JPH01119012A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPH01119012A
JPH01119012A JP62276695A JP27669587A JPH01119012A JP H01119012 A JPH01119012 A JP H01119012A JP 62276695 A JP62276695 A JP 62276695A JP 27669587 A JP27669587 A JP 27669587A JP H01119012 A JPH01119012 A JP H01119012A
Authority
JP
Japan
Prior art keywords
film
polypyrrole
solid electrolytic
capacitor
polymer solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62276695A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimada
博 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP62276695A priority Critical patent/JPH01119012A/en
Publication of JPH01119012A publication Critical patent/JPH01119012A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes

Abstract

PURPOSE:To obtain a uniform and sufficiently thick solid electrolytic layer as well as a stable capacitor with excellent characteristics by precoating a polymer solution containing an oxidizing agent over an anodically oxidized film, making a pyrrole vapor be in contact therewith, and forming a polypyrrole film by means of electroless polymerization. CONSTITUTION:A polymer solution in which 2-3% of ferric chloride is mixed in an aqueous solution of polyvinyl alcohol is precoated at a thickness of 2mum over an anodically oxidized film 2. Such solution is made to be in contact with a pyrrole vapor in a hermetically sealed container upon being dried to cause the polymer solution to be polymerized with the pyrrole solution, and as a result, a transparent polypyrrole film 3 is formed. Further, an aluminum vapor deposited film (cathode) 4 is formed by vacuum vapor depositing aluminum on such polypyrrole film 3 to form a capacitor unit 5. A laminated solid electrolytic capacitor can be formed by laminating a plurality of such capacitor units 5, electrically connecting each of their anodes and cathodes sequentially.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、陽極酸化皮膜の表面に固体電解質層を形成し
て成る固定電解コンデンサに関するものである。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a fixed electrolytic capacitor comprising a solid electrolyte layer formed on the surface of an anodic oxide film.

(従来の技術) 従来、固体電解コンデンサは、アルミニウムやタンタル
などの皮膜形成性金属に陽極酸化皮膜を形成して陽極と
なし、この陽極の皮膜表面に二酸化マンガンやTCNQ
錯体などの固体電解質層を形成し、ざらにこの電解質層
の上にカーボンや銀系導電性ペーストを付着して陰極を
形成して構成されている。
(Prior art) Conventionally, solid electrolytic capacitors use a film-forming metal such as aluminum or tantalum as an anode by forming an anodized film thereon, and manganese dioxide or TCNQ is added to the surface of the anode film.
It is constructed by forming a solid electrolyte layer such as a complex, and roughly depositing carbon or silver-based conductive paste on this electrolyte layer to form a cathode.

ここで、一般に陽極酸化皮膜上への二酸化マンガンの形
成は、硝酸マンガンの熱分解により行なわれ(第1の方
法)、また、陽極酸化皮膜上へのTCNQ錯体の形成は
、溶融含浸或いは塗布により行なわれている。(第2の
方法) 一方、真空蒸着或いはスパッタリングなどにより、陽極
酸化皮膜上に直接二酸化マンガンやTCNQ錯体を形成
し陰極とすることも行なわれている。(第3の方法) さらに、最近では以上のような方法で陽極酸化皮膜上に
二酸化マンガンやTCNQ&tf体などの固体型vN質
層を形成する代りに、電解重合法などでポリピロールや
ポリチオフェンなどを形成してドーピングするなど、有
機固体電解質層を形成するコンデンサも提案されている
。(第4の方法)しかしながら、以上のような固体電解
コンデンサ製造方法には次のような問題が存在している
Generally, manganese dioxide is formed on the anodic oxide film by thermal decomposition of manganese nitrate (first method), and TCNQ complex is formed on the anodic oxide film by melt impregnation or coating. It is being done. (Second Method) On the other hand, manganese dioxide or a TCNQ complex is also formed directly on the anodic oxide film to form a cathode by vacuum evaporation or sputtering. (Third method) Furthermore, recently, instead of forming a solid vN layer such as manganese dioxide or TCNQ & tf material on the anodic oxide film using the above method, polypyrrole, polythiophene, etc. are formed using electrolytic polymerization method etc. Capacitors in which organic solid electrolyte layers are formed by doping have also been proposed. (Fourth Method) However, the above solid electrolytic capacitor manufacturing method has the following problems.

まず、第1の方法、即ち硝酸マンガンの熱分解により二
酸化マンガンを形成する方法では、熱分解で生成する各
種窒素酸化物が、コンデンサの誘電体である陽極酸化皮
膜を化学的に破壊し、漏れ電流が増大したり、耐電圧が
低下する問題がある。
First, in the first method, that is, forming manganese dioxide by thermal decomposition of manganese nitrate, various nitrogen oxides generated by thermal decomposition chemically destroy the anodic oxide film, which is the dielectric of the capacitor, and leak. There are problems such as an increase in current and a decrease in withstand voltage.

また、第2の方法、即ち溶融含浸或いは塗布によりTC
NQ錯体を形成する方法では、TCNQ鉗体の熱安定性
が低いことから特性の変動が大きい。
Alternatively, a second method, ie, melt impregnation or coating, can be applied to TC.
In the method of forming an NQ complex, the properties fluctuate greatly due to the low thermal stability of the TCNQ forceps.

ざらに、第3の方法、即ち真空蒸着やスパッタリングに
よって二酸化マンガンやTCNQ錯体を形成する方法は
、陽極酸化皮膜修復性が低いため、ショート或いは絶縁
不良を起こし易い。
Generally speaking, the third method, that is, the method of forming manganese dioxide or TCNQ complex by vacuum evaporation or sputtering, has low repairability of the anodic oxide film, and therefore tends to cause short circuits or poor insulation.

一方、第4の方法、即ち陽極酸化皮膜上に電解重合でポ
リピロールなどの有機固体電解質層を形成する方法は、
酸化皮膜の漏れ電流が微小すぎるため、実用上必要とす
る厚さのポリマーを1qることができない上、ポリマー
形成後、四フッ化ホウ素などをドーピングして導電性を
与える必要がおり、製造工程が複雑化する問題もある。
On the other hand, the fourth method, that is, the method of forming an organic solid electrolyte layer such as polypyrrole on the anodic oxide film by electrolytic polymerization,
Because the leakage current of the oxide film is too small, it is not possible to make 1 q of polymer with the thickness required for practical use, and after the polymer is formed, it is necessary to give it conductivity by doping with boron tetrafluoride, etc., which makes the manufacturing process difficult. There are also problems that can become complicated.

(発明が解決しようとする問題点) 本発明は、以上のような従来技術の欠点を解決するため
に提案されたものでおり、その目的は、簡易な工程で製
造でき、安定した高い特性を有するような、優れた固体
電解コンデンサを提供することである。
(Problems to be Solved by the Invention) The present invention was proposed to solve the above-mentioned drawbacks of the prior art, and its purpose is to provide a product that can be manufactured through a simple process and has stable and high characteristics. The purpose of the present invention is to provide an excellent solid electrolytic capacitor having the following characteristics.

[発明の構成] (問題点を解決するための手段) 本発明による固体電解コンデンサは、固体電解質層とし
てポリピロール膜を形成するものであり、特に、陽極酸
化皮膜上に酸化剤を含むポリマー溶液を予め塗布し、こ
こにピロール蒸気を接触することにより、無電解重合に
てポリピロール膜を形成することを構成の特徴としてい
る。
[Structure of the Invention] (Means for Solving the Problems) The solid electrolytic capacitor according to the present invention forms a polypyrrole film as a solid electrolyte layer, and in particular, a polymer solution containing an oxidizing agent is applied on the anodized film. The feature of the structure is that a polypyrrole film is formed by electroless polymerization by applying it in advance and contacting it with pyrrole vapor.

(作用) 以上のような構成を有する本発明の固体電解コンデンサ
によれば、まず、ポリマー溶液を予め塗布し、ピロール
蒸気を接触することによりポリピロール膜を形成するた
め、均一で且つ充分な厚さの固体電解層を得ることがで
き、安定した高い特性を有するコンデンサを得られる。
(Function) According to the solid electrolytic capacitor of the present invention having the above-described configuration, first, a polymer solution is applied in advance and a polypyrrole film is formed by contacting with pyrrole vapor, so that a polypyrrole film is formed with a uniform and sufficient thickness. It is possible to obtain a solid electrolyte layer of 100%, and a capacitor with stable and high characteristics can be obtained.

また、ポリピロール膜を形成する場合、反応過程におい
て酸化皮膜を破壊するような生成物が発生しないため、
漏れ電流の増大や耐電圧の低下という問題を発生するこ
とはない。ざらに、粗面化電極箔に対するポリピロール
膜の密着効率が高いため、静電容量再現性に優れている
利点もある。一方、ポリマー溶液中に酸化剤を含ませて
いるため、ポリピロール膜の形成俄に導電物をドーピン
グする必要がなく、工程が簡略である。
In addition, when forming a polypyrrole film, no products are generated that would destroy the oxide film during the reaction process.
Problems such as an increase in leakage current and a decrease in withstand voltage do not occur. Furthermore, since the polypyrrole film has a high adhesion efficiency to the roughened electrode foil, it also has the advantage of excellent capacitance reproducibility. On the other hand, since the polymer solution contains an oxidizing agent, there is no need to dope a conductor before forming the polypyrrole film, and the process is simple.

ところで、本発明で固体電解質層をポリピロールに限定
しているのは、導電質高分子の中でも、空気中の酸素と
反応する問題があり且つフィルム成形性に劣るポリアセ
チレンや、ドープ状態よりも脱ドープ状態の方が安定で
あるポリチオフェンに比べ、ポリピロールは、ドープ状
態が安定であり、機械的強度及びフィルム成形性に優れ
、導電率も大きく、実用上最も適しているためである。
By the way, in the present invention, the solid electrolyte layer is limited to polypyrrole because, among conductive polymers, polyacetylene has a problem of reacting with oxygen in the air and has poor film formability, and polypyrrole is preferable to a doped state. This is because polypyrrole is more stable in the doped state than polythiophene, which is more stable, has excellent mechanical strength and film formability, and has high electrical conductivity, making it the most suitable for practical use.

(実施例) 以上説明したような本発明による固体電解コンデンサの
一実施例を図面を参照して具体的に説明する。
(Example) An example of the solid electrolytic capacitor according to the present invention as described above will be specifically described with reference to the drawings.

本実施例の構成* 第1図に示すように皮膜形成性金属箔である陽極アルミ
ニウム箔1の表面には、従来と同様一定の厚さで陽極酸
化皮膜2が形成されている。
Structure of this Example* As shown in FIG. 1, an anodic oxide film 2 is formed on the surface of an anode aluminum foil 1, which is a film-forming metal foil, to a constant thickness as in the conventional case.

本実施例においては、この陽極酸化皮膜2の表面に、ポ
リビニールアルコール水溶液に2〜3%の塩化第二鉄を
混合して成るポリマー溶液を、スピンコータにより2μ
m厚に予め塗布し、このポリマー溶液が乾燥した時点で
、密閉容器内にてピロール蒸気と接触させることによっ
て、ポリマー溶液とピロール溶液とが重合し、透明なポ
リピロール膜3が形成されている。ここで、ポリピロー
ル膜3を厚く形成する場合には、ポリマー溶液中の塩化
第二鉄の混合濃度を高くして、ポリマー溶液の塗布厚を
厚くし、ピロ・−ル蒸気との接触時間を長くすることで
達せられる。
In this example, a polymer solution consisting of a polyvinyl alcohol aqueous solution mixed with 2 to 3% ferric chloride was applied to the surface of the anodic oxide film 2 using a spin coater to coat the surface of the anodic oxide film 2 at 2 μm.
The polymer solution is coated in advance to a thickness of m, and when the polymer solution dries, it is brought into contact with pyrrole vapor in a closed container, whereby the polymer solution and the pyrrole solution are polymerized to form a transparent polypyrrole film 3. Here, when forming the polypyrrole film 3 thickly, the mixed concentration of ferric chloride in the polymer solution is increased, the coating thickness of the polymer solution is increased, and the contact time with the pyrrole vapor is increased. It can be achieved by doing.

さらに、このポリピロール膜3の上にアルミニウムを真
空蒸着してアルミニウム蒸着膜(陰極)4を形成して、
1体のコンデンサ単位5とする。
Furthermore, aluminum is vacuum-deposited on this polypyrrole film 3 to form an aluminum-deposited film (cathode) 4.
One capacitor unit is 5.

そして、このコンデンサ単位5を複数個積層し、陽極と
陰極とをそれぞれ電気的に順次接続することで、積層形
固体電解コンデンサが形成されている。
A multilayer solid electrolytic capacitor is formed by stacking a plurality of capacitor units 5 and sequentially electrically connecting the anodes and cathodes.

本実施例の作用* 以上のような構成を有する本実施例の作用は以下の通り
である。
Effects of this embodiment* The effects of this embodiment having the above-described configuration are as follows.

まず、電解重合法にてポリピロールやポリチオフェンを
形成していた従来技術において漏れ電流により厚さの限
界を生じていたのに対し、本実施例においては、ポリマ
ー溶液を予め塗布し、ピロール蒸気を接触することによ
りポリピロール膜3を形成しているため、均一で且つ充
分な厚さの固体電解質層を得ることができる。従って、
安定した高い特性を有するコンデンサを得られる。
First, in contrast to conventional techniques in which polypyrrole and polythiophene were formed using electrolytic polymerization, the thickness was limited due to leakage current, in this example, a polymer solution was applied in advance and pyrrole vapor was brought into contact Since the polypyrrole film 3 is formed by doing this, it is possible to obtain a solid electrolyte layer that is uniform and has a sufficient thickness. Therefore,
A capacitor with stable and high characteristics can be obtained.

また、このように、ポリピロール膜3を形成する際には
、硝駿マンガンを熱分解する方法とは異なり、反応過程
において酸化皮膜を破壊するような生成物が発生するこ
とはないため、漏れ電流の増大や耐電圧の低下という問
題を生ずることはない。
In addition, when forming the polypyrrole film 3 in this way, unlike the method of thermally decomposing Nitshun manganese, products that destroy the oxide film are not generated during the reaction process, so leakage current is reduced. There is no problem of an increase in voltage or a decrease in withstand voltage.

ここで、第2図及び第3図は本実施例Aと溶融含浸形T
CNQ鉗体を使用した従来例Bのコンデンサ(16V−
1μF)との特性を比較するグラフでおる。
Here, FIGS. 2 and 3 show the present embodiment A and the melt-impregnated type T.
Conventional example B capacitor (16V-
This is a graph comparing the characteristics with 1μF).

まず、第2図は、105℃における損失角の正接(ta
nδ)と時間との関係を示している。同図において、従
来例Bでは、動作初期においてtanδが0.01を越
え、後は時間の経過に従って上昇し、103時間後にお
いては0.02以上、104時間後においては0.03
以上にまで上昇している。これに対し、本実施例Aでは
、103時間に至るまで0.01以下の低い値を維持し
ており、104時間後においてようや<0.01に上昇
する程度であり、はるかに損失が低減されていることは
明らかである。
First, Figure 2 shows the tangent (ta) of the loss angle at 105°C.
The relationship between nδ) and time is shown. In the same figure, in conventional example B, tan δ exceeds 0.01 at the beginning of operation, and then increases as time passes, becoming 0.02 or more after 103 hours and 0.03 after 104 hours.
It has risen above that. On the other hand, in Example A, it maintains a low value of 0.01 or less until 103 hours, and it only increases to <0.01 after 104 hours, and the loss is much reduced. It is clear that this has been done.

また、第3図は、漏れ電流と時間との関係を示している
。同図において、従来例Bの漏れ電流は、動作初期に大
きく、時間の経過に従って低減するものの、104時間
後に至るまで、o、ooiを越える高い値となっている
。これに対し、本実施例への漏れ電流は、動作初期から
104時間後に至るまで一貫して0.001よりも低い
値に維持されている。
Moreover, FIG. 3 shows the relationship between leakage current and time. In the figure, the leakage current of Conventional Example B is large at the beginning of operation, and although it decreases as time passes, it remains at a high value exceeding o, ooi until 104 hours later. On the other hand, the leakage current to this example is consistently maintained at a value lower than 0.001 from the initial stage of operation to 104 hours later.

以上のように、本実施例による固体電解コンデンサは、
従来技術に比べて優れた高温安定性を有している。
As described above, the solid electrolytic capacitor according to this example is
It has superior high temperature stability compared to conventional technology.

ざらに、本実施例は、ポリピロール膜3の陽極アルミニ
ウム箔1への密着効率が高いため、静電容量再現性に優
れている利点もある。
In general, this embodiment has the advantage of excellent capacitance reproducibility because the adhesion efficiency of the polypyrrole film 3 to the anode aluminum foil 1 is high.

一方、ポリマー溶液中に酸化剤でおる塩化第二鉄を含ま
せているため、電解重合の場合に必要であったポリピロ
ール膜3の形成後における導電物のドーピングという工
程が省略され、工程の簡略化が果されている。
On the other hand, since the polymer solution contains ferric chloride as an oxidizing agent, the step of doping a conductive material after forming the polypyrrole film 3, which was necessary in the case of electrolytic polymerization, is omitted, simplifying the process. has been achieved.

*他の実施例* なお、本発明は前記実施例に限定されるものではなく、
例えば、本発明に使用する皮膜形成性金属箔としてはア
ルミニウムの他にタンタルなどを使用することが可能で
おり、また、酸化剤としては、塩化第二鉄の他に、例え
ば過マンガン酸カリウム、重クロム酸カリウム、無水ク
ロム酸、塩化第二銅、フーエロシアン化カリウムなどの
物質の使用が考えられる。さらに、陰極としては、アル
ミニウムの他にタンタル、金、ニッケルなどを使用する
構成が考えられる。一方、誘電体酸化皮膜2上にポリピ
ロール膜3を形成した後、さらにTCNQ或いはTCN
Q誘導体とテトラチアフルバレンより成る錯体のラング
ミュアブロジェット膜(LB膜)を形成し、陰極とすれ
ば、低温、低エネルギーにて陰極を形成でき、ポリピロ
ール膜を傷付ける問題もない。
*Other Examples* Note that the present invention is not limited to the above-mentioned Examples,
For example, as the film-forming metal foil used in the present invention, it is possible to use tantalum in addition to aluminum, and as the oxidizing agent, in addition to ferric chloride, for example, potassium permanganate, The use of substances such as potassium dichromate, chromic anhydride, cupric chloride, and potassium fluorocyanide is contemplated. Further, as the cathode, it is possible to use tantalum, gold, nickel, etc. in addition to aluminum. On the other hand, after forming the polypyrrole film 3 on the dielectric oxide film 2, TCNQ or TCN
If a Langmuir-Blodgett film (LB film) of a complex consisting of a Q derivative and tetrathiafulvalene is formed and used as a cathode, the cathode can be formed at low temperature and low energy, and there is no problem of damaging the polypyrrole film.

「発明の効果コ 以上説明したように、本発明においては、陽極酸化皮膜
上に酸化剤を含むポリマー溶液を予め塗布しておき、こ
こにピロール蒸気を接触させてボリピロール膜を形成す
るという簡単な構成の改良により、簡略な工程にて製造
でき、信頼性に優れ、安定した高い特性を有するような
、固体電解コンデンナを提供できる。
"Effects of the Invention As explained above, in the present invention, a polymer solution containing an oxidizing agent is applied on the anodic oxide film in advance, and pyrrole vapor is brought into contact therewith to form a polypyrrole film. By improving the structure, it is possible to provide a solid electrolytic capacitor that can be manufactured through a simple process, has excellent reliability, and has stable and high characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による固体電解コンデンサの一実施例を
示す斜視図、第2図は第1図の実施例と従来のコンデン
サとにおけるtanδの経時的推移を比較して示すグラ
フ、第3図は第1図の実施例と従来のコンデンサとにお
ける漏れ電流の経時的推移を比較して示すグラフである
。 1・・・陽極アルミニウム箔、2・・・陽極酸化皮膜、
3・・・ポリピロール膜、4・・・アルミニウム蒸着膜
、5・・・コンデンサ単位。
FIG. 1 is a perspective view showing an embodiment of a solid electrolytic capacitor according to the present invention, FIG. 2 is a graph comparing the change in tan δ over time between the embodiment of FIG. 1 and a conventional capacitor, and FIG. 1 is a graph showing a comparison of the change in leakage current over time between the embodiment of FIG. 1 and a conventional capacitor. 1... Anode aluminum foil, 2... Anodic oxide film,
3... Polypyrrole film, 4... Aluminum vapor deposited film, 5... Capacitor unit.

Claims (1)

【特許請求の範囲】[Claims]  皮膜形成性金属に陽極酸化皮膜を形成し、この皮膜上
に固体電解質層を形成し、この上に導電物を付着して成
る固体電解コンデンサにおいて、陽極酸化皮膜上に酸化
剤を含むポリマー溶液を予め塗布し、ここにピロール蒸
気を接触することにより、無電解重合にてポリピロール
膜を形成し、このポリピロール膜を前記固体電解質層と
したことを特徴とする固体電解コンデンサ。
In solid electrolytic capacitors, an anodized film is formed on a film-forming metal, a solid electrolyte layer is formed on this film, and a conductive material is attached on top of the solid electrolytic capacitor, a polymer solution containing an oxidizing agent is applied to the anodized film. A solid electrolytic capacitor characterized in that a polypyrrole film is formed by electroless polymerization by coating the polypyrrole film in advance and contacting it with pyrrole vapor, and the polypyrrole film is used as the solid electrolyte layer.
JP62276695A 1987-10-30 1987-10-30 Solid electrolytic capacitor Pending JPH01119012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62276695A JPH01119012A (en) 1987-10-30 1987-10-30 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62276695A JPH01119012A (en) 1987-10-30 1987-10-30 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH01119012A true JPH01119012A (en) 1989-05-11

Family

ID=17573036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62276695A Pending JPH01119012A (en) 1987-10-30 1987-10-30 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH01119012A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778795A1 (en) * 1995-06-23 1997-06-18 Sun Chemical Corporation Laser imageable lithographic printing plates
WO2002067278A3 (en) * 2001-02-22 2002-12-27 Acktar Ltd Electrolytic capacitors and method for making them
US6865071B2 (en) 1998-03-03 2005-03-08 Acktar Ltd. Electrolytic capacitors and method for making them

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247109A (en) * 1985-08-27 1987-02-28 昭和電工株式会社 Manufacture of solid electrolytic capacitor
JPS63102309A (en) * 1986-10-20 1988-05-07 日本ケミコン株式会社 Solid electrolyte capacitor and manufacture of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247109A (en) * 1985-08-27 1987-02-28 昭和電工株式会社 Manufacture of solid electrolytic capacitor
JPS63102309A (en) * 1986-10-20 1988-05-07 日本ケミコン株式会社 Solid electrolyte capacitor and manufacture of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778795A1 (en) * 1995-06-23 1997-06-18 Sun Chemical Corporation Laser imageable lithographic printing plates
EP0778795A4 (en) * 1995-06-23 1998-05-20 Sun Chemical Corp Laser imageable lithographic printing plates
US5908705A (en) * 1995-06-23 1999-06-01 Kodak Polychrome Graphics, Llc Laser imageable lithographic printing plates
US6865071B2 (en) 1998-03-03 2005-03-08 Acktar Ltd. Electrolytic capacitors and method for making them
WO2002067278A3 (en) * 2001-02-22 2002-12-27 Acktar Ltd Electrolytic capacitors and method for making them

Similar Documents

Publication Publication Date Title
JP2765462B2 (en) Solid electrolytic capacitor and method of manufacturing the same
US5457862A (en) Method of manufacturing solid electrolytic capacitor
US6154358A (en) Solid electrolytic capacitor using a conducting polymer
US6128180A (en) Solid electrolytic capacitor using a conductive polymer film
JP3202668B2 (en) Method for manufacturing solid electrolytic capacitor
JPH04307914A (en) Manufacture of solid electrolytic capacitor
US5135618A (en) Process for manufacturing a solid state electrolytic capacitor
JPH01119012A (en) Solid electrolytic capacitor
JP2000114109A (en) Solid electrolytic capacitor and its manufacture
JP2001110685A (en) Solid electrolytic capacitor
JP3568382B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JP2696982B2 (en) Solid electrolytic capacitors
JPH1050559A (en) Manufacture of solid state electrolytic capacitor
JP2811915B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0521279A (en) Capacitor and its manufacture
JP2853376B2 (en) Manufacturing method of capacitor
JPH05159979A (en) Manufacture of solid electrolytic capacitor
JPH02117121A (en) Solid electrolytic capacitor
JP3232841B2 (en) Capacitor and method of manufacturing the same
JP2716032B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH10303074A (en) Method for manufacturing solid electrolytic capacitor
JPH0393218A (en) Solid-state electrolytic capacitor and its manufacture
JPH02219211A (en) Manufacture of solid electrolytic capacitor
JPS62140410A (en) Metallized plastic film capacitor
JPH05136006A (en) Manufacture of solid electrolytic capacitor