JPH01118451A - Thermal head substrate and its manufacture - Google Patents

Thermal head substrate and its manufacture

Info

Publication number
JPH01118451A
JPH01118451A JP27654487A JP27654487A JPH01118451A JP H01118451 A JPH01118451 A JP H01118451A JP 27654487 A JP27654487 A JP 27654487A JP 27654487 A JP27654487 A JP 27654487A JP H01118451 A JPH01118451 A JP H01118451A
Authority
JP
Japan
Prior art keywords
layer
sio2
substrate
thermal head
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27654487A
Other languages
Japanese (ja)
Inventor
Tomohiro Nakamori
仲森 智博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP27654487A priority Critical patent/JPH01118451A/en
Publication of JPH01118451A publication Critical patent/JPH01118451A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To obtain a thermal head substrate which enables high speed printing of high precision to be executed at small power consumption, by a method wherein an insulating substrate and a glaze layer formed on the insulating substrate are established, and the glaze layer is composed of a SiO2 particulate layer and a SiO2 thin film layer covering the SiO2 particulate layer. CONSTITUTION:At first, a SiO2 particulate layer 12a of 120A in average particle size and 18mum in thickness is formed on, for instance, an alumina substrate 11 as an insulating substrate by a following method. That is, SiO2 particulates are dispersed in n-hexanol to be made paste, which is printed in, for instance, a line state if 0.8mum width on the alumina substrate 11 by using a thick film printing method and is dried to form the SiO2 particulate layer 12a. Then, a SiO2 thin film layer 12b is formed by a 4mum thickness to cover the SiO2 particulate layer 12a by a sputtering method. The abovementioned SiO2 thin layer 12b reinforces the SiO2 particulate layer 12a which is inferior in mechanical strength, and achieve a function for preventing the glaze layer 12 from deformation and collapse.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はサーマルヘッド用基板及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a substrate for a thermal head and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来のサーマルヘッド用の基板としては例えば第2図に
示すように、アルミナセラミクス基板1上に保温層とし
てのグレーズ層2を直接設けたものであって、このグレ
ーズ層2をガラスで構成したものがある。
For example, as shown in FIG. 2, a conventional substrate for a thermal head is one in which a glaze layer 2 as a heat insulating layer is directly provided on an alumina ceramic substrate 1, and this glaze layer 2 is made of glass. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、最近通信システムとしての基本要件であ
る確実性、即時性、省力性等が一層強く求められてきた
ことに伴い、サーマルヘッドに対してもより高精細で、
より高速な印字を、より小さな電力で可能とするような
性能が求められている。このような性能を達成するため
には、発熱部に通電した時に基板に十分熱が蓄えられ、
その後通電をオフにした時に十分速やかに基板(こ熟が
吸収されるサーマルヘッドの構造が必要となる。
However, as the basic requirements for communication systems, such as reliability, immediacy, and labor-saving, have recently become more and more demanded, thermal heads are also required to have higher definition,
There is a need for performance that enables faster printing with less power. In order to achieve this kind of performance, sufficient heat must be stored in the board when electricity is applied to the heat generating part, and
There is a need for a thermal head structure that absorbs the heat from the substrate sufficiently quickly when the power is turned off.

ここで、従来のサーマルヘッド用基板にあってはグレー
ズ層の厚さを十分に大きく設定することによって、十分
な保温性を持たせ、−旦基板に熱が蓄えられた後は小さ
な電力によって印字を可能とするものが案出されている
が、この場合には発熱部の通電をオフにした後、温度が
十分速やかに減少しないので熱分離性が悪化し、各画素
間ににじみが生じたり、高速印字において尾びきが発生
する等高精細印字、高速印字の点で問題があった。
In conventional thermal head substrates, the thickness of the glaze layer is set sufficiently large to provide sufficient heat retention, and once heat is stored in the substrate, printing is performed using a small amount of electric power. However, in this case, after the power to the heat generating part is turned off, the temperature does not decrease quickly enough, resulting in poor thermal isolation and bleeding between each pixel. There were problems with high-definition printing and high-speed printing, where tailing occurred during high-speed printing.

また、逆にグレーズ層を薄くして熱応答性を良くし、高
精細且つ高速な印字を可能にしようとすると、印字に際
して大きな電力が必要になるという問題点が生じていた
。即ち、グレーズ層は、熱効率を良くする観点からは厚
い方が好ましく、熱応答性を良くする観点からは薄い方
が好ましいという、互いに相反する要求があった。
On the other hand, if an attempt was made to make the glaze layer thinner to improve its thermal response and enable high-definition and high-speed printing, a problem arose in that a large amount of electric power would be required for printing. That is, there are contradictory demands that the glaze layer is preferably thicker from the viewpoint of improving thermal efficiency, and preferably thinner from the viewpoint of improving thermal response.

そこで、上記した問題点を解消するための対策が実開昭
61−148640号公報に提案されている。この提案
は多孔質カラス体を基板に被着したものであり、保温性
に優れ、且つ熱分離性にも優れたサーマルヘッドを提供
するものであるが、多孔質ガラス体を薄くすることの製
造上の困難性によって製造コストが高くなるという別の
問題点があった。
Therefore, a countermeasure for solving the above-mentioned problems is proposed in Japanese Utility Model Application Publication No. 148640/1983. This proposal involves attaching a porous glass body to a substrate, and provides a thermal head with excellent heat retention and heat separation properties, but manufacturing requires a thin porous glass body. Another problem was that the above difficulties increased manufacturing costs.

そこで、本発明は従来技術の上記した問題点を解決する
ためになされたもので、その目的とするところは、高精
細且つ高速な印字を小電力で実行可能とするサーマルヘ
ッド用基板を安価に提供することにある。
Therefore, the present invention was made to solve the above-mentioned problems of the prior art, and its purpose is to inexpensively produce a thermal head substrate that enables high-definition and high-speed printing with low power consumption. It is about providing.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、本発明に係るサーマルヘ
ッド用基板は、絶縁基板と、該絶縁基板上に形成された
グレーズ層とを有し、上記グレーズ層はSiO微粒子層
と該5iO2R粒子層を覆う5in2薄膜層より成るこ
とを特徴としている。
In order to achieve the above object, a thermal head substrate according to the present invention includes an insulating substrate and a glaze layer formed on the insulating substrate, and the glaze layer includes a SiO fine particle layer and the 5iO2R particle layer. It is characterized by consisting of a 5in2 thin film layer covering the .

また、本発明に係るサーマルヘッド用基板の製造方法は
、絶縁基板上にSiO2微粒子層を形成する工程と、こ
のSiO2微粒子層上にSiO2薄膜層を形成する工程
とを含むことを特徴としている。
Further, the method for manufacturing a thermal head substrate according to the present invention is characterized by including the steps of forming a SiO2 fine particle layer on an insulating substrate, and forming a SiO2 thin film layer on this SiO2 fine particle layer.

〔作 用〕[For production]

上記の構成を有する本発明においては、グレーズ層はS
iO2徹粒子層を有するため、耐熱性に優れ、しかも熱
伝導率の小さな性質を有する。熱伝導率が小さいことに
よりグレーズ層は大きな保温性を有し、このため、小さ
な電力を発熱部に印加するだけで、クレーズ層の表面温
度を印字に必要な所定の温度に到達させることができ熱
効率が良好となる。一方、グレーズ層の熱伝導率が小さ
い分だけグレーズ層を薄くしても十分良好な保温性を確
保できるので、グレーズ層自体の熱容量を小さくでき、
依って印字接子分速やかに基板に熱を吸収させることが
でき表面温度を速やかに低下させる機能を有する。
In the present invention having the above configuration, the glaze layer is S
Since it has an iO2 particle layer, it has excellent heat resistance and low thermal conductivity. Due to its low thermal conductivity, the glaze layer has great heat retention properties, and therefore, the surface temperature of the craze layer can reach the predetermined temperature required for printing just by applying a small amount of electric power to the heat generating part. Thermal efficiency is improved. On the other hand, even if the glaze layer is made thinner due to its lower thermal conductivity, it is possible to ensure sufficient heat retention, so the heat capacity of the glaze layer itself can be reduced.
Therefore, the printed contact can quickly absorb heat into the substrate, and has the function of quickly lowering the surface temperature.

さらに、SiO2微粒子層上に形成されたSiO薄膜層
はSiO2徹粒子層の機械的強度を補強してグレーズ層
の崩れを防止する機能を果す。
Furthermore, the SiO thin film layer formed on the SiO2 fine particle layer serves to reinforce the mechanical strength of the SiO2 fine particle layer and prevent the glaze layer from collapsing.

〔実施例〕〔Example〕

以下に本発明を図示の実施例に基づいて説明する。第1
図は本発明に係るサーマルヘッド用基板の一実施例を示
す側断面図であり、同図において、11は絶縁基板とし
てのアルミナ基板、12はアルミナ基板11上に形成さ
れたグレーズ層、12a及び12bはグレーズ層12を
構成するSiO微粒子層とSiO2薄膜層である。ブレ
−ズ層12は、断面山型形状で且つライン状に延びたS
iO微粒子層12a上にSiO2薄膜層12b設けて構
成されている。このSiO2薄膜層12bは機械的強度
の面で劣るSiO2徽粒子層12aを補強し、グレーズ
層12の変形や崩れを防止する機能を果す。尚、上記実
施例においてはクレーズ層12として断面山型形状で且
つライン状に延びたものを示したか、本発明はこれには
限定されず、第2図の従来例に示すような薄板状のもの
など他の形状のものにも適用可能である。
The present invention will be explained below based on illustrated embodiments. 1st
The figure is a side sectional view showing one embodiment of the thermal head substrate according to the present invention. In the figure, 11 is an alumina substrate as an insulating substrate, 12 is a glaze layer formed on the alumina substrate 11, 12a and 12b is a SiO fine particle layer and a SiO2 thin film layer that constitute the glaze layer 12. The blaze layer 12 has a chevron-shaped cross section and extends in a line.
A SiO2 thin film layer 12b is provided on an iO fine particle layer 12a. This SiO2 thin film layer 12b serves to reinforce the SiO2 grain layer 12a, which is inferior in mechanical strength, and to prevent the glaze layer 12 from deforming or collapsing. In the above embodiments, the craze layer 12 has a chevron-shaped cross section and extends in a line, but the present invention is not limited thereto, and may be a thin plate-like craze layer as shown in the conventional example in FIG. It is also applicable to objects of other shapes, such as objects.

次に、本発明のサーマルヘッド用基板の製造方法につい
て説明する。先ず、最初の工程ではM!縁縁板板しての
アルミナ基板11上に平均粒径120Aで18 /、1
 m厚のSiO2微粒子層12aを以下の方法により形
成した。即ち、SiO2微粒子をn−ヘキサノール中に
分散させてペースト化し、これを厚膜印刷法を用い0 
、8mm巾のライン状にアルミナ基板11上に印刷し乾
燥することにより形成した。
Next, a method for manufacturing a thermal head substrate according to the present invention will be explained. First of all, in the first process, M! 18 /, 1 with an average grain size of 120A on an alumina substrate 11 serving as an edge plate
A SiO2 fine particle layer 12a having a thickness of m was formed by the following method. That is, SiO2 fine particles are dispersed in n-hexanol and made into a paste, which is then printed using a thick film printing method.
, was formed by printing on the alumina substrate 11 in a line shape with a width of 8 mm and drying it.

次の工程では、このアルミナ基板11上にスパッタ法を
用いてSiO2微粒子層12aを覆うようにSiO2薄
膜層12bを4μm厚で形成し、第1図に示すようなサ
ーマルヘッド用基板の製造を完了した。
In the next step, a 4 μm thick SiO2 thin film layer 12b is formed on this alumina substrate 11 by sputtering to cover the SiO2 fine particle layer 12a, completing the manufacture of the thermal head substrate as shown in FIG. did.

尚、上記実施例においては絶縁基板としてアルミナ基板
11を用いた場合について説明したが、本発明はこれに
は限定されず、強度、耐熱性を保つ材質のもの、例えば
Aj N、St C等のセラミクス基板、表面を絶縁処
理した金属基板、或いは石英基板等を用いてもよい。
In the above embodiment, a case was explained in which the alumina substrate 11 was used as the insulating substrate, but the present invention is not limited thereto, and a material that maintains strength and heat resistance, such as Aj N, St C, etc. A ceramic substrate, a metal substrate whose surface is insulated, a quartz substrate, or the like may be used.

また、SiO2微粒子層12bの微粒子粒径はその径を
大きくすると表面の平滑度が低下し、−方、小さくしす
ぎると分散性が悪くなる。このことからSiO2微粒子
の粒子径は50〜100OAの範囲内で、クレーズ層に
求められる特性に応じた適正な粒径のものを選択すれは
よい。尚、このように粒径がサブシフロンオーターの粒
子の場合には、単に微粒子と称するのではなく、超微粒
子と称することもある。
Furthermore, when the diameter of the fine particles in the SiO2 fine particle layer 12b is increased, the surface smoothness decreases, and on the other hand, when the diameter is made too small, the dispersibility deteriorates. From this, it is recommended that the particle size of the SiO2 fine particles be selected within the range of 50 to 100 OA, with an appropriate particle size depending on the characteristics required for the craze layer. Incidentally, in the case of particles having a particle size of subsiphron oat, they are sometimes called not only fine particles but also ultrafine particles.

さらにまた、分散に用いた溶媒も他の有機溶剤や水を用
いてもよい。
Furthermore, other organic solvents or water may be used as the solvent for dispersion.

また、5I02薄膜層12bは薄ずぎると強度が低下し
、逆に厚くすると、SiO2微粒子層12aによる保温
性の効果を低下させるので、1〜10μmの厚さで用い
るのが好適である。
Furthermore, if the 5I02 thin film layer 12b is too thin, its strength will decrease, and if it is too thick, the heat retaining effect of the SiO2 fine particle layer 12a will be reduced, so it is preferable to use a thickness of 1 to 10 μm.

さらに、このSiO2薄膜層12bの形成方法−7= は、上記スパッタ法に限らずCVD法や蒸着法等の他の
方法を用いてもよい。
Furthermore, the method for forming the SiO2 thin film layer 12b is not limited to the sputtering method described above, but other methods such as the CVD method and the vapor deposition method may be used.

次に、本発明のサーマルヘッド用基板の性能について説
明する。ここでは従来の基板と比較するため本発明によ
るサーマルヘッド用基板と、従来のグレーズアルミナ基
板(日本特殊陶業社製)とにそれぞれサーマルヘッドを
構成し、その入力パワーと発熱体ピーク温度との関係を
測定し、その結果を第3図に示す。ここでグレーズ層厚
は20μmとし、サーマルヘッドの発熱体サイズは50
×75μmの矩型としな。またピーク温度はこのサーマ
ルヘッドをパルス幅0.8n+sec 、 <り返し周
期511SeCのパルスで発熱された時のピーク温度を
赤外線温度計で測定しな。
Next, the performance of the thermal head substrate of the present invention will be explained. Here, in order to compare with a conventional substrate, a thermal head was constructed using a thermal head substrate according to the present invention and a conventional glazed alumina substrate (manufactured by NGK SPARK PLUG Co., Ltd.), and the relationship between the input power and the peak temperature of the heating element was shown. was measured, and the results are shown in Figure 3. Here, the glaze layer thickness is 20 μm, and the heating element size of the thermal head is 50 μm.
A rectangular shape of 75 μm. Also, the peak temperature is determined by measuring the peak temperature using an infrared thermometer when this thermal head generates heat with a pulse having a pulse width of 0.8n+sec and a repetition period of 511SecC.

同図から分かるように、本発明による基板を用いたサー
マルヘッドは、同じ厚さの保温層を有する従来の構成の
ものより、小さい電力で高い温度に到達させることかで
きる。さらに、本実施例において製造されたクレーズ層
は従来のガラスよりなるクレーズ層に比べて熱伝導率か
低いため、従−8= 来のものより薄形のグレーズ層にしても同等の保温性を
持たせることが可能である。また、本発明によるサーマ
ルヘッド用基板はクレーズ層の薄形化を可能としたもの
であるから、クレーズ層自体の熱容量を小さくでき、依
って基板に速やかに熱を吸収させて表面温度の低下を早
め、熱分離性能を向上させることかできる。
As can be seen from the figure, a thermal head using a substrate according to the present invention can reach a higher temperature with less power than a conventional structure having a heat insulating layer of the same thickness. Furthermore, since the craze layer manufactured in this example has a lower thermal conductivity than a conventional craze layer made of glass, a thinner glaze layer than the conventional one can still maintain the same heat retention properties. It is possible to have it. Furthermore, since the substrate for a thermal head according to the present invention allows the craze layer to be made thinner, the heat capacity of the craze layer itself can be reduced, which allows the substrate to quickly absorb heat and reduce the surface temperature. It is possible to quickly improve thermal separation performance.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のサーマルヘッド用基板を
用いれば従来の基板に比べ少い電力で印字か可能となる
。また、本発明によれはグレーズ層の薄形化が可能とな
るため、同一の電力で印字するためには、より薄いグレ
ーズ層を形成すればよく、これによって、熱分離性か向
上し、熱的な尾引きは減少するので高速且つ高精細な印
字か可能となる。さらに、本発明によれば5in2薄膜
層を備えたことによってクレーズ層の機械的強度を十分
高めることができ、耐久性の向上を図ることができる。
As explained above, by using the thermal head substrate of the present invention, printing can be performed using less power than conventional substrates. In addition, according to the present invention, it is possible to make the glaze layer thinner, so in order to print with the same power, it is only necessary to form a thinner glaze layer. Since the trailing is reduced, high-speed and high-definition printing becomes possible. Further, according to the present invention, by providing the 5 in 2 thin film layer, the mechanical strength of the craze layer can be sufficiently increased, and durability can be improved.

また、本発明の製造方法によれは、ごく薄いグレース層
を形成することも可能となり例えば超薄厚の多孔質ガラ
スをアルミナ基板上に被着させるような困難な工程を経
ることはなく、簡単な工程で基板の作製が可能であり、
信頼性を向上させることができる。
Furthermore, according to the manufacturing method of the present invention, it is possible to form an extremely thin grace layer, which eliminates the need for difficult processes such as depositing ultra-thin porous glass on an alumina substrate. It is possible to manufacture the substrate in a simple process,
Reliability can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るサーマルヘッド用基板の一実施例
を示す側断面図、第2図は従来のサーマルヘッド用基板
の側断面図、第3図は本実施例のサーマルヘッド用基板
を用いて構成したサーマルヘッドの印加電力とピーク温
度の関係を示すグラフである。 11・・・アルミナ基板(絶縁基板)、12・・・グレ
ーズ層、 12a・・・SiO2微粒子層、 12b・・・5iO7薄膜層。 =  11 − 師刀U亀カー 20    3.0    40 FTj 1mf17’J (W/dot )ピーク湿准
仔性り゛ラフ も 3 図
FIG. 1 is a side sectional view showing an embodiment of a thermal head substrate according to the present invention, FIG. 2 is a side sectional view of a conventional thermal head substrate, and FIG. 3 is a side sectional view showing a thermal head substrate of this embodiment. 3 is a graph showing the relationship between applied power and peak temperature of a thermal head constructed using the above-described method. 11... Alumina substrate (insulating substrate), 12... Glaze layer, 12a... SiO2 fine particle layer, 12b... 5iO7 thin film layer. = 11 - Shito U Turtle Car 20 3.0 40 FTj 1mf17'J (W/dot) Peak wetness and roughness 3 Figure

Claims (1)

【特許請求の範囲】 1、絶縁基板と、 該絶縁基板上に形成されたグレーズ層とを有し、上記グ
レーズ層はSiO_2微粒子層と該SiO_2微粒子層
を覆うSiO_2薄膜層より成ることを特徴とするサー
マルヘッド用基板。 2、上記SiO_2微粒子層を構成するSiO_2微粒
子の粒径が50〜1000Åであることを特徴とする特
許請求の範囲第1項記載のサーマルヘッド用基板。 3、絶縁基板上にSiO_2微粒子層を形成する工程と
、 このSiO_2微粒子層上にSiO_2薄膜層を形成す
る工程と を含むことを特徴とするサーマルヘッド用基板の製造方
法。 4、上記SiO_2微粒子層は、SiO_2微粒子を有
機溶剤に分散させたペーストを用いて厚膜印刷法により
形成することを特徴とする特許請求の範囲第3項記載の
サーマルヘッド用基板の製造方法。
[Claims] 1. It has an insulating substrate and a glaze layer formed on the insulating substrate, and the glaze layer is composed of a SiO_2 fine particle layer and an SiO_2 thin film layer covering the SiO_2 fine particle layer. Thermal head substrate. 2. The substrate for a thermal head according to claim 1, wherein the SiO_2 fine particles constituting the SiO_2 fine particle layer have a particle size of 50 to 1000 Å. 3. A method for manufacturing a substrate for a thermal head, comprising the steps of: forming a SiO_2 fine particle layer on an insulating substrate; and forming a SiO_2 thin film layer on the SiO_2 fine particle layer. 4. The method for manufacturing a thermal head substrate according to claim 3, wherein the SiO_2 fine particle layer is formed by a thick film printing method using a paste in which SiO_2 fine particles are dispersed in an organic solvent.
JP27654487A 1987-10-30 1987-10-30 Thermal head substrate and its manufacture Pending JPH01118451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27654487A JPH01118451A (en) 1987-10-30 1987-10-30 Thermal head substrate and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27654487A JPH01118451A (en) 1987-10-30 1987-10-30 Thermal head substrate and its manufacture

Publications (1)

Publication Number Publication Date
JPH01118451A true JPH01118451A (en) 1989-05-10

Family

ID=17570957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27654487A Pending JPH01118451A (en) 1987-10-30 1987-10-30 Thermal head substrate and its manufacture

Country Status (1)

Country Link
JP (1) JPH01118451A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317341A (en) * 1991-01-24 1994-05-31 Rohm Co., Ltd. Thermal head and method of making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317341A (en) * 1991-01-24 1994-05-31 Rohm Co., Ltd. Thermal head and method of making the same

Similar Documents

Publication Publication Date Title
JPH01118451A (en) Thermal head substrate and its manufacture
GB2094176A (en) Ceramic substrate for fine line circuitry
JPH01118450A (en) Thermal head substrate and its manufacture
CN117615632A (en) Infrared thermal radiation detector with heat insulation layer and preparation method thereof
JPS58163A (en) Manufacture of capacitor
JPH0752431A (en) Substrate for edge face type thermal head
JPS5919178A (en) Thermal head
JP2542711B2 (en) Method of manufacturing thick film thermal head
JPS61100477A (en) Thermal head
JPS5921740U (en) temperature detector
JPS6014588Y2 (en) thermal pen
JP2563444B2 (en) Thermal head and manufacturing method thereof
JP2570418B2 (en) Manufacturing method of oxygen sensor
JPH05305719A (en) Thermal head
JPH02121851A (en) Insulating board and thermal head using the same
JPS59229362A (en) Thermal head
JPH0636924Y2 (en) Thermal head
JPH0122236B2 (en)
JPS6039593U (en) sheet heating element
JPS62251158A (en) Manufacture of thermal head
JPS63276561A (en) Thermal head
JPS62127256A (en) Thermal printing head
JPS5887077A (en) Thermal head
JPS586393U (en) constant temperature heating element
JPH04234675A (en) Thermal head