。ま
た用いられる熱可塑性物質は、凸部よりも基板側の部分
に熱的に悪影響を与えない程度の温度で可塑化し、かつ
製造時凸部を形成した後に加えられる熱によって変形し
ない程度の耐熱性を有するものであることが望ましい。
As the thermoplastic material, thermoplastic resins such as methacrylic resin and polycarbonate, glass, etc. can be used. In addition, the thermoplastic material used is plasticized at a temperature that does not adversely affect the part closer to the substrate than the convex part, and has a heat resistance that does not deform due to the heat applied after the convex part is formed during manufacturing. It is desirable that the

また、加熱によって一時的に流動性を示しその後硬化す
る物質としては、エポキシ樹脂等の熱硬化性樹脂を挙げ
ることができる。熱硬化性樹脂を用いる場合、樹脂は凸
部よりも基板側の部分に熱的に悪影響を与えない程度の
温度で流動化しかつ硬化するものでなければならない。
In addition, examples of substances that temporarily exhibit fluidity and then harden when heated include thermosetting resins such as epoxy resins. When using a thermosetting resin, the resin must be fluidized and hardened at a temperature that does not adversely affect thermally the portion closer to the substrate than the convex portion.

この加熱によって一時的に流動性を示しその後硬化する
物質によって凸部が形成される場合、凸部は硬化した状
態の物質によって形成される。
When the protrusions are formed by a material that temporarily exhibits fluidity and then hardens due to this heating, the protrusions are formed by the material in a hardened state.

上記のような物質によって形成される多数の凸部は、 
その最も突出した部分の間隔が100μm程度となるよ
うに形成されることが望ましいと思われる。 また、凸
部の高さは2〜5μ肩程度であることが望ましいと思わ
れる。
The many convex parts formed by the above substances are
It is considered desirable that the distance between the most protruding portions be approximately 100 μm. Further, it is considered desirable that the height of the convex portion is about 2 to 5 μm.

この凸部は、基板の内面側に設けられておれば良く、基
板上に直接設けられても、透明電極あるいは配向膜上に
設けられても良い。
The convex portion may be provided on the inner surface of the substrate, and may be provided directly on the substrate, or may be provided on the transparent electrode or alignment film.

第1発明の液晶素子では、基板の内面側に設けられた多
数の凸部によって、視角が拡大される。
In the liquid crystal element of the first invention, the viewing angle is enlarged by the large number of convex portions provided on the inner surface of the substrate.

また液晶素子のセルギャップが凸部によって微視的に変
化するので液晶分子の屈折率異方性とセルギャップの関
係から生じる着色が緩和される。
Furthermore, since the cell gap of the liquid crystal element is microscopically changed by the convex portion, coloring caused by the relationship between the refractive index anisotropy of the liquid crystal molecules and the cell gap is alleviated.

第2発明の製造方法は、上記第1発明の液晶素子を製造
するのに好適な方法である。この製造方法によれば、熱
可塑性を有する物質あるいは加熱によって一時的に流動
性を示しその、後硬化する物質からなる粒子を基板上に
散布し、その後加熱処理して粒子を変形せしめる。
The manufacturing method of the second invention is a suitable method for manufacturing the liquid crystal element of the first invention. According to this manufacturing method, particles made of a thermoplastic substance or a substance that temporarily exhibits fluidity when heated and is subsequently cured are dispersed onto a substrate, and then heat-treated to deform the particles.

散布される粒子が加熱によって一時的に流動性を示しそ
の後硬化する物質からなるものである場合、散布される
粒子は加熱によって流動化し得る状態のものでなければ
ならない。
If the particles to be dispersed are made of a material that temporarily exhibits fluidity when heated and then hardens, the particles to be dispersed must be in a state that can be made fluid by heating.

散布される粒子は球状であることが望ましいが、これに
限定されることはない。また、粒子は、できるだけ均一
な大きさのものを用いることが望ましい。
The particles to be dispersed are preferably spherical, but are not limited to this. Furthermore, it is desirable to use particles with as uniform a size as possible.

このような粒子の散布は、できるだけ緻密にかつ重なり
を生じないように行なわれることが望ましい。また、こ
の粒子の散布は、基板上に直接凸部を形成する場合は基
板上に、透明電極上に凸部を形成する場合は透明電極上
に、配向膜上に凸部を形成する場合は配向膜上に行う。
It is desirable that such particles be distributed as densely as possible without overlapping. In addition, these particles are scattered on the substrate when forming the protrusions directly on the substrate, on the transparent electrode when forming the protrusions on the transparent electrode, and on the transparent electrode when forming the protrusions on the alignment film. Perform on the alignment film.

粒子散布後に行なわれる熱処理は、散布された粒子が軟
化流動して、粒子の角部が丸まる温度以上で行なわれる
。そして、この熱処理は、粒子が略山形に変形するまで
行なわれることが望ましい。
The heat treatment performed after particle dispersion is carried out at a temperature higher than the temperature at which the dispersed particles soften and flow and the corners of the particles become rounded. It is desirable that this heat treatment is carried out until the particles are deformed into a substantially mountain shape.

この第2発明の製造方法によれば、散布された粒子が熱
処理により角の丸まった状態となるので、形成される凹
凸は滑らかに変化する乙のとなる。
According to the manufacturing method of the second invention, the corners of the dispersed particles are rounded by heat treatment, so that the formed irregularities change smoothly.

しかも、散布された粒子は熱処理時の流動により散布さ
れた面にぴったりと密着する形状となるので、形成され
る凸部は剥離し難いものとなる。
Moreover, since the dispersed particles have a shape that tightly adheres to the surface on which they are dispersed due to the flow during the heat treatment, the formed convex portions are difficult to peel off.

また、第2発明の製造方法によれば、粒径の均一な粒子
を緻密に散布して粒子間の間隔を一定にすれば、これを
熱処理することにより形成される凹凸はピッチが均一で
その高低差も均一なものとなる。
Further, according to the manufacturing method of the second invention, if particles of uniform particle size are dispersed densely and the spacing between the particles is made constant, the unevenness formed by heat-treating the particles will have a uniform pitch. The height difference will also be uniform.

「実施例」 第1図は、第1発明の液晶素子の一実施例を示すもので
ある。この液晶素子は、TN型のもので、図中符号11
.12はそれぞれガラス製の基板である。
"Embodiment" FIG. 1 shows an embodiment of the liquid crystal element of the first invention. This liquid crystal element is of the TN type, and the number 11 in the figure
.. 12 are glass substrates.

これら基板11.12には、それぞれITO(インジウ
ム・スズ酸化物)製の透明電極13.14が設けられて
いる。また、透明型[!13.14の上には、配向剤J
R−100(商品名二日東電工製)からなる厚さ約10
00Aの配向1115,16が設けられている。
Transparent electrodes 13 and 14 made of ITO (indium tin oxide) are provided on these substrates 11 and 12, respectively. Also, transparent type [! 13. On top of 14, alignment agent J
Made of R-100 (product name manufactured by Nikitto Denko), approximately 10 mm thick
Orientations 1115 and 16 of 00A are provided.

そして、一方の配向11i15上には、凸部17・・・
が設けられている。この凸部17は低融点ガラスからな
るもので、凸部17・・・の最も突出した部分の間隔は
平均約100μ11凸部17の高さは約3μ肩弱であっ
た。
Then, on one orientation 11i15, a convex portion 17...
is provided. The protrusions 17 were made of low melting point glass, and the distance between the most protruding parts of the protrusions 17 was about 100μ on average, and the height of the protrusions 17 was about 3μ.

基板11.12間のギャップは、粒径10μ肩のスペー
サ6によって規制されており、また2枚の基板11゜1
2間の間隙はシール材5によって密閉されている。
The gap between the substrates 11 and 12 is regulated by a spacer 6 with a grain size of 10μ, and the gap between the two substrates 11 and 12 is
The gap between the two is sealed by a sealing material 5.

そしてこれにより形成される空間にはNf)液晶が封入
されている。また基板II、12の外面側には偏光板1
9.20が設けられている。
The space thus formed is filled with Nf) liquid crystal. Also, on the outer surface side of the substrates II and 12, there is a polarizing plate 1.
9.20 is provided.

次に、この液晶素子の製造方法を説明する。Next, a method for manufacturing this liquid crystal element will be explained.

まず、通常の方法で基板11上にITOをスパッタして
透明電極13を形成した。次に、この透明電極I3上に
配向剤JR−100をスピンナーで塗布し、その後配向
処理して配向膜15を形成した。
First, a transparent electrode 13 was formed by sputtering ITO on a substrate 11 using a conventional method. Next, an alignment agent JR-100 was applied onto the transparent electrode I3 using a spinner, and then an alignment treatment was performed to form an alignment film 15.

ついで、第2図に示すように、配向膜15上に凸部17
・・・を形成するための粒子21・・・を均一に散布し
た。この粒子21・・・には、低融点ガラス(融点的5
20〜530℃)からなる平均粒径10μmのフリット
を用いた。
Next, as shown in FIG. 2, a convex portion 17 is formed on the alignment film 15.
Particles 21 for forming... were uniformly scattered. This particle 21... has a low melting point glass (melting point 5
A frit with an average particle diameter of 10 μm was used.

ついでこのものに熱処理を施した。熱処理の条件は、5
000Cx1時間であった。
This material was then subjected to heat treatment. The heat treatment conditions are 5.
000C x 1 hour.

他方、通常の方法で基板12上に透明電極14、配向g
!16を形成した。
On the other hand, a transparent electrode 14, oriented in g
! 16 was formed.

次に、一方の基板11上にスペーサ6・・・をふりまき
、他方の基板12の周辺部にシール材としての熱硬化性
樹脂をスクリーン印刷し、ついで基板11.12を重ね
合わせた。その後、このものに150℃×1時間の熱処
理を施して熱硬化性樹脂を硬化させた。
Next, spacers 6... were sprinkled on one of the substrates 11, a thermosetting resin was screen printed as a sealing material around the periphery of the other substrate 12, and then the substrates 11 and 12 were stacked on top of each other. Thereafter, this material was subjected to heat treatment at 150° C. for 1 hour to harden the thermosetting resin.

ついで、基板11’、12間の間隙にNP液晶を封入し
、液晶セルとし、このセルを偏光板19.20で挟んで
液晶素子とした。
Next, NP liquid crystal was sealed in the gap between the substrates 11' and 12 to form a liquid crystal cell, and this cell was sandwiched between polarizing plates 19 and 20 to form a liquid crystal element.

上記、実施例の液晶素子および前記従来の液晶素子につ
いて、表面粗さ、視角依存性、表示色を調べた。
The surface roughness, viewing angle dependence, and display color of the liquid crystal element of the above-mentioned example and the conventional liquid crystal element were investigated.

(表面粗さ) 実施例の液晶素子については凸部17・・・の設けられ
た面、従来の液晶素子については基板4の表面の祖さを
表面粗汁によって測定した。結果を第3図に示す。
(Surface Roughness) The surface roughness of the surface provided with the convex portions 17 for the liquid crystal element of the example and the surface roughness of the substrate 4 for the conventional liquid crystal element were measured by surface roughness. The results are shown in Figure 3.

第3図の結果から、本発明の液晶素子に設けられた凹凸
は、滑らかに変化しかつ周期や高低差か略均−であるこ
とが確認された。
From the results shown in FIG. 3, it was confirmed that the unevenness provided in the liquid crystal element of the present invention changes smoothly and has a substantially uniform period and height difference.

(視角依存性) 液晶素子を水平?二セットし、法線方向から順次視角を
変えて表示色の変化、コントラストなどの表示品位を観
察した。
(Viewing angle dependence) Is the liquid crystal element horizontal? Two sets were used, and viewing angles were sequentially changed from the normal direction to observe display quality such as changes in display color and contrast.

結果を第1表に示す。The results are shown in Table 1.

第1表 注 ○:表示品位が視角0°と同じ △:表示品位が視角0°より低下 ×:表示か全く視認できない 第1表の結果から、本発明の液晶素子は、従来のらのに
比較して視角依存性が更に改善されていることが判明し
た。
Note to Table 1 ○: Display quality is the same as the viewing angle of 0° △: Display quality is lower than the viewing angle of 0° In comparison, it was found that the viewing angle dependence was further improved.

(表示色) 国際照明委員会(CIE)によって規定された標準光源
Cを液晶素子に照射したときの液晶素子の表示色を測定
し、(xy)−色度図にプロットした。
(Display Color) The display color of the liquid crystal element when the liquid crystal element was irradiated with standard light source C specified by the Commission Internationale de Illumination (CIE) was measured and plotted on an (xy)-chromaticity diagram.

結果を第4図に示す。The results are shown in Figure 4.

第4図の結果から、本発明の液晶素子は従来のものに比
較して表示色がより光源色に近く、着色か少ないことが
判明した。
From the results shown in FIG. 4, it was found that the liquid crystal element of the present invention had a display color closer to the light source color and was less colored than the conventional liquid crystal element.

「発明の効果」 以上説明したように、第1発明の液晶素子は、熱可塑性
物質あるいは加熱によって一時的に流動性を示しその後
硬化する物質からなる多数の凸部が基板の内面側に設け
られたものなので、基板の内面に周期や高低差が略均−
でかつ滑らかに変化する凹凸を形成することが可能とな
る。
"Effects of the Invention" As explained above, the liquid crystal element of the first invention has a large number of protrusions formed on the inner surface of the substrate made of a thermoplastic material or a material that temporarily exhibits fluidity when heated and then hardens. Since the board has an approximately uniform period and height difference on its inner surface,
It becomes possible to form irregularities that vary greatly and smoothly.

従って、第1発明によれば、屈折率異方性とギャップの
関係から生ずる表示部の着色が少なく、かつ視角依存性
のより改善された液晶素子を提供することができる。
Therefore, according to the first aspect of the invention, it is possible to provide a liquid crystal element in which the display portion is less colored due to the relationship between the refractive index anisotropy and the gap, and the viewing angle dependence is further improved.

また、第2発明の製造方法は、熱可塑性物質あるいは加
熱によって一時的に流動性を示しその後硬化する物質か
らなる粒子を基板の内面側に散布し、その後加熱処理し
て粒子を変形せしめることにより基板の内面側に凹凸を
qする液晶素子を製造する方法なので、表示の着色が少
なく、視角依存性の小さい第1発明の液晶素子を効率良
く製造することができる。
Further, the manufacturing method of the second invention includes scattering particles made of a thermoplastic substance or a substance that temporarily exhibits fluidity when heated and then hardens on the inner surface of the substrate, and then heat-treating the particles to deform the particles. Since this is a method of manufacturing a liquid crystal element having q unevenness on the inner surface of the substrate, it is possible to efficiently manufacture the liquid crystal element of the first invention with little display coloration and low viewing angle dependence.

また、第2発明の製造方法によれば、粒子を散布し、そ
の後熱処理するといった極めて簡略な工程で基板の内面
側に凹凸を形成できるので、液晶素子の製造工程は簡略
で管理の容易なものとなる利点がある。
Furthermore, according to the manufacturing method of the second invention, the unevenness can be formed on the inner surface of the substrate through an extremely simple process of dispersing particles and then performing heat treatment, so the manufacturing process of the liquid crystal element is simple and easy to manage. There is an advantage that

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1発明の液晶素子の一実施例の要部を示す断
面図、第2図は同実施例の液晶素子を製造する過程の状
態を示す断面図、第3図は実施例および従来の液晶素子
の凹凸の設けられた面の粗さを測定した結果を示すグラ
フ、第4図は表示色を調べた結果を示す(Xy)−色度
図、第5図は従来の液°晶素子の要部を示す断面図であ
る。 11・・・基板、17・・・凸部、21・・・球状粒子
FIG. 1 is a sectional view showing essential parts of an embodiment of the liquid crystal element of the first invention, FIG. 2 is a sectional view showing the state of the process of manufacturing the liquid crystal element of the same embodiment, and FIG. A graph showing the results of measuring the roughness of the uneven surface of a conventional liquid crystal element, Figure 4 is an (Xy) - chromaticity diagram showing the results of examining display colors, and Figure 5 is a graph showing the results of measuring the roughness of the uneven surface of a conventional liquid crystal element. FIG. 2 is a cross-sectional view showing the main parts of a crystal element. DESCRIPTION OF SYMBOLS 11... Substrate, 17... Convex part, 21... Spherical particle.

Claims (2)

【特許請求の範囲】[Claims] (1)熱可塑性物質あるいは加熱によって一時的に流動
性を示しその後硬化する物質からなる多数の凸部が基板
の内面側に設けられたことを特徴とする液晶素子。
(1) A liquid crystal element characterized in that a large number of convex portions made of a thermoplastic material or a material that temporarily exhibits fluidity when heated and then hardens are provided on the inner surface of a substrate.
(2)熱可塑性物質あるいは加熱によって一時的に流動
性を示しその後硬化する物質からなる粒子を基板上に散
布し、その後加熱処理して粒子を変形せしめることによ
り基板の内面側に多数の凸部を形成することを特徴とす
る液晶素子の製造方法。
(2) Particles made of a thermoplastic material or a material that temporarily exhibits fluidity when heated and then hardens are dispersed onto the substrate, and then heated to deform the particles, thereby creating a large number of convex portions on the inner surface of the substrate. A method for manufacturing a liquid crystal element, the method comprising: forming a liquid crystal element.
JP27877087A 1987-11-04 1987-11-04 Liquid crystal element and its production Pending JPH01120532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27877087A JPH01120532A (en) 1987-11-04 1987-11-04 Liquid crystal element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27877087A JPH01120532A (en) 1987-11-04 1987-11-04 Liquid crystal element and its production

Publications (1)

Publication Number Publication Date
JPH01120532A true JPH01120532A (en) 1989-05-12

Family

ID=17601943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27877087A Pending JPH01120532A (en) 1987-11-04 1987-11-04 Liquid crystal element and its production

Country Status (1)

Country Link
JP (1) JPH01120532A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468844B1 (en) 1997-07-14 2002-10-22 Semiconductor Energy Laboratory Co., Ltd. Preparation method of semiconductor device
US6856360B1 (en) 1997-11-28 2005-02-15 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device, method of manufacturing the same, and electronic equipment
US7192865B1 (en) 1997-11-27 2007-03-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for producing the same
US7227603B1 (en) 1993-07-22 2007-06-05 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
US8212968B2 (en) 1993-07-22 2012-07-03 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227603B1 (en) 1993-07-22 2007-06-05 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
US7561246B2 (en) 1993-07-22 2009-07-14 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
US8212968B2 (en) 1993-07-22 2012-07-03 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
US8243233B2 (en) 1993-07-22 2012-08-14 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
US8396690B2 (en) 1993-07-22 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
US6468844B1 (en) 1997-07-14 2002-10-22 Semiconductor Energy Laboratory Co., Ltd. Preparation method of semiconductor device
US7192865B1 (en) 1997-11-27 2007-03-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for producing the same
US7202497B2 (en) 1997-11-27 2007-04-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6856360B1 (en) 1997-11-28 2005-02-15 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device, method of manufacturing the same, and electronic equipment

Similar Documents

Publication Publication Date Title
JP2654940B2 (en) Manufacturing method of electro-optical element
JPH05241165A (en) Liquid crystal display device and its production
US5178571A (en) Method for manufacturing an electro-optical device
JPH02235026A (en) Production of liquid crystal display device
JPH01120532A (en) Liquid crystal element and its production
JPS61173221A (en) Formation of liquid crystal display device
JPH01120531A (en) Liquid crystal element and its production
JPH01120533A (en) Liquid crystal element and its production
JP2767145B2 (en) Liquid crystal element
JPH10301115A (en) Liquid crystal display element and its production
JPS63200126A (en) Liquid crystal display element
JPH0378728A (en) Production of liquid crystal panel
JPH10142595A (en) Liquid crystal display element and its production
JP2002328375A (en) Liquid crystal display panel and method of manufacturing the same
JPH02201424A (en) Production of liquid crystal display device
JPH0146852B2 (en)
JPH01120530A (en) Liquid crystal element and its production
JPH0441809B2 (en)
JPH01120529A (en) Production of liquid crystal element
JPS61173222A (en) Liquid crystal display device
JPS60257426A (en) Liquid crystal display device
JPH03116115A (en) Production of liquid crystal panel
JP2003161822A (en) Plastic color filter and display device using the same
JPS63123015A (en) Manufacture of curved surface liquid crystal cell
JPS63220115A (en) Liquid crystal display element