JPH01119569A - Sintering jig for low-temperature sintering substrate - Google Patents

Sintering jig for low-temperature sintering substrate

Info

Publication number
JPH01119569A
JPH01119569A JP27677387A JP27677387A JPH01119569A JP H01119569 A JPH01119569 A JP H01119569A JP 27677387 A JP27677387 A JP 27677387A JP 27677387 A JP27677387 A JP 27677387A JP H01119569 A JPH01119569 A JP H01119569A
Authority
JP
Japan
Prior art keywords
jig
low
particle diameter
firing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27677387A
Other languages
Japanese (ja)
Inventor
Atsushi Ito
淳 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP27677387A priority Critical patent/JPH01119569A/en
Publication of JPH01119569A publication Critical patent/JPH01119569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To sinter a substrate even at high velocity with a simple structure and with high workability by combining a sintered compact, an inorg. vitreous intermediate binding layer, and a specified coarse-particle layer to obtain the title jig. CONSTITUTION:The jig is formed by the sintered compact 1, the inorg. vitreous intermediate binding layer 2, and the coarse-particle layer 3 of >=1 kind among the globular alumina, mullite, and zirconia having a particle diameter distribution wherein the maximum particle diameter and the minimum particle diameter are controlled within + or -20 of the mean particle diameter. The sintered compact 1 is used as the base material of a jig for calcining, and fulfils the strength requirements in use, etc. A compact consisting essentially of the heat-resistant inorg. fiber having low heat capacity, excellent thermal shock resistance, and low density and fulfilling the strength requirements in handling is preferably used to further reduce the cost of a ceramic substrate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子部品、特に低温焼結型基板の焼成に3い
て、棚板、匣鉢及びセッター等として使用することので
きる焼成用治具に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a baking jig that can be used as a shelf, a sagger, a setter, etc. in the baking of electronic components, especially low-temperature sintered substrates. It's about the ingredients.

(従来の技術) 電子部品の中で、セラミック基板は従来よりアルミナ質
のものか良く使用されておいり、テープ成形でグリーン
シートを成形後、棚板、匣鉢、セッター等に載せて15
00〜1600 ”Cの高温で焼成し製品化されている
。これら棚板、匣鉢、セッター等はムライト質、アルミ
ナ質、ジルコニア賀の耐火物が使用されており、前記グ
リーンシートの収縮を均一に行わせるため、表面の平滑
度が極めて高い水準で要求されている。
(Prior technology) Among electronic components, ceramic substrates have traditionally been made of alumina, and after forming green sheets using tape forming, they are placed on shelves, saggers, setters, etc. for 15 minutes.
Products are produced by firing at high temperatures of 0.00 to 1600"C. Mullite, alumina, and zirconia refractories are used for these shelf boards, saggers, setters, etc., and the shrinkage of the green sheets is uniform. Because of this, extremely high levels of surface smoothness are required.

(発明が解決しようとする問題点) セラミック基板の低コスト化をより一層促進するために
、最近になって結晶化ガラス質を代表とした1000℃
付近で焼結可能な低温焼結型基板の開発が激しく行われ
ている。焼成温度の低下により、エネルギー費の節約、
前記棚板、匣鉢。
(Problems to be Solved by the Invention) In order to further reduce the cost of ceramic substrates, recently, 1000° C.
The development of low-temperature sintered substrates that can be sintered is being actively conducted in the vicinity. Lower firing temperatures save energy costs,
Said shelves and saggers.

セッター等焼成用治具にかかる消耗費用の低減、及び高
速焼成による生産性の向上が、効果として期待されてい
る。
The expected effects are a reduction in consumable costs for firing jigs such as setters, and an improvement in productivity due to high-speed firing.

低温焼結型基板の多くは、ガラス相を含有したものであ
るため、焼成時に軟化しやすく、前記焼成用治具と付着
しやすいという欠点があり、逆に前記焼成用治具の表面
を粗くしたり、敷粉を中間に配置するような構造をとっ
て付着しに<〈シていた。しかし、表面が粗くなると前
記グリーンシートが収縮する際に引っかかりによってそ
の収縮率に差異が生じて、特に回路形成後に焼成するよ
うな場合には回路の断線が生ずるという問題点があった
Many low-temperature sintered substrates contain a glass phase, so they tend to soften during firing and easily adhere to the firing jig. Or, the structure was such that the bedding powder was placed in the middle to make it stick. However, when the surface becomes rough, the green sheet gets caught when it contracts, resulting in a difference in the shrinkage rate, and there is a problem in that the circuit breaks, especially when the green sheet is fired after circuit formation.

一方、高速焼成を行う際には従来の耐火物の焼成用治具
ては熱衝撃に弱く、期待していた程の高速焼成は不可能
であった。
On the other hand, when performing high-speed firing, conventional refractory firing jigs are susceptible to thermal shock, making it impossible to perform high-speed firing as expected.

このような問題点に対して、たとえば、特開昭62−1
31191号公報や特開昭62−131192号公報て
提案されている如きセッター構造が考えられている。し
かしながら、これらの構造では、作業が非常に繁雑とな
ったり、セッターそのものが高価となり基板の低コスト
化が実現できないという問題点があった。
For example, Japanese Patent Laid-Open No. 62-1
Setter structures such as those proposed in Japanese Patent Application Laid-open No. 31191 and Japanese Patent Application Laid-Open No. 131192/1988 have been considered. However, these structures have problems in that the work is very complicated and the setter itself is expensive, making it impossible to reduce the cost of the substrate.

本発明はこれらの問題点を解決すべく、簡単な構造で、
しかも作業性に優れ、高速焼成にも適応できる構造を有
した低温焼結型基板焼成用治具な提供することを目的と
する。
In order to solve these problems, the present invention has a simple structure,
Moreover, it is an object of the present invention to provide a low-temperature sintering type substrate firing jig that has excellent workability and a structure that can be adapted to high-speed firing.

(問題点を解決するための手段) 即ち、本発明は、焼結体lと、無機ガラス質の中間結合
層2と、平均粒子径が20μm以上であり、最大粒子径
と最小粒子径とが前記平均粒子径の±20%の範囲内に
含まれた粒径分布を有する球状アルミナ、球状ムライト
、球状ジルコニアとから選ばれる少なくとも一種あるい
は二種以上の粗粒子層3とから成ることを特徴とする低
温焼結型基板焼成用治具である。
(Means for Solving the Problems) That is, the present invention comprises a sintered body 1, an inorganic vitreous intermediate bonding layer 2, an average particle size of 20 μm or more, and a maximum particle size and a minimum particle size. It is characterized by comprising a coarse particle layer 3 of at least one kind or two or more kinds selected from spherical alumina, spherical mullite, and spherical zirconia having a particle size distribution within a range of ±20% of the average particle diameter. This is a low temperature sintering type substrate firing jig.

(発明の作用) 本発明は、次の3つの項目を基本構成要因とするもので
ある。
(Action of the Invention) The present invention has the following three items as basic constituent factors.

■高速焼成を可能とするため、耐熱衝撃性に強く、熱容
量の小さな基材を用いていること。
■To enable high-speed firing, a base material with strong thermal shock resistance and low heat capacity must be used.

■低温焼結型基板4の付着の防止と、グリーンシートの
収縮率を均一に行わせるため、基板4と焼成用治具とを
多数の点接触で構成していること。
(2) In order to prevent the low-temperature sintering type substrate 4 from adhering and to make the shrinkage rate of the green sheet uniform, the substrate 4 and the firing jig should be in contact with each other at many points.

■作業性の良い焼成用治具とするため、基材と点接触化
構成物とを中間結合層2で結合して一体化せしめた構造
としていること。
(2) In order to provide a firing jig with good workability, the base material and the point-contact structure are bonded and integrated by an intermediate bonding layer 2.

前記焼結体lは、本発明の焼成用治具の基材となるもの
であって、使用時の強度を満足することが必要である。
The sintered body 1 serves as a base material for the firing jig of the present invention, and is required to have sufficient strength during use.

したがって、従来のアルミナ質、ムライト質、コージェ
ライト質、炭化ケイ素質、窒化ケイ素質、ジルコニア質
、粘土質等のれんが質のものは使用可能である。特に高
速焼成に対応するためには従来のれんが質のものの中で
も多孔質のものが適しておりコージェライト質、粘土質
、ムライト質のものは良く利用されている。しかし、セ
ラミック基板の低コスト化をより一層促進させるために
は、熱容量が小さく耐熱衝撃性に優れ、しかも低密度で
取り扱い強度を満足できる耐熱性無機質繊維を主体とし
た成形体を基材として用いることが好ましい。具体的に
は、その密度が0.6〜1.5g/cm3の範囲にあり
、常温曲げ強度が50〜150 k g f / cゴ
の範囲にあることが良い。ここで、耐熱性無機質繊維と
しては、シリカ−アルミナ質、アルミナ結晶質、ムライ
ト結晶質等から選ばれるものであり、アルミナ、ムライ
ト等の耐火性粉末と無機結合剤とを配合後、1400〜
1600℃の温度で焼成して成形される。前記密度が、
0.6g/crry’未満だと強度が不充分で粉化しや
すくなったり、使用時に基材のカケや割れが生じやすく
消耗が厳しくなって好ましくな(,1,5g/cm″を
越えるのもは、熱容量が大きくなって低コスト化の目標
を達成できず好ましくない。
Therefore, conventional brick materials such as alumina, mullite, cordierite, silicon carbide, silicon nitride, zirconia, and clay can be used. Among conventional brick materials, porous materials are particularly suitable for high-speed firing, and cordierite, clay, and mullite materials are often used. However, in order to further reduce the cost of ceramic substrates, it is necessary to use a molded body mainly made of heat-resistant inorganic fibers as a base material, which has a small heat capacity, excellent thermal shock resistance, and has low density and satisfactory handling strength. It is preferable. Specifically, it is preferable that the density is in the range of 0.6 to 1.5 g/cm3, and the room temperature bending strength is in the range of 50 to 150 kgf/c. Here, the heat-resistant inorganic fiber is selected from silica-alumina, alumina crystal, mullite crystal, etc., and after blending a refractory powder such as alumina or mullite with an inorganic binder,
It is molded by firing at a temperature of 1600°C. The density is
If it is less than 0.6 g/cm'', the strength is insufficient and it tends to powder, and the base material tends to chip or crack during use, resulting in severe wear and tear, so it is not preferable (more than 1.5 g/cm'' is also not recommended. is not preferable because the heat capacity becomes large and the goal of cost reduction cannot be achieved.

前記粗粒子層3は、低温焼結型基板4との化学反応を起
こさない化学的に安定な組成の物質で構成され、また、
前記基板4の均一・な収縮率を得るために、真球に近い
形状と粒子径のそろった分布を持つ粒子群によって前記
基板4を多数の点接触で支持する構造とするのが良い。
The coarse particle layer 3 is made of a substance with a chemically stable composition that does not cause a chemical reaction with the low temperature sintered substrate 4, and
In order to obtain a uniform shrinkage rate of the substrate 4, it is preferable to adopt a structure in which the substrate 4 is supported by a plurality of point contacts with a group of particles having a shape close to a perfect sphere and a uniform distribution of particle diameters.

具体的に1組成は、アルミナ、ムライト、ジルコニアが
好ましく、粒子径とその分布状態は、平均粒子径が20
μm以上であり、最大粒子径と最小粒子径とが前記平均
粒子径の±20%の範囲内に含まれることが好適である
。たとえば、重版の球状アルミナ微粉や粉砕用に用いら
れるアルミナボール、ムライトボール、ジルコニアボー
ル等が使用できる。平均粒子径が20JLm未満だと基
材あるいは前記中間結合層2と低温焼結型基板4との接
触が起こりやすくなって好ましくない。また、最大粒子
径と最小粒子径とが平均粒子径の±20%を越える場合
には粗粒子層3表面の凹凸が大きくなって接触点の数が
少なくなり前記基板4の収縮率を均一にすることが不可
能となり好適ではない。
Specifically, one composition is preferably alumina, mullite, and zirconia, and the particle size and distribution state are such that the average particle size is 20
It is preferable that the particle diameter is .mu.m or more, and that the maximum particle diameter and minimum particle diameter are within a range of ±20% of the average particle diameter. For example, reprinted spherical alumina fine powder, alumina balls used for pulverization, mullite balls, zirconia balls, etc. can be used. If the average particle diameter is less than 20 JLm, contact between the base material or the intermediate bonding layer 2 and the low-temperature sintered substrate 4 tends to occur, which is not preferable. Furthermore, if the maximum particle diameter and the minimum particle diameter exceed ±20% of the average particle diameter, the unevenness of the surface of the coarse particle layer 3 becomes large and the number of contact points decreases, so that the shrinkage rate of the substrate 4 can be made uniform. This is not suitable as it is impossible to do so.

前記中間結合層2は、無機ガラス質にて形成されるのが
良い、その理由は、前記粗粒子層3との接触面績が向上
し、その結果としての結合力が強固になるためである。
The intermediate bonding layer 2 is preferably formed of an inorganic glass material, because the contact surface with the coarse particle layer 3 is improved and the bonding force is strengthened as a result. .

ここで、無機ガラス質は1200°C以上の温度で軟化
するものであることが好適である。具体的には、白釉、
マット釉等の高温釉やフリット等が好ましい、前記軟化
温度が1200℃未満だと実際の焼成温度、すなわち、
低温焼結型基板4を焼成する温度が800〜1100℃
で中間結合層2の軟化する怖れがあって前記粗粒子層3
が脱落する怖れがあるためである。また、前記中間結合
層2は、20〜500μmの厚みで構成されていること
が好ましい。
Here, it is preferable that the inorganic glass material softens at a temperature of 1200°C or higher. Specifically, white glaze,
High-temperature glazes such as matte glazes, frits, etc. are preferred; if the softening temperature is less than 1200°C, the actual firing temperature, i.e.
The temperature at which the low-temperature sintered substrate 4 is fired is 800 to 1100°C.
There is a risk that the intermediate bonding layer 2 will be softened and the coarse particle layer 3
This is because there is a risk of it falling off. Moreover, it is preferable that the intermediate bonding layer 2 has a thickness of 20 to 500 μm.

20pm未満だと粗粒子層3を充分に結合てきず、50
0ILmを越えると中間結合層2にクラックが生じやす
くなり、また表面に中間結合B2が露出しやすくなり粗
粒子層3の脱落や反応が起こるようになって好ましくな
い。
If it is less than 20 pm, the coarse particle layer 3 will not be sufficiently bonded, and the
If it exceeds 0ILm, cracks are likely to occur in the intermediate bonding layer 2, and the intermediate bonding B2 is likely to be exposed on the surface, causing the coarse particle layer 3 to fall off and reactions to occur, which is not preferable.

本発明の低温焼結型基板焼成用治具は、以下の■又は■
の様な方法で製造される。
The low-temperature sintering type substrate firing jig of the present invention has the following
It is manufactured by a method such as

■焼結体lに中間結合層2の原料スラリーをスプレーま
たは塗布してから焼成し、焼結体lの表面に中間結合層
2を形成させる。次に球状アルミナ、球状ムライト、球
状ジルコニアの中から選ばれるいずれか一種又は二種以
上を中間結合層2の上にまぶし、粗粒子層3を形成して
、再度焼成して製造する。
(2) A raw material slurry for the intermediate bonding layer 2 is sprayed or applied onto the sintered body 1, and then fired to form the intermediate bonding layer 2 on the surface of the sintered body 1. Next, one or more selected from spherical alumina, spherical mullite, and spherical zirconia are sprinkled on the intermediate bonding layer 2 to form a coarse particle layer 3, which is then fired again.

■焼結体lの焼結前のものに■と同様に中間結合層2の
原料スラリーを塗布し、前記球状粒子をまぶして粗粒子
層3を形成してから一回の焼成で製造する。
(2) The raw material slurry for the intermediate bonding layer 2 is applied to the sintered body 1 before sintering in the same manner as in (2), and the spherical particles are sprinkled thereon to form the coarse particle layer 3, and then the sintered body 1 is produced by one firing.

本発明の焼成用治具は低温焼結型基板に好適なものであ
るが、特に大型の基板を焼成する際に多大の効果を示す
ものであり、セラミック基板の大型化を実用可能とする
ものでもある。
The firing jig of the present invention is suitable for low-temperature sintered substrates, and is especially effective when firing large-sized substrates, making it practical to increase the size of ceramic substrates. There is also.

以下、本発明の実施例について比較例と合わせて説明す
る。
Examples of the present invention will be described below along with comparative examples.

(実施例) 実施例1 密度1.3g/cゴ、常温での曲げ強度130k g 
f / c rn”のムライト質焼結体に、シリカ・ア
ルミナ質を主体とし1230℃で軟化するガラスの原料
スラリーを塗布後、1400℃で4時間焼成して焼結体
表面にガラス状中間結合層を形成させた。続いて、平均
粒子径60pmの球状アルミナ微粉(商品名ニアルナビ
ーズCB−Ago  昭和電工(株)製)を1 w t
%メチルセルロース水溶液に分散させたものを前記ガラ
ス状中間結合層表面に塗布して乾燥接着させ、再度14
00℃で3時間焼成してムライト焼結体を基材とした焼
成用治具を製造した。
(Example) Example 1 Density: 1.3 g/c, bending strength at room temperature: 130 kg
f / crn'' mullite sintered body is coated with a glass raw material slurry that is mainly composed of silica and alumina and softens at 1230°C, and then fired at 1400°C for 4 hours to form a glassy intermediate bond on the surface of the sintered body. A layer was formed.Subsequently, 1 wt of spherical alumina fine powder (trade name Nialuna Beads CB-Ago, manufactured by Showa Denko K.K.) with an average particle diameter of 60 pm was added.
% methyl cellulose aqueous solution was applied to the surface of the glassy intermediate bonding layer, dried and bonded, and then 14% aqueous solution was applied.
A firing jig having the mullite sintered body as a base material was manufactured by firing at 00°C for 3 hours.

アルミナとホウケイ酸ガラスとから成りAg−Pdペー
ストで回路を形成させた低温焼結型基板グリーンシート
を上記ムライト質焼成用治具に載せ900℃で4時間焼
成後、付着の有無、粗粒子層の剥離の有無を観察後、回
路の断線の有無を顕微鏡にて観察したが、不良の発生は
なく良好な結果を示し、トータル8時間の焼成時間で製
造できた。
A low-temperature sintered substrate green sheet made of alumina and borosilicate glass with a circuit formed with Ag-Pd paste was placed on the above-mentioned mullite baking jig and baked at 900°C for 4 hours. After observing the presence or absence of peeling, the presence or absence of circuit breakage was observed using a microscope, and no defects were observed, indicating good results, and the production was completed in a total firing time of 8 hours.

火mNス 密度1.1g/crn″、常温での曲げ強度110k 
g f / cゴの耐熱性熱a賀m!iを主体とする成
形体に、実施例1と同様の方法でガラス状中間結合層を
形成させた。続いて、平均粒子径1100ILのアルミ
ナボール(商品名ニアルミナイトボール内外耐火工業(
株)lJ)をl w t % P V A水溶液に懸濁
させたものをガラス状中間結合層表面に塗布して乾燥接
着させ、実施例1と同様にして軽量の焼成用治具を製造
した。
Fire mN density 1.1g/crn'', bending strength at room temperature 110k
gf/cgo's heat resistant heat agam! A glassy intermediate bonding layer was formed in the same manner as in Example 1 on a molded article mainly composed of i. Next, alumina balls with an average particle size of 1100IL (trade name: Nia Aluminite Ball Naigai Fireproof Industry) were used.
A light-weight baking jig was produced in the same manner as in Example 1 by applying a suspension of LJ) in an aqueous solution of lwt% PVA and applying it to the surface of the glassy intermediate bonding layer, drying and adhering it. .

実施例1と同様にして、反応、剥離、断線の有無を調べ
たが不良はなく良好な結果を示した。
In the same manner as in Example 1, the presence or absence of reaction, peeling, and wire breakage was examined, and no defects were found, indicating good results.

比較例1 実施例1で用いたムライト質焼結体の表面に、平均粒径
25pm(最大粒径45pm)のアルミナボールを塗布
し、1400℃で3時間焼成して、粗粒子層を結合させ
た。
Comparative Example 1 Alumina balls with an average particle size of 25 pm (maximum particle size 45 pm) were applied to the surface of the mullite sintered body used in Example 1, and fired at 1400°C for 3 hours to bond the coarse particle layer. Ta.

実施例1および実施例2で用いたグリーンシートを載せ
た後、900℃で4時間焼成した。焼成後、反応、剥離
はなかったが、回路の断線が6ケ所で発生していた。
After placing the green sheet used in Example 1 and Example 2, it was baked at 900° C. for 4 hours. After firing, there was no reaction or peeling, but circuit breaks occurred at six locations.

反聚豊ユ 表面粗度R□、を10ILm以下に研摩したアルミナ質
平板の上に、上記グリーンシートを載せ900℃で4時
間焼成した。トータルの焼成サイクルが10時間以内の
ものは、アルミナ板が割れてしまい、10時間を越える
ものについては、基板とアルミナ板との付着が生じ不良
となった。
The above green sheet was placed on an alumina flat plate that had been polished to a surface roughness R□ of 10 ILm or less and fired at 900° C. for 4 hours. In cases where the total firing cycle was less than 10 hours, the alumina plate cracked, and in cases where the total firing cycle exceeded 10 hours, adhesion between the substrate and the alumina plate occurred, resulting in a defect.

(発明の効果) 以上のように、本発明の焼成用治具によれば。(Effect of the invention) As described above, according to the baking jig of the present invention.

低温焼結型基板を高速に、しかも高収率で焼成すること
がてきるものである。
It is possible to sinter a low-temperature sintered substrate at high speed and with high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の焼成用治具の構造を模式的にあられし
た断面図である。 符  号  の  説  明 1−・・焼結体、2・・・中間結合層、3・・・粗粒子
層、4・・・低温焼結型基板。 (以 上)
FIG. 1 is a sectional view schematically showing the structure of the firing jig of the present invention. Explanation of symbols 1--Sintered body, 2--Intermediate bonding layer, 3--Coarse particle layer, 4--Low temperature sintered substrate. (that's all)

Claims (1)

【特許請求の範囲】 1)焼結体1と、無機ガラス質の中間結合層2と、平均
粒子径が20μm以上であり、最大粒子径と最小粒子径
とが前記平均粒子径の±20%の範囲内に含まれた粒径
分布を有する球状アルミナ、球状ムライト、球状ジルコ
ニアとから選ばれる少なくとも一種あるいは二種以上の
粗粒子層3とから成ることを特徴とする低温焼結型基板
焼成用治具。 2)前記焼結体1は、その密度が0.6〜 1.5g/cm^3の範囲にあり、常温での曲げ強度が
50〜150kgf/cm^2の範囲にあることを特徴
とする特許請求の範囲第1項記載の低温焼結型基板焼成
用治具。 3)前記中間結合層2が、1200℃以上の温度で軟化
する無機ガラス質から成り、20〜500μmの厚みで
構成されていることを特徴とする特許請求の範囲第1項
又は第2項記載の低温焼結型基板焼成用治具。
[Claims] 1) The sintered body 1 and the inorganic glass intermediate bonding layer 2 have an average particle size of 20 μm or more, and the maximum particle size and minimum particle size are ±20% of the average particle size. Low-temperature sintering type substrate for firing, characterized by comprising a coarse particle layer 3 of at least one or two or more selected from spherical alumina, spherical mullite, and spherical zirconia having a particle size distribution within the range of jig. 2) The sintered body 1 is characterized in that its density is in the range of 0.6 to 1.5 g/cm^3, and the bending strength at room temperature is in the range of 50 to 150 kgf/cm^2. A low-temperature sintering type substrate firing jig according to claim 1. 3) The intermediate bonding layer 2 is made of an inorganic glass material that softens at a temperature of 1200° C. or higher, and has a thickness of 20 to 500 μm. Low-temperature sintering type substrate firing jig.
JP27677387A 1987-10-30 1987-10-30 Sintering jig for low-temperature sintering substrate Pending JPH01119569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27677387A JPH01119569A (en) 1987-10-30 1987-10-30 Sintering jig for low-temperature sintering substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27677387A JPH01119569A (en) 1987-10-30 1987-10-30 Sintering jig for low-temperature sintering substrate

Publications (1)

Publication Number Publication Date
JPH01119569A true JPH01119569A (en) 1989-05-11

Family

ID=17574156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27677387A Pending JPH01119569A (en) 1987-10-30 1987-10-30 Sintering jig for low-temperature sintering substrate

Country Status (1)

Country Link
JP (1) JPH01119569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230728A (en) * 2005-02-25 2006-09-07 Yasuhisa Seo Clasp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230728A (en) * 2005-02-25 2006-09-07 Yasuhisa Seo Clasp

Similar Documents

Publication Publication Date Title
JP2005082451A (en) SILICON NITRIDE-COMBINED SiC REFRACTORY AND ITS PRODUCING METHOD
JPS63224937A (en) Double layer structure heat-resistant plate
US4146670A (en) Manufacture of ceramic articles
JP3606744B2 (en) Heat resistant material and method for producing the same
JPH01119569A (en) Sintering jig for low-temperature sintering substrate
KR100439075B1 (en) Jig for firing electronic components
JPH02102171A (en) Refractory for ceramic calcination
JPS62283885A (en) Porous refractory formed body for burning functional parts
JP3936007B2 (en) Firing jig
JP3429551B2 (en) Setter
JP3929263B2 (en) Multi-porous refractory and method for firing ceramics using the same
JP2002060287A (en) Firing vessel
JP2000256074A (en) Air permeable ceramic sintered compact substrate for floating object and its production
JP4693196B2 (en) Firing jig
JP2818945B2 (en) Fibrous molded body for jig for ceramics production
JP2953569B2 (en) Electronic component firing setter and method of manufacturing the same
JPS6384011A (en) Manufacture of baking jig for electronic component
JP4446633B2 (en) Coating agent for firing jig and firing jig
JP4136249B2 (en) Baking jig for electronic parts
JP4054098B2 (en) Firing jig
JPH04302992A (en) Refractory material for burning ceramics
JP3215390B2 (en) Electronic component firing setter and method of manufacturing the same
JPH0269381A (en) Jig for calcining electronic parts
JPH01219083A (en) Jig for baking metallic glaze
JPH03177380A (en) Ceramic-coated member and its production